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INTRODUCTION 

What is the essential elements of plants ? It will be difficult 

to begin this thesis on the Na requirement of C4 plants without 

making some references to the term essentiality. 

Although most of the naturally occurring mineral elements are 

found in plant tissues, many of these elements are thought to be 

present merely because of the absorption from the soil and are 

not operative in plant metabolisms. In accordance with the 

Arnon's proposal (1950), it is generally accepted that the 

essential elements should satisfy following criteria composed of 

three main parts: (1) the element is absolutely required for 

plant growth, and the plant is unable to complete its normal 

growth and reproduction without the element, (2) it is not 

possible to replace the function by other elements, and (3) the 

element has a direct or indirect action in plant metabolism. So 

far, sixteen elements has been firmly established to be essential 

nutrients which satisfy above criteria. These comprise the 

macronutrients: carbon, hydrogen, oxygen, nitrogen, phosphorous, 

potassium, calcium, magnesium and sulphur I and micronutrients: 

iron, manganese, zinc, copper, molybdenum, boron and chlorine. On 

the other hand, there are so-called 'beneficial elements! which 

stimulate plant growth only under certain conditions or 

compensate the toxic effects of other elements but not fulf ill 

the criteria of essentiality. 

Many plant species respond positively to Na, however, Na is 

defined as one of the beneficial elements, because the Na effect 

is usually observed under condition where K supply 1s limited and 

is considered to be a partial substitution for the role of K as 



an essential element. Since Na ion normally tends to accumulate 

to higher concentrations in the vacuoles than in the cytoplasm, 

if substantial amounts of Na are taken up by plants under low-K 

condition, Na would be transported into vacuoles in exchange for 

vacuolar K, thereby substituting for K in its contribution to the 

leaf solute osmorality or increasing the availability of K in 

the cytoplasm. However, Na- cannot displace the role of K as an 

enzyme activator. Thus, Na will substitute for K in some, but 

not all its roles in the plants, and the degree to which its 

substitution occurs depends upon the extent of Na absorption and 

transport within any particular species (Flowers and Lauchli 

1983). In general, crops can be divided into one of two classes 

each of which was subdivided into two groups with regard to their 

responses to Na (Pirson 1955, Marschner 1972). The responses of 

plants to Na application can be summarized as Table 1, although 

there was some variability in specific results. 

Table 1. Responses of several crops to Na application under 

low-K and sufficient-K condition (Flowers and Lauchli 1983). 

Condition 

Low-K 

Response to Na 

slight to none 

slight to medium 

Crop 

maize, lettuce, onion 

barley, oat, mustard 

--------------------------------------------------------------

Sufficient-K 
slight to medium 

large 

cabbage, pea, oat 

beet, celery 



On the other hand, there is a quite distinct role of Na from 

that as a the beneficial element, i.e., essential function in 

metabolism of certain plant species. Brief history of the studies 

on the Na requirement of plants are presented below. 

Sodium was first shown to be essential for cyanobacteria 

Anabaena cy11ndrica cells, when it was demonstrated that 0.22 mM 

(5 ppm) Na was required and no other monovalent cations could 

substitute for Na (Allen and Arnon, 1955). In Na-deficient 

Anabaena cells, the activity of N2-fixation decreased and the 

levels of nitrate reductase activity were decontrolled (Brownell 

1979) • Recently, Na was shown to be required to maintain 

nitrogenase activity of Anabaena toru1osa cells (Apte and Thomas 

1983). In Anabaena variabi1is (Re inhold e t a1. 1984) and 

Synechococcus 1eopo1iensis cells (Miller et a1. 1984, Miller and 

Canvin 1987), extracellular Na was shown to be required for 

attainment of high rates of photosynthesis and high affinity 

transport of HC0 3- across plasmamembrane at low concentrations of 

dissolved inorganic carbon in the medium. On the other hand, 

0.1 mM (2.3 ppm) Na was s~own to be essential for angiosperm, 

Atrip1ex vesicaria (Brownell and Wood 1957). Subsequently, it was 

demonstrated that Na was generally required by the plants having 

C4 photosynthetic pathway but not by species with C3 pathway 

(Brownell and Crossland 1972). In addition, it was reported that 

facultative CAM ·plant, Bryophy11um tublf10rum responded to Na 

when performing CAM but not when photosynthesizing via C3 pathway 

(Brownell and Crossland 1974). The correlation between the 

possession of C4 pathway and the requirement for Na would be 
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indicative of a possible role of this element in the C4 

dicarboxylic acid pathway. Therefore, a great deal of experiments 

has been carried out in this view point (Boag and Brownell 1979, 

Brownell 1979, Shormer-Ilan 1979), however, involvement of Na in 

C4 pathway is still uncertain. In attempts to elucidate the 

physiological mechanism of the Na requirement of C4 plants, the 

fact that not all C4 plants seem to require Na (Hewitt 1983) 

should not be overlooked. In other ·words, it is possible that Na 

may affect some metabolism other than C4 pathway or may be 

involved in a part of metabolisms not yet defined which occurs in 

C4 but not in C3 plants. 

On assumption that there may be a target site of Na in C4 

plants I metabolism besides C4 dicarboxylic acid pathway, I 

started my investigation on the Na requirement of C4 plants using 

a NAD-ME type C4 plant, Amaranthus tricolor L. cv. tricolor. At 

first, the effects of Na on the growth of A. tricolor plants were 

studied (Chapter 1). Next I studied on the metabolic responses 

of the plants during the recovery from Na deficiency and found 

that the increase in the level of nitrate reductase activity was 

one of the most rapid responses. Since it was considered that the 

increased nitrate reductase activity may have significant 

contribution to the growth enhancement during the recovery from 

Na deficiency, the effects of Na application on N0 3- assimilation 

of A. tricolor plants were investigated (Chapter 3). In Chapter 

4 I I report on the Na-stimulated N0 3 - uptake in A. tricolor 

plants and discuss a causal relation between the Na-stimulated 

N0 3- uptake and the enhancement of the level of nitrate reductase 
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activity by Na application. These studies revealed that nitrate 

reductase activity level increased in consequence o£ the 

stimulation of N0 3 uptake by Na application, in turn N03 

assimilation was then promoted resulting in the growth 

enhancement. Finally, I report on the effects of Na on the 

growth and the levels of nitrate reductase activities of several 

monocotyledonous C4 plants (Chapter 5). 
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CHAPTER 1 

EFFECTS OF SODIUM APPLICATION ON AHARANTHUS TRICOLOR L. CV. 

TRICOLOR PLANTS 

Section 1. Effect of Na Application on Growth of Amaranthus 

tricolor L. 

Many plant species show positive growth response to Na. The 

effect of Na, however, has been ascribed to a poor supply of K, 

that is, Na can in part compensate for the shortage of K (Flowers 

and Lauchli 1983). Brownell and Wood (1957) first demonstrated 

the essentiality of Na for the growth of Atriplex vesicaria. 

Subsequently Brownell and Crossland (1972, 1974) demonstrated 

that the Na requirement was remarkable only in C4 and CAM plants, 

and not in C 3 plants. Moreover, in two genera of 

Chenopodiaceae, Atriplex and Kochia,which contain both C3 and C4 

species, Na was shown to be essential only for C4 species 

(Brownell 1979). Although these evidences may indicate a 

possible role of Na in CO 2 assimilation by C4 dicarboxylic acid 

pathway, physiological basis for the Na requirement of C4 plants 

has not been established. 

Taking into account that not all C4 plants have been shown to 

require Na (Hewitt 1983), it seems reasonable to assume that 

metabolic process other than C4 pathway may necessitate Na for 

its operation. This means that a research on the Na requirement 

of C4 plants must be begin with a quite new view paint. That is 

to say, every sort of experimental results must be given careful 
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consideration once again. 

For this purpose, I have studied the effects of Na on growth 

(Section 1) and CO 2 assimilation of a NAD-ME type C4 plant, 

Amaranthu5 tricolor L. (Section 2). 

MATERIALS AND METHODS 

Plant Materials and Growth Conditions. Seeds of Amaranthu5 

tricolor L. Tricolor were purchased from Takii Seeds Co., Ltd., 

Kyoto, 605. Japan, in may 1983. The seeds used in the growing 

seasons of 1984 were obtained from plants grown under Na-

deficient conditions in 1983 in a green house. The seeds (1 g) 

were washed with distilled and deionized water five times each 

for 5 min. The seeds were sown on a sheet of cheesecloth 

covering acid-washed polyethylene beads (diameter 5 rom, packed in 

a ZO-Z5 K 3 cm polyethylene container) wetted with distilled water, 

and were kept at 30·C under continuous illumination (8000 lux). 

After germination, a half-strength culture solution (see below) 

was given and just before the second leaf pair appeared, the 

seedlings were transplanted to water culture, using 3 L plastic 

pots. The solution was aerated for 30 min every two hours 

without air purification. The pots were kept in a greenhouse, 

where they were dipped into a water bath with circulating water 

of ZO·C. The standard culture solution contained 1 mH KCl, 0.5 

roM MgS0 4 · 7HzO, 0.25 roM (NH 4 ) 2HP0 4 and 1 roM Ca (N03 ) 2' 4H20. The 

salts were purified by recrystallization from ethanol-water, 

except for calcium nitrate. The micronutrient composition was 
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that of Arnon's solution cited by Hewitt (1966) except that all 

the iron was supplied as ferric citrate. The culture solutions 

were prepared using distilled and de ionized water. Sodium was 

supplied as NaCl or Na2S04 and in reference treatments, Kel or 

K2S0 4 was supplemented to give the same anion concentration. 

Every pot had four or two seedlings and the solution was changed 

every four or two days, as the plant growth proceeded. 

The growth experiments were carried out for four times in the 

summer of 1983 and 1984. In the 1983 experiments, the plants 

were allowed to grow until their seed formation stage. The K-

treated plants had only 20 , seeds compared with the N&-treated 

plants, but the germination efficiency was not different. 

Analysis~ The plants were dissected into leaves, stems and 

roots, and the parts were washed with distilled water, blotted 

dry, weighed and dried in an oven at 70 ·C. The materials were 

finely ground using a ball mill and appropriate amounts were 

digested with a nitric acid-sulfulic acid mixture (10:1) at 150 

• c. Contents of Na and K were determined by emission 

spectrophotometry and Ca,.Mg, and Fe by atomic absorption 

spectrophotometry. Total Nand P contents were determined 

calorimetrically using the 1ndophenol blue method (Weatherburn 

1967) and the molybdenum blue method (Murphy and Riley 1962), 

respectively, after Kjeldahl digestion. Chlorine was extracted 

with boiling water and measured by a colorimetric method (Iwasaki 

et al. 1952). Chlorophyll content was estimated in 80 " (V/V) 

acetone-water extracts (Arnon 1949) and betacyanin contents in 67 

, (V/V) methanol-water extracts (Elliott 1979) prepared from the 

fresh leaves. 
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RESULTS 

Growth. Dry matter production by A. tricolor plants under 

various growth conditions is shown in Fig. 1. Growth of the 

plants treated with Na salts were about 300% of those grown 

without Na salts. 

Standard 

+ 0.5 mMKCI 

+ 1 mMKCI 

+ 0,5 mM K2S04 

+ 0.5mMNaCI 

+ 1 mM NaCI 

As the reference treatment plants received K 

a 
Growth (g) 

5 

I.tW@l ,~ 
Root Stem Shoot 

10 

+ 0,5 mMNa2S04 •• CE~~~~i-

Fig.l Dry mailer production'of Amaral/thus tricolor plants grown with or without sodium salts. The seeds were 
sownon May 4, 1984. Sodi~m salu were given for 27 days and the plants were harvested on July 9, 1984. The 
results are shown as an average of three plants and the bars show standard deviations. The growth experiment was 
repeated three times with similar resulu. 

salts instead of Na salts to give the same anion concentrations, 

the growth stimulation induced by the application of Na salts was 

a Na specific effect and was due neither to compensation of K 

shortage nor to the accompanying anions. 

Mineral Contents. Mineral contents of A. tricolor plants grown 

under various conditions are shown in Table 1 and 2. For 

elements other than Na and K, only the contents in the leaves are 

presented. The plants supplied with K2S04 at a concentration of 

0.5 mM showed poorer growth (Fig. 1) and lower CI and K 

contents (Table 1) than the K-treated plants. Sodium contents in 

the leaves increased 40- to 50-fold with addition of Na salts at 
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T.bl., 1 Contents or ,odium, potassium and chlorine in A. lri'CliDr plants under various conditions 

Culture conditions 
Na (ppm) K (%) CI (ppm) 

Leaves Stenu Roots Leaves SI(nu Roots Leaves 

Standard 32.6 <l8.9 110 6.69 12.7 9.03 5,9<l0 

+O.5mw KCI 41.8 5<l.3 93.9 7.30 13.9 11.3 6,HO 

+1 mM KCI 32.5 38.9 68.8 6.53 12.9 10.8 7,070 

+0.5 mN KISO. 59.6 56.2 54.3 4.38 7.46 5.58 3,350 

+0.5mw NaCI 1,700 6,500 6,930 4.SO 9.26 5.19 9,150 

+1 mM NaCI 2,430 10,500 6,300 4.08 7.25 5.29 8,570 

+0.5 roN NaISO. 2,650 12,<KXl 7,520 4.30 9.16 5.86 8,220 

The values arc the means or three replicates. 

Table 2 Contents or nitrogen, phosph~OD, calcium, magnesium and iron i~ A. IrieCl/Clt plant leaves under various 
condilions 

Cuhure condilions N(%) p ('Yo) Ca (%) Mg('Yo) Fe (ppm) 

Standard 5.91±O.249 0.H3±0.0IO 2.84±0.100 I. 12 ±0.058 12B±5.50 

+0.5 mM KCI 6.20±0.370 O.855±0.058 2.B5±0.064 1.21 ±0.067 N.D. 

+1 mN KCI 5.99±0.OSO 0.807 ±O.071 2.54±0.50 1.08±O.130 249± 12.4 

+0.5 roN K!SO~ 5.50±0.IB9 O.509±O.D44 3.33±O.l62 I.OI±O.025 213±IO.0 

+0.5 roN NaCI 5.20±0.161 0.722±O.O58 3.01±O.020 1.0B±O.052 N.D. 

+ 1 Jru4 NaCI 5.28±O.117 O.628±0.023 3.20±O.OI6 1.l2±O.O27 331±12.5 

+0.5 rru.c Na2S0~ 5.10±O.1l6· 0.641 ±O.OO6 3.17±O.067 1.l6±O.063 205±4.49 

The values are the means or three replicates±standard errors. N.D., Not determined. 

0.5 or 1 mM, but the distribution of this element among the 

organs was almost the same as in the K-treated plants. A. 

tricolor plants responded to Na but the Na content and 

distribution in the Na-treated plants were not different from 

those of other crop plants grawn under ordinary conditions, for 

which the Na requirement has not been reported (Flowers and 

Lauchli 1983). The Cl content (Table 1) was somewhat higher in 

the Na-treated plants, but even that of the reference plants far 
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exceeded the critical content for Cl deficiency (Broyer et al. 

1954) . 

Comparing the mineral contents between the Na-treated and the 

K-treated plants, significant differences were found also for N, 

K and Ca contents (Table 1, 2). Nitrogen and K contents were 

higher in the Na-treated plants. These results suggest that Na 

improves the efficiency of Nand K utilization. Phoshorous 

contents did not differ significantiy between the Na-treated and 

the K-treated plants. Calcium contents were generally higher in 

the Na-treated plant leaves but no difference were found in 

stems and roots. Magnesium and Fe contents in the leaves were 

also determined (Table 2), since the K-treated plants easily 

suffered from chlorosis. Although significant fluctuations were 

observed in the Fe contents, magnesium contents were not 

different. 

Betacyanin. Brownell and Crossland (1972) demonstrated that the 

Na-deprived A. tricolor plants showed the deficiency symptoms of 

chlorosis and necrosis. In my experiment, symptoms of Na 

Table 3 Effect of sodium application on the chlorophyll. and belacyanin contents 
in the leaves of A. tricolor plants . 

Treatment 

Wilhout sodium (+0.5 mM KCI)-

With sodium (+0.5 mM NaCI)· 

Chlorophyll 
(mg/g fro wt. b) 

(Chlorophyll alb ratio) 

1.49 
(3.41) 

2.30 
(3.72) 

Betacyanin 
Cllmotes/g fr. wt.·) 

0.305 

1.23 

• 0,5 mM KC! or 0.5 mM NaCI was supplemented to the standard culture solution. 
• leaves just reaching their maximum sizes were used. 
Determinations were carried out six times using different plants. 
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deficiency such as pale leaf color and low betacyanin contents 

were observed (Table 3), but usually necrosis was not found. 

Medium pH Changes. Figure 2 shows the medium pH changes. The 

pH decrease was faster in the Na-containing medium. Although 

7 

6 

:r: 
0. 5 

I. 

t. I I I .:f' 
0 1 2 3 t. 5 

Day 
Fig. 2 Acidification of the AmaTanthus tricolor rooting medium by sodium salt application. The medium pH 
changes were traced in the 1984 growing period using the same plants as in Fig. I. . Determinations were done from 
the 17th day after sodium salt application. Standard culture solution (-0-); standard culture solution containing 
0.5 meq./liter chloride salts ( ... _---) of sodium (e) and potassium (0), the same at I meq./liter cation concentration 
(_. _. -): the same at I meq./liter cation concentration, but given as sulfate salts (- - - -). 

this difference was reproducible, it is not clear at present 

whether Na has a qirect effect on this pH decrease or not. 

Since the Na-treated plants grow vigorously, the faster pH drop 

in the Na-containing medium may be due to a greater imbalance of 

uptake between cations and anions, that is, the secondary effect 
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of Na. Another possibility is involvement of Na in the proton 

extrusion by the roots. 

DISCUSSION 

Under my growth conditions, the contaminating Na in the 

culture solutions was less than 20 ppb, and the Na contents in 

the leaves of plants grown without added Na were 30 to 60 ppm 

(Table 1 ) although in the stems and roots they were generally 

higher. According to Brownell (1979), his group reduced the 

concentration of contaminating Na in the culture solutions to 

less than 2 ppb, but the Na content in their Atriplex vesicaria 

leaves, showing Na deficiency symptom, was 10 mmol-kg
1
dry matter, 

equaling 230 ppm. Kushizaki and Yasuda (1964) reported that 

when sugar beet plants showed Na deficiency symptoms, the 
-1 

internal Na contents was 6 mmol-kg dry matter. Comparing these 

findings indicates that the critical concentration of Na at which 

plants suffer Na deficiency may differ from species to species. 

Brownell (1979) also pointed out that the Na requirement of 

the C4-Atriplex plants was met by application of about 0.1 meq. 

1-1 of Na. My results (Fig. 1) indicate that application of 0.5 

meq. 1-1 of Na satisfies the Na requirement of A. tricolor but 

the precise threshold concentration of Na for the plants was not 

determined. Assuming that all the Na in the leaves was free, 

the Na concentrations were calculated to be about 0.2 mH in the 

K-treated leaves and about 20 mH in the Na-treated leaves on the 

tissue water bases. According ly I if the system( s) which 

requires Na occurs in the leaves, the internal threshold 
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concentration of Na is in a roM range. 

Nunes et al. (1983) demonstrated a NaCl-stimulated proton 

efflux from sugar beet leaf discs. When the leaf discs absorbed 

Na, stoichiometric release of K and proton occurred under light. 

They concluded that sugar beet has a Na-stimulated proton pump 

and discussed the possibility of the pump being a Na-a.ctivated 

ATPase. As A. tricolor belongs to the same family, 

Chenopodiaceae, as the sugar beet, "there might be some similar 

response to Na as to proton efflux in A. tricolor plants. 

Elliott (1979) investigated cytokinin effects on betacyanin 

biosynthesis in dark-grown A. tricolor seedlings and his 

intensive studies revealed that there is a Na-K synergism for the 

cytokinin-dependent betacyanin synthesis. Elliott (1979) 

suggested involvement of a Na-K ATPase activity, but its 

occurrence in higher plants has yet been demonstrated. Our 

results (Table 3) indicate a four fold increase in the betacyanin 

contents in mature leaves. As cytokinin is known to participate 

in many diverse aspects of plant cell metabolism, Na may operate 

through the cytokinin functions. 
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section 2. Effect of Na on 14C02 Assimilation of Amarantbus 

tricolor L. 

Positive correlation between the possession of C4 photosynthetic 

pathway and the requirement for Na (Brownell 1979) make Us expect 

a possible role of this element in the C4 pathway. How$ver, the 

involvement of Na in the C4 dicarboxylic acid pathway has never 

been demonstrated. 

In this Section, I report on a study carried out to determine 

whether Na actually affects CO 2 assimilation of Amaranthus 

tricolor L. plants or not. 

MATERIALS AlID METHODS 

Plant Materials. Plants of Amaranthus tricolor L. were. grown with 

either 0.5 roM NaCl or 0.5 roM KCl for 30 days in a greenhouse as 

described in Section 1. A large excess of leaf discs (diameter 6 

mm) were prepared from the youngest fully expanded leaves of the 

Na-treated and the K-treated plants. 

14co2 Fixation by Leaf Discs. The rates of 14cOZ fixation by leaf 

discs were determined basically according to Atkins and Canvin 

(1970). To achieve high and reproducible rates of 14cOZ fixation, 

leaf discs had to be stored in distilled and deionized water for 

1 h (for the Na-treated plants) or 2 h (for the K-treated plants) 

in darkness. This pretreatment may relate to stomatal responses 

of the freshly cut tissues (Atkins and Canvin 1970). After the 
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dark pretreatment period, a sample of twenty leaf discs was 

selected, and placed with leaf surface down onto distilled and 

deionized water in a petri dish (5 em in diameter). The tissue 

was then transferred to the photosynthesis chamber (250 ml total 

volume). After 20 min of preillumination under low-C0 2 

condition, leaf discs were exposed to 14:coZ air (5 jlCi/mg C02' 

flow rate 150 ml/min) for each period (1, 2, 4: and 6 min) in an 

ill uminated chamber. Illuminat ion was prov ided with white 

incadescent projection lamp (2000 pE m- 2 s-l). The low-C0 2 

condition was obtained by passing normal air through 4 N KOH 

solution. 

Analysis. After feeding of 14c02 , the tissues were plunged into 

liquid nitrogen and kept at this temperature until extraction. 

Tissues were extracted with 67 % (V/V) methanol-water and 

fractionated into the acidic (organic ac ids and phosphate 

esters), the basic (mainly amino acids) and the neutral fraction 

(mainly sugars) by using ion exchange resins (Atkins and Canvin 

1970). The basic fraction was applied to 20x20cm cellulose sheet 

(Merck, cellulose plate Art. 5552) and developed in 88 % (W/W) 

phenol-water:water:acetic acid:0.2 H EDTA (83:15:1:0.5, V/V). 

After drying samples were run with methanol:NH40H:Hl O (7:1:1, 

V/V) at right angles to the first solvent. Radioactive areas were 

located by autoradiography, collected and counted in 0.5 ml 

distilled water and. 5 ml Triton based scintillator solution 

(Dotite, Scintisol EX-H). The radioactivity of all samples were 

determined by liquid scintillation counting. 
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RESULTS AND DISCUSSIOB 

Figure 3 shows the higher rate of 14C02 fixation into 67 , 

methanol-soluble fraction of the Na-treated plants compared with 

that of the K-treated plants. The incorporation of 14c into the 

67 , methanol-insoluble fractions were about 10 , (K-treated 

plants) and 15 , (Na-treated plants) of total fixation during 6 

min of 14co2-feeding period. The net photosynthetic rates 
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Fig. 3. Effect of Ha on the 14 C02 fiXation by the leaves of 

Amaranthus tricolor. A sample of twenty leaf d1scs (diameter 6 

mm) from the K-treated (0) or the Ha-treated plants (e) was 

d U expose to CO 2 air (5 pCi/mg CO 2 ) for each period 1n a 250 ml 

chamber at light intensity of 2000;iE m-2 s-1. 

calculated were 8.1 mg C02 dm- 2 "h-1 for the Na-treated plants and 

4.1 for the K-treated plants. These values were comparable to the 
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14 COZ assimilation rates recorded in a NAD-ME type C. plant, 

Portulaca orelacea (Hatch 1975). 
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Fig. 4. Effect of Na on the i'e labeling of the acidic (01, the 

basic (e) and the neutral fractions (0) from the leaves of 

Amarantbus tricolor. Samples were the same as those 1n Fig. 3. 

Data are the means and SD of four replicates. 

Time course of distribution of 14C among the neutral, the 

acidic and the basic fractions of leaf discs were shown in Pig. 

4. In the Na-treated plants, faster increase in radioactivity in 

the neutral fraction (sugars) and slower increase in the basic 

fraction (amino acids) compared with those in the K-treated 

plants were observed. 
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From these results, it can be deduced that the Na application 

promoted CO 2 assimilation into sugars resulting in the growth 

enhancement of A. tricolor plants. Brownell (1919) also 

reported that greater amount of 14c from the 14 C02 being 

incorporated into the sugar fraction in normal than Na-deficient 

Atriplex vesicaria plants indicated that they 

photosynthesizing more rapidly. 
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Fig. 5. Distribution of I·e in the basic fraction from the leaves 

of Amaranthus tricolor grown with or without Ha. The basic 

fraction: alanine (.), aspartic acid (A) and serine plus glycine 

(0), were separated as described in 'Materials and Hethods', 

Samples were the same as those in Fig... Data are the means and 

SD of four replicates,. 
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As it was suggested that the lower rate of 14cOZ assimilation 

into sugars of the K-treated plants was due to the greater amount 

of 14c retained in the basic fraction (Fig. 4), the basic 

fraction was further analyzed (Fig. 5). It was revealed that the 

bas~c fraction was composed of aspartic acid, alanine and serine 

plus glycine (not separately determined) in the both treatments, 

and the higher radioactivity in the basic fraction of the K

treated plants mainly came from greater amount of 14C retained in 

serine plus glycine compared with that of the Na-treated plants. 

Kennedy and Laetsch (1973, 1975) suggested that a direct 

incorporation of 14cOZ into pyruvate and alanine in a C4 plant, 

Portulaca orelacea (NAD-ME type). However, Hatch (1975) 

concluded that the label found in alanine was derived from the 

14c initially incorporated into C4 acids via the interchange of 

the label between 3PGA and PEP via 3PGA mutase and enolase or via 

the C-4 to C-1 randomization of malate via the action of 

fumarase. Nable and Brownell ( 1 9 8 4 ) reported that 

photosynthetically active pool of alanine in the leaves of A. 

tricolor was greater in the Na-deficient than in the Na-

sufficient plants. They proposed that Na is necessary for 

pyruvate, Pi dikinase activity in vivo, thereby pyruvate and 

alanine accumulated whilst PEP was depleted in the Na-deficient 

plants. If this was the case, all the C4 plants should require 

Na. In practice, however, some C4 plants, such as sugarcane and 

maize, seem not to require Na (Hewitt 1983, Ohta et al. 1988 C). 

Although it is possible that the critical concentrations of Na in 

C4 plants may be different from species to species, I consider 
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that the alanine accumulation is one of results of the disturbed 

metabolisms by Na deficiency rather than the direct involvement 

of Na in the maintenance of the in vivo activity of pyruvate, Pi 

dikinase. 

At present, the pathway of C3 amino acids labeling in my 

experiment is unknown. One of the possibilities is the carbon 

flow via photorespiratory process, although the capacity of 

photorespiration in the bundle sheath cells seemed to be 

inhibited or suppressed, in spite of the presence of peroxisomes 

and glycolate pathway enzymes in C4 plants (Canvin 1979). 

Johnston et al. (1984 B) have reported that a high ambient CO 2 

concentration increased the yield of the Na-deficient C4 plants 

and discussed a possible increased leakiness of bundle sheath to 

CO 2 by the deficiency of Na. At any rate, it is considered that 

the normal carboxyl donation from amino acids to sugars does not 

proceed smoothly under Na-def icient condition, leading to the 

lower photosynthetic rate of the K-treated plants. 

In this Chapter, I demonstrated that Na application of 0.5 

meq. 1-1 to A. tricolor plants grown under Na-deficient condition 

brought about a three-fold increase in dry matter production 

compared with those of the K-treated plants. This growth 

stimulation was due to Na itself and not a supplementary effect 

of Na on K shortage nor to the accompany ing anion (Section 1). 

In Section 2, it was revealed that Na promoted CO 2 assimilation. 

However, the plants used have been grown with or without Na 

throughout the experiment. Therefore, it is essential hereinafter 

to discriminate the immediate effects from the cumulative ones by 

Na on plant metabolism. 
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CHAPTER 2 

EARLY RESPONSES OF SODIUM-DEFICIENT ~S TRICOLOR L. PLANTS 

TO SODIUM APPLICATION 

Since Na seems to be required only by the plants having C4 

photosynthetic pathway, it has been proposed that there may be a 

possible role of this element in the process of C02 fi~ation by 

the C4 pathway (Brownell 1979). However, no information on the 

involvement of Na in any cellular metabolism is currently 

available. This must be because too much attention have been paid 

to the positive correlation between the possession of C4 pathway 

and Na requirement. 

In this Chapter I I report on the ear ly response s of Na 

deficient Amaranthus tricolor L. plants to Na application. Rapid 

responses of the plants to Na can represent the primary steps of 

recovery from Na deficiency, providing a clue to understanding of 

the function of Na in C4 plants. 

MATERIALS ABD METHODS 

Plant Materials. Seeds of Amaranthus tricolor L. cv. Tricolor 

plants used in this experiment were obtained from the plants 

grown under Na-deficient conditions in a greenhouse (Matoh et al. 

1986). The seedlings were raised as described previously (Chapter 

i), unless otherwise stated. Briefly, the low-Na seeds were 

germinated an a sheet of cheesecloth covering acid-washed 

polyethylene beads. After germination, the seedlings were 

supplied with a half strength of the culture solution and just 

22 



before the second leaf pair appeared, the seedlings were 

trasferred to a water culture solution using 1.5 L plastic 

containers. Every container had nine plants. and the culture 

solution was renewed every day at the end of the light period. 

The standard culture solution (pH 6.0) contained 1 roM Kel, 1 roM 

Ca(N03)2·4H20, 0.25 roM (NH4)2HP04' and 0.5 roM Mgs04 7HZO. The 

salts were purified by recrystallization from ethanol-water, 

except for calcium nitrate. The micronutrient composition was 

that of Arnon's solution cited by Hewitt (1966) except that all 

the iron was supplied as ferric citrate. Sodium concentration as 

an impurity in this culture solution was assayed to be less than 

20 ppb using emission spectrophotometry, which was 10 times 

higher than that in the Brownell' s culture solution (Brownell 

1979) • However, as the value obtained by emission 

spectrophotometry should be overestimated due to positive 

interferences from ions in the culture solution (Brownell 1979), 

actual Na contamination in the culture solution should be lower 

than the obtained values. Throughout this study, a growth chamber 

(LPH-200 RDS, Nippon Medical and Chemical Instruments Co. Ltd., 

Osaka, Japan) was used under the following conditions: RH 80%, 

photo period 15 h, and temperature 30·C for whole growth period. 

The light intensity was approximately 150 JIE m- 2 s-l at the top 

of the seedlings. NaCl was supplied to 30-d-old Na-deficient 

seedlings to reach a final concentration of 0.5 roM at the end of 

the dark period and in the reference treatment KCl was supplied 

at the concentration of 0.5 mH. The 30-d-old seedlings had nine 

leaves under the current growth conditions. The leaf position was 

counted from the base to the tip of the shoot. 
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Relative Growth Rate. Changes in the fresh weight were determined 

at the end of the dark period every day using 10 to 16 identical 

plants. RGR was calculated from the fresh weight values according 

to the equation: 

RGR = (In fi1 - 1n w2)/(t1 - t 2 > 

where "'2 is the fresh we ight at time t2 and W1 is the fresh 

weight at time t 1 • 

Light-Dependent Oxygen Evolution and Dark Oxygen Uptake. Leaf 

discs 2 mm in diameter (0.2 g) were vacuum infiltrated with 50 roM 

Hepes-Tris buffer (pH 7.2) containing 1 roM CaC12 under reduced 

pressure. The discs were washed with 10 ml of the same buffer 

three times and immediately subjected to 02 assay using a 

Hansatech 02 electrode (King's Lynn, Norfork, England). A batch 

of 10 leaf discs were placed in the sample cuvette containing 1 

ml of the same buffer at 30· C. A£ter 5 min of pre illumination 

(white incandescent projection lamp, 2000 )lE m- 2 5- 1 ), the 

reaction was started by adding 15 pI of 0.75 M of KHC03 . Dark 02 

uptake was determined by shading the sample cuvette with a black 

cloth. 

Photosynthetic Electron Transport. To determine the effects of Na 

on the rate of photosynthetic electron transport by thylakoids, 

the leaves were harvested at 24 h after the treatments. 

Chloroplasts were isolated according to the method of Jensen and 

Bassham (1966) with slight modif ications .. The blending medium 

contained 50 roM Hepes-Tris (pH 7.6), 0.33 H sorbitol, 2 mM EDTA, 

1 mM HgC12' 10 mM Kel, 0.5 roM KH 2P0 4 and 2 mM ascorbate .. 

Thylakoid samples were washed once with the blending medium 
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omitted ascorbate and resuspended in the same medium. Oxygen 

evolution or consumption were followed polarographycally using a 

Hansatech oxygen electrode at 25 C basicallY according to Izawa 

(1980). Illumination was provided by a slide projection lamp 

that produced as incident quantam flux density of at least 2000 

)IE m- 2 s-l at a reaction cell. The basic reaction mixture 

contained 50 mM Hepes-Tris (pH 7.6), 2 mM HgC1 2 , 10 roM KCl and 

20-25 pg Chl/ml. The rate of electron transport from water to 

FeCN was measured in the basic reaction mixture supplemented 

with 1 mM FeCN and 5 roM NH 4Cl. Electron transport from water to 

MV was determined in the basic reaction mixture containing 0.1 roM 

MV, 1 mM NaN3 and 5 roM NH4Cl. 

Enzyme Activity. The 30-d-old Na-deficient seedlings were 

supplied with either 0.5 roM of HaCl or KCl at the end of the 

light period, and after 24 h, some C4 photosynthetic enzymes were 

assayed as follows. The changes in the NR activity were traced in 

detail. The day/night period was changed to 12 h/12 h. The 5th to 

the 8th leaves (1 g) from five different seedlings were sampled 

for the enzyme extraction. 

For measurement of RuBP carboxylase, the tissue was ground in 

10 ml of ice-cold buffer containing 100 mM Hepes-KOH (pH 7.4), 10 

roM MgCl2' 5 roM OTT, 2 roM EOTA, 10% (W/V) insoluble PVP. After 

f 11 tration through four layers of cheesecloth, the extract was 

centrifuged at 4°C and 10,000g for 10 min. Subsequent steps were 

carried out at room temperature. The supernatant was desalted and 

activated using a Sephadex G-25 column (Pharmacia, PD-10) which 

Was equilibrated with 100 mH Bicine-KOH (pH 8.0), 30 roM MgC12 , 10 

roM KHCO 3 ' 20 J1M 6 - P-g lucona te , and 2. 5 IBM OTT. The enzyme was 
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assayed basically according to Lorimer et al. (1977) at 25°C. The 

assay mixture (0.5 ml) contained 100 roM Bicine-KOH (pH 8.2), 1 roM 

EDTA, 30 mH MgCI2' 20 roM KH14C03 (0.1 mCi/mmol). The reaction was 

started by adding 0.5 roM RuBP and stopped after 60 s by adding 

0.1 ml of 12 N HCOOH. Pyruvate, Pi dikinase was assayed according 

to Edwards et al. (1980) with slight modifications. My grinding 

medium contained 5 roM DTT, 2.5 mM KZHP04' 2 _ 5 roM pyruvate I and 

0.5% (W/V) ascorbate. The desalting buffer was the sante as the 

grinding medium but without ascorbate. NAD-malic enzyme (Hatch et 

al. 1982), PEP carboxylase (Osmond and Greenway 1972), aspartate 

aminotransferase and alanine aminotransferase (Hatch 1973) were 

assayed according to the referred sources. 

For NR determination, the crude enzyme was prepared basically 

according to the recommendations given by Notton and Hewitt 

(1979). Samples were ground in ice-cold medium containing 50 mH 

K-phosphate (pH 7.5), 0.01 mM DTT, 1 mM EDTA, and 10% (W/V) 

insoluble PVP using a chilled mortar and pestle. The homogenate 

was passed through four layers of cheesecloth. After 

centrifugation at 4·C and 20,000g for 10 min, the supernatant was 

desalted using a Sephadex G-25 column (Pharmacia, PD-iO) 

equilibrated with the grinding medium and used for the enzyme 

assay at 30·C. All the extraction procedures were carried out at 

4°C. NR activity was determined according to the method of 

Nakagawa et al. (1984). 

Enzyme activities are expressed as prool of product formed or 

substrate utilized /min, or /h mg ChI, or /g fresh weight. 

Sodium and Potassium. Sodium and K contents in the plant 
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materials were determined by emission spectrophotometry using a 

boiling-water extract (10 min) and the concentrations were 

expressed on the basis of tissue water contents (Matoh et al. 

1986) . 

Chlorophyll. Total ChI contents and Chl a/b ratios were 

determined according to the method of Arnon (1949) using the leaf 

discs prepared for the determination of the light-dependent 02 

evolution assay. 

RESULTS 

Growth. Following the addition of HaCl at a concentration of 0.5 

mM, the Na-deficient Amaranthus tricolor seedlings acquired 

signi£ icantly higher growth rate than the seedlings which 
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FIG. 1 Changes .in the relative growth rate of sodium-deficient A. 
tricolor plants during recovery from sodium deficiency. Thirty-day-old 
sodium-deficient A. tricolor seedlings were supplied with O.S mM NaO 
(e) or O.S mM KCI (0) at the end of the dark period (at lime 0 h) and 
the relative growth rate was calculated from the daily changes in the fresh 
weights. Data are the means and so. 
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received KCl within 24 h (Fig. 1). The relative growth rate 

gradually increased until 72 h, and thereafter reached a constant 

value. The value for the plants with an adequate supply of sodium 

was 0.295 ± 0.033, while that for the deficient plants was 0.243 

± 0.034. 

Sodium and Potassium Concentration. Since the Na concentration in 

the roots of both treatments did not change during the 

experiments (data not shown), it was considered that the Na taken 

up by the plants is transported mainly to the shoots. In the 

stems of the plants which received Na, the Na concentration was 

lower than that of the leaves and it remained at about 1.5 mM 

even after 48 h (Fig. 2). Sodium concentration increased more 

• 0 Stem 
"I. • A 1.- I. 

.0 5.6 
TV 7.8 
eo 9 

3 
~ 
E 

0 2 z 

o 0 24 1.8 72 
Time (hI . . 

FIG. 2. Changes in the sodium concentration of leaves and stems of 
3O-d-old A. trico/~r seedlings during the recovery from sodium deficiency. 
Leaf position was counled from the base to the tip of the shoot. The 
seedlings were supplied with 0.5 mM NaG (e) or O.S mM KC (0) at the 
end of the light period (at time a b). Data arc the means and 50 of 
detenni nations of four individual plants. SD arc not shown when smaller 
than the symbols. 
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Table 1 Changes in /he Potassium Concenlralion of Leaves and Siems 
oJ30-d-old A. lrie%r Seedlings during tht Recovery from Sodium 

Deficiency 

Potassium Concentration 

mM 

Oh Stem 183 ± 38.3" 1 

Leaf 1-4" . 163 ± 53.2 
Leaf 5,6 105 ± 40.5 
Leaf7,8 97.7 ± 34.2 

+ 0.5 roM + 0.5 mM 
KG NaG 

12 h Stem 204 ± 15.1 213 ± 16.5 
Leaf 1-4 163 ± 7.85 154 ± 8.58 
Leaf 5,6 142 ± 24.5 150 ± 18.5 
Leaf 7,8 145 ± 30.3 140 ± 13.4 

24 h Slem 238 ± 13.5 223 ± 20.5 
1-4 140 ± 12A 113 ± 16.6 
5,6 163±21.5 150 ± 15.3 
7, 8 152 ± 15.4 ·140 ± 22.4 

48 h Stem 207 ± 12.2 209 ± 28.5 
1-4 153 ± 16.8 154 ± 18.4 
5,6 145 ± 28.4 138 ± 14.5 
7,8 156 ± 12.4 110 ± 24.8 

72 h Stem 170 ± 19.5 171 ± 11.9 
1-4 163 ± 27.4 126 ± 2S.4 
5,6 173 ± 26.3 129 ± 28.9 
7,8 135 ± 12.7 117±21.8 

"PolaSSium concentrations (mM) were calculated on tissue water 
base. ~ Lcaf posil ion and trealments are the same as in the: Ie:gend for 
Figure 2. Data are the me:ans and so of dC:lenninations of four individual 
plants. 

rapidly in the younger than in the older leaves, and during the 

first 24 h it increased faster than during the following 24 h. In 

the plants to which KCl was supplied, the Na concentration 

remained constant at the initial value of about 0.4 roM in the 

leaves and 0.8 mM in the stems (Fig. 2). Potassium concentration 

was nearly the same between the treatments (Table 1) suggesting 

that the K uptake was not affected by sodium application. 

Chlorophyll. ChI content per leaf area which was not 

significantly affected by the Na treatment within the first 24 h 

increased markedly in the leaves of the recovering plants within 

48 h of receiving Na (Fig. 3A). The ChI a/b ratio increased 

appreciably within the first 24 h of receiving the Na treatment 

(Fig 3B). 

29 



N 
E 
~2.0 
01 
E 

C .. 
C o 1.5 
u 

:>.. 
.J::. 
0. 
0 .. 
E to .s:. 
u 

o 

g 

0 
l,.S 

~l,.O -o 

>. 
s::. 
~3.5 .. 
o 
1: 
u 

3.0 

A o .: leof 5 
/I. A; 6 
c.: 7 
v y: 8 

B 

OfL~ ________ ~ ________ ~~~ 
·0 21. 48 

Time (hI 

fiG. 3. Changes in the Chi content (A) and Chi alb mtio (8) of the 
leaves of 3(}.d-old A. tricolor seedlings during the recovery from sodium 
deficiency. Leaf position and treatments are the same as in the legend 
for Figure 2. Data are the means of determinations of two samples of 
three plants. Curves are the representatives of three independent deter-
minations. 

Oxygen Evolution and Uptake. The rate of the light-dependent 02 

evolution determined by using the leaf discs was enhanced by Na 

application and the extent of the stimulation differed from leaf 

to leaf (Fig. 4). Within 24 h of receiving the Na treatment, 

the 02 evolution greatly increased in leaves 5 and 6, which were 

almost fully expanded. The values recorded in leaf 7, which was 

just developing, and in leaf a, about 5 d after its initial 

appearance, increased linearly during the experimental period. 

At 48 h, the rate of °2 . evolution in leaves 7 and 8 still 
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increased while that in leaf 5 decreased gradually and the rate 

of 02 evolution in leaf 6 remained constant. These results 

indicate that the effect of Na on the light-dependent 02 
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FlO. 4. Changes in the light-dependent Oz evolution of the leaf discs 
of 3O-d-old A. tricolor seedlings during the recovery from sodium defi
cie:ncy. Leaf position was counted from the base to the tip of the shoot. 
Treatments are the: same as in Figure I. Data are the means and so of 
de:le:rminations of lhrc:e samples of four plants. 

evolution was greater in the developing leaves than in the mature 

leaves. It is also suggested that Na enhanced photosynthesis 

irrespective of the degree of stomatal opening, because, in the 

method for the measurement of photosynthesis using an 02 

electrode, CO 2 was absorbed mainly through the cut surface of the 

leaf tissues. It is therefore unlikely that the stomatal 

diffusion resistance limited the CO 2 fixation (Pitman er al. 

1975). 

Dark 02 uptake rates in the leaf discs also responded 
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positively to Na application within 24 h (Table 2). Brownell 

and Jackman (1966) who reported that the 02 uptake rates of the 

leaves were stimulated by feeding of Na to cut shoots of Na-

Table 2 Effects of Sodium Application to Sodium-Deficient A. tricolor 
Seedlings on Dark O2 Uptake Rales of the Leaf Discs 

Leaf position, treatments, and preparation of leaf discs are the same 
as in the legend for Figure 2. ~ uptake rates of the leaf discs were 
determined at 0 and 24 h after the supply of salts. Data are the means 
and so of determinations of three samples of four plants. 

Leaf Position 

Leaf 5 
Leaf 6 
Leaf 7 
LeafS 

Control 
(0 b) 

54.5 ± 3.77 
56.5 ± 0.835 
54.S ± 1.60 
58.1 ± 0.290 

Dark O2 Uptake 

+0.5 mM KG +0.5 mM NaCl 
(24 h) 

IJmol/dm 2 .h 
56.3 ± 4.13 
58.1 ± 7.96 
63.9 ± 0.505 
61.8 ± 2.14 

69.3 ± 3.83 
79.2 ± 4.23 
13.5 ± 3.54 
74.S ± 1.81 

deficient Atriplex plants suggested that Na may be involved in 

the glycolytic stages of respiration. 

The threshold concentration of internal Na which elicited 

the stimulation of 02 evolution was considered to be below 3 roM 

(Fig. 2); however, I failed to stimUlate the 02 evolution by 

infiltrating NaCI (5 mM) into the leaf discs of the youngest 

fully expanded leaves which were Na deficient (data not shown). 

Photosynthetic Electron Transport. The rates of photosynthetic 

electron transport from water to FeCN and to HV increased within 

24 h of the addition of Na (Table 3). Increase in the electron 

transport activities by the addition of Na were more evident in 

the younger leaves than in the older leaves. 
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Table 3 Effect of Na application on the rates of photosynthetic electron 

transport by thylakolds of ~ tricolor plants. 

Data are the means and SE of at least three determinations of pooled 

samples of 20 to 30 leaves per sample. 

. Oxygen exchange. rate 

Reaction 
• Leaf 6 Leaf 8 

+Na -Na +Na -Na 

pmole o/mg Chl/h 

268 1 10.8 226 ,1 15.4 308 :t 15.4 251 1 9.89 

•• (521 ±. 20.91 (501 t 34 .11 (587 % 29.3) (479 t. 18.81 

263 ! 8.82 243 ! 6.51 304 t 24.3 249 % 6.08 

(508 t 16.91 (538 ! 14.31 (580 ! 46.21 (475 ±. 11.6) 

On the day 30 after germination Na-def ie ient ~ tr ico.lor plants .... ere 

supplied ei ther 0.5 mM of NaCl (+NaJ or KCl (-Na) at the end of the I i<;lht 

period. Leaves were harvested during the last Sh of the light period on d 

31. Leaf positions .... ere counted from the base to the tip of the shoots • 

•• Values in the parenthesis represent the rates of electron transport of 
:2 thylakolds per leaf area (pmol 0:2/dm /h). 

Enzyme Activity. Measurable increase was not detected in the 

activities of PEP carboxylase, RuBP carboxylase, pyruvate, Pi 

dikinase, NAD-malic enzyme, aspartate aminotransferase, and 

alanine aminotransferase by the Na treatment within 24 h (Table 

4). The activity levels of NAD-malic enzyme and pyruvate, Pi 

dikinase were lower than the typical values (Hatch 1976, Hatch et 

al. 1982). As the activities reached the comparable values in 

the leaves of 50-d-old plants, these low activities may be due to 
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Table 4 Effects 0/ Sodillm Application on the Extractable Enzyme 
Activities 0/ Leaves o/the 30-d-o/d A. tricolor Seedlings 

The 30-d-old sodium deficient A. tricolor seedlings were received either 
0.5 mM of NaCl or KCI althe end of the light period and the enzyme 
activities were measured after 24 h of the treatments. See "Materials and 
Methods" for detail. Data are the means and so of at least three 
replications. Enzyme activities are expressed as #lmol of product fonned 
or substrate utilized/min. mg Chl. 

Enzyme + 0.5 mM KCl + 0.5 mM NaCI 

PEP carboxylase 
RuBP carboxylase 
NAD-Malic enzyme 
Pyruvate, Pi dikinase 
Aspartate aminotransferase 
Alanine aminotransferase 
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17.6 ± 3.19 17.8 ± 1.84 
8.70 ± 0.25 8.20 ± 0.204 
6.23 ± 0."723 6.78 ± 0.526 
1.68 ± 0.285 1.62 ± 0.149 
61.0 ± 5.01 57.2 ± 8.51 
20.3 ± 2.59 19.4 ± 3.16 
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FIG . .5. Effects orsodium application on the induction ofNR activity 
in sodium-deficient A,. "koJor leaves. The 3O-d-old seedlings received 
either 0.5 mM NaCI (e) or 0 . .5 mM KO (0) allhe beginning or the dark. 
period (at time 0 til and the changes in the NR activity were followed. 
Curves arc the rcprcsentatives of four independent experiments. 
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the immatUrity of the sampled leaves. 

Extractable NR activity in the A. tricolor leaves increased 

significantly in response to the Na application (Fig. 5). The 

activity was not different between the treatments at the end of 

the dark period; however, in the light period, the activity began 

to increase, more rapidly in the Na-supplied leaves. Twelve h 

later, the activity reached 10.6 proal of nitrite formed/g fresh 

weight/h in the Na-supplied leaves while 3.06 in the Na-deprived 

leaves. 

DISCUSSIOH 

Growth increase in the Na-deficient Amaranthus tricolor 

seedlings occurred within 24 h of the addition of the Na salt. 

Although the RGR values were calculated from the daily changes in 

the fresh weight, since the water content per fresh weight of the 

plants did not vary appreciably during this experiment, it is 

assumed that the changes in fresh weight closely reflected well 

the daily changes in dry matter production. 

The rates of 02 evolution determined in the leaf discs were 

found to increase within 24 h of receiving the Na treatment. 

Accordingly, the improvement of the growth was intrinsically 

correlated with the stimulation of photosynthesis by Na 

application. However, since there were nat significant increase 

in the enzyme activities responsible for C" photosynthesis within 

the same period, it was considered that photosynthesis was 

improved by the Na application without altering the enzyme levels 

of C4 photosynthetic pathway. Boag and Brownell (1979) 
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demonstrated that the C4 pathway was operating even in the Na

deficient Kochia and Chloris plants, that is, the 13c value, C02 

compensation point and percentage of 14C label in C4 dicarboxylic 

acid in short-term photosynthesis were similar in the Na-

deficient and the normal plants. 

On the other hand, the rates of electron transport by 

thylakoids increased within 24 h of the addition of Na, 

indicating that the stimulation of photosynthesis may coMe out in 

terms of the enhancement of photochemical energy supply. In the 

current experiments, the increase in the rate of 02 evolution of 

leaf discs preceded the increase in the total Chl content, 

suggesting that the recovery of photosynthesis occurred prior to 

the increase in the total ChI content. Johnston et al. (1984 B) 

and Matoh et al. (1986) reported higher ChI alb ratios in the 

Amaranthus plants with as adequate supply of Na than in the Na-

deficient plants. In addition, it was confirmed that the ChI 

alb ratio increased prior to the increase in the total ChI 

content and reached the values typical of C4 plants within 48 h 

of receiving the Na treatment, while in the Na-deficient leaves 

the values remained lower (Fig. 3). The increase in the ratio 

was ascribed to the faster recovery to the normal levels of the 

Chl a content than that of ChI b (data not shown), as was 

reported by Brownell and Jackman (1966) in the Na-deficient 

Atriplex leaves. In general, the C4 plants have a higher Chl alb 

ratio and P700/Chl total ratio than C3 plants suggesting that the 

PSI activity is higher in C4 plants (Black and Mayne 1970). This 

characteristic confers a higher capacity of ATP supply required 

for the regeneration of PEP from pyruvate in the mesaphyll 
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chloroplasts of C4 plants (Edwards and Huber 1981). Taken 

together, the rapid stimulation of the light-dependent 02 

evolution by the Na treatment could be due to the fast recovery 

of the photochemical activity by means of the increase in the ChI 

alb ratio to the normal level in the Na-supplied leaves. 

Edwards (1974) reported that high levels of PSI would be 

ref lected in high ChI alb ratio in C4 plants. It has been 

reported that PSI components se"eroed to be synthesized in 

preference of ChI and PSII components during the early stage of 

iron-nutrition mediated chloroplast development in sugar beet 

(Nishio and Terry 1983). It is possible that there may be a 

similar chloroplast development sequence during the recovery from 

Na-def iciency in A. tricolor plants. Effects of Na on the 

photo system should be examined further. 

Allen and Arnon (1955) first demonstrated that Na was 

essential for the growth of Anabaena cylindrica and later 

Brownell and Nicholas (1967) showed that in the Na-deficient A. 

cylindrica cells, the NR activity was much higher than that in 

the normal cells and that the higher NR activity induced a large 

accumulation of nitrite resulting in detrimental effects on the 

metabolism. Smith (cited by Brownell 1979) also reported the 

decontrol of NR in the same species. In Anabaena rolurosa, Apte 

and Thomas (1983) reported that Na-deficient cells lacked the 

nitrogen-fixing ability and the effect of Na was replaced by the 

addition of combined inorganic or organic nitrogen to the culture 

medium. In higher plants, Brownell (1979) reported that no such 

effects of Na deficiency on NR activity were observed in a C4 
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plant I EchiIlOchloa utilis. However, in the Na-deficient A~ 

tricolor plants, NR activity increased in the same way as was 

recorded for the light-dependent 02 evolution within 24 h by the 

addition of Na. The enhanced activity of NR which recorded a 

value of 10.6 pmol nitrite/g fresh weight/h is comparable to that 

recorded for other C4 plants (Hewitt et al. 1979) and in the case 

of A. tricolor, the activity seemed to be restored to a normal 

level rather than to be decontrolled by the Na treatment~ As 

the extractable NR activity reflects well the absolute amounts of 

this enzyme protein (Somers et al. 1983), it is considered that 

the increase in the extractable NR activity is due to the de novo 

synthesis of NR. However Na would not be involved directly in 

the NR protein synthesis, because Na requirement is confined to 

only some C4 plants. In higher plants, the level of NR is. 

regulated by many factors including substrate nitrate, 

molybdenum, phytohormones, and light conditions (Beevers and 

Hageman 1980, Duke and Duke 1984). Therefore, Na may have an 

effect on these regulating factors to produce the NR protein. 

It is also possible to considarthat Na promotes the nitrate 

availability for NR induction system, thereby affecting the 

levels of NR activity. 

I previously showed that betacyanin content was lower 1n the 

Na-deficient A. tricolor plants than in the normal plants 

(Chapter 1). Elliott (1979) reported that the synthesis of 

betacyanin in A. tricolor seedlings 1s a cytokinln- and 

phytochrome-dependent reaction, and tbat Na stimulated the 

synthesis. As cytokinin has been known to influence NR activity 

(Knypl 1979) and induce dB novo synthesis of NR (Kanda and Chen 
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1972), the increase in the NR activity could be due to the 

stimulation of the cytokinin-dependent process by Na. 

In spite of the extensive studies carried out by Brownell's 

group, the role of Na in higher plants has not yet been 

elucidated (Brownell 1979). In this Chapter, I demonstrated 

that Na application to the Na-def icient A. tricolor plants 

increased not only photosynthesis but also the extractable NR 

activity within 24 h. These results suggest that the Na

sensitive metabolic process is not confined to photosynthesis. 

Following Chapters will focus on the actual site of Na by means 

of the effects of Na on the DR activity as an indicator of the Na 

effect. 



CHAPTER. 3 

EFFECT OF SODIUM APPLICATION ON NITRATE ASSIMILATION IN 

.AHARANTHUS TRICOLOR L. PLANTS 

Rapid responses to the Na treatment are important in attempts to 

understand the function of Na in C4 plants. In Chapter 2, I 

presented evidence that the enhancement of NR activity level 

might have signif icant effects on the growth of Antaranthus 

tricolor L. plants during the recovery from Na deficiency. In 

this Chapter, I report on the studies carried out to determine to 

what extent the N0 3 assimilation process is affected by the Na 

application. 

MATERIALS AND METHODS 

Plant Materials. Seedlings of Amaranthus tricolor L. cv. Tricolor 

were cultured under Na deficient condition as described 

previously (Ohta et al. 1987). The basal culture solution (pH 

6.0) prepared in distilled and deionized water contained 2 roM 

KN0 3 , 1 roM CaC12 , 0.25 roM (NH4)2HP04 and 0.5 mH MgS0 4 07H20. The 

micronutrients composition was that of Arnon's cited by Hewitt 

(1966) except that all the iron was supplied as ferric citrate. 

The concentration of Na as an impurity in the culture solution 

was estimated to be less than 5 ppb using atomic absorption 

spectrophotometry. Throughout this study, a controlled 

environment chamber was used under following conditions: 

temperature 30°C for whole growth period, RH 80 %, photoperiod 15 

h-light/9 h-dark cycle, light intensity 350 pE m- 2 s-l. Ten 

plants were grown in a 3 L plastic container. Culture solution 
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were chartged every 2 days and aerated continuously. 

For a comparison of RGR on different nitrogen sources, Na-

deficient A. tricolor plants were transferred from the basal 

culture solution to the N0 3 -N culture solution consisting of 2 

+ mH KN0 3 , 1 roM CaCl2 , 0.25 roM KH ZP04 and 0.5 roM MgS0 4 or the NH4 -

N culture solution consisting of Z roM KCl, 1 roM (NH4)2S04' 1 mM 

CaCl2 , 0.Z5 roM KHZP04 and MgS0 4 at the end of the light period on 

d Z 7 after germination. These solutions were supplemented with 

the Arnon's micronutrients described above. At the end of the 

light period on d 30 (at 72 h after the transfer), the plants 

were supplied with either 0.5 rnM NaCl or 0.5 rnM KCL Tungstate 

treatment was carried out as follows. On d 32, a batch of the Na-

treated and the K-treated plants grown in the basal culture 

solution were supplied with O. Z roM potassium tungstate at the 

beginning of the dark period. 

Fresh weights of the identical plants were determined at the 

end of the light period on d 32 and d 33 and RGRs were calculated 

(Ohta et ale 1987). NR activities of the leaves except 

cotyledons were determined at 6 h after the onset of the light 

period on d 32. 

1m Assay. On d 30 after germination, A. tricolor plants were 

supplied with either 0.5 roM NaCl or 0.5 roM KCl at the beginning 

of the dark period. During the following 60 h, leaves except 

cotyledons from five plants were sampled at 6 h or 12 h 

intervals, and NR activity was assayed as described previously 

(Ohta et al. 1987).The enzyme activity is expressed as ;maol of 

N0 2- formed g-l fresh weight h-1 . In this experiment, light/dark 
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cycle were changed to 12 h/12 h. 

15 N03 - Uptake and Assimilation. At the beginning of the dark 

period on d 3D, a batch of the Na-deficient A. tricolor plants 

received either 0.5 mM of NaCl or Kel. 

(1) At 48 h after the treatments (at the beginning of the dark 

period on d 32), plants were transferred from the basal culture 

solution in which they had been grown to the uptake solution 

where 2 roM 14N03 - was replaced by 2.mM 15 N03- (99 atom % of i5 N). 

The plants were kept in the uptake solution during the following 

9 h-dark period and sampled at the beginning of the light period. 

(2) At the beginning of the light period on d 33 (at 57 h after 

the treatments), the plants were transferred to the uptake 

solution. The plants were sampled at the end of the 15 h-light 

period. 

Immediately after harvest (5 plants each), the shoots were 

weighed and ground with 80 % (V/V) ethanol water in a mortar and 

pestle. The homogenate was centrifuged at 5000 g for 15 min. 

The pellet was re-extracted with 80 % ethanol five times. The 

combined supernatant was made up to volume. Nitrate content in 

the supernatant was determined colorimetrically (Association of 

Official Analytical Chemists 1980). 

For determination of total Nand i5 N in the supernatant and 

the pellet, both fractions were digested with salicylic acid 

using Kjeldahl procedure (MacKenzie and Wallace 1954) after 

removal of ethanol by evaporation. NH + 4 was recovered as 

ammonium sulfate by steam distillation and determined 

colorimetrically (Weatherburn 1967). The atom' 15 N were 

determined by mass spectrometry (committed to Shako Tsusho Ltd., 
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Tokyo 105, Japan). Data are the means and SD of three 

replicates. 

RESULTS 

Sodium-deficient A. tricolor plants were supplied with either 

0.5 mM NaCI or 0.5 roM KCl at the beginning of the dark period on 

d 30 after germination. During the following 12 h-dark period, 

there was no difference in the levels of leaf NR activitYr 
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Fig. 1. Effects of Na application on the levels of nitrate 

reductase activity of the Na-deficient A. trjcolor plants. On d 

30 after germination, the Na-deficient A. ~rlcolor seedlings were 

supplied with either 0.5 mH NaCl (.) or 0.5 mH KCl (o)at the end of 

the dark period (indicated by an arrow). Changes in the NR 

activity during thalight period and the dark period are shown by 

the ful·l lines and the dotted 11nes, respectively. Data is the 

representatives of three independent experiments. 
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however, the activity began to increase more rapidly in the Na-

treated plants from the onset of the light period and after 6 h 

it reached 9.2 pmole nitrite formed g-l F.W. h- 1 while 4.96 in 

the K-treated plants (Fig. 1). Daily changes in the NR activity 

were observed both in the Na-treated and the K-treated plants. 

Increase in the levels of the NR activity by the addition of Na 

was not a transient phenomenon but the higher levels of the 

activity were maintained in the Na-treated plants thereafter. NR 

activity was not detected in the root tissues. 

To determine if the growth stimulation by Na application was 

due to the enhanced levels of NR activity, comparison of RGRs and 

NR activities of the plants grown under different nitrogen 

sources was carried out (Table 1). The greatest stimulation of 

RGR by the Na treatment was observed when the plants were grown 

in the culture solution where N0 3 was a sale nitrogen source. On 

the other hand, Na did not affect the NR activity levels and RGRs 

when the plants were grown with NH 4+ as a sale nitrogen source. 

When the plants were supplied with 0.2 mM potassium tungstate, NR 

activities decreased to the same levels as those of the plants 

grown with NH4+ within 24 h and there was not a significant 

difference in RGR between the treatments. 

These results suggest that Na affects growth through 

enhancement of NR activity levels. Therefore, N0 3- assimilation 

rates of the Ka-treate4 and the K-treated plants were traced 

using 15 N03 - When the plants were exposed to 15N03 - for 9 h

dark period, although most of the 15 N present in the shoots 

remained in the soluble fraction, the total uptake of 15 N03 - by 

44 



Table 1 Effects of Na application on the relative growth rates and the levels 

of nitrate reductase activities of A. tricolor seedlings grown with different 

ni trogen sources. 

Data are the means and SO of 6 replicates. 

* N-source 

N03 + NH + 
4 

NO) 

NH4 
+ 

- NH + NO) + 4 

* 

+ 

+ 

+ 

-** + W04 

+ 

RGR 

(g/g/day) 

* 0.24 .t 0.03 

0.30 ± 0.03 

0.20 :i: 0.02 

0.31 ± 0.10 

0.13 ± 0.02 

0.15 ± 0.05 

0.13 :1 0.01 

0.15 t 0.01 

NRA 

().lmole N02-,g F.W./h) 

5.79 ;t 0.11 

9.60 j; 0.11 

NO 

NO 

2.12 ± 0.24 

1.45 .. 0.07 

1.37 ± 0.08 

1. 78 i: 0.12 

On the day 27 after germination, Na-deficient A. tricolor plants established 

in the basal culture solution containing 2 mM N0 3 and 0,5 mM + 
NH4 were 

transferred to the N0 3-- or the NH 4+-solution at the end of the light period 

(see Materyals and Methods). After 72 h of the transfer, the seedlings received 

either 0.5 mM of NaCI (+) or ~Cl (-). Fresh weights of the plants were 

determined at the end of the light period on d 32 and d 33. Relative growth 

rates were calculated from the changes in the fresh weights of the seedlings and 

the levels of nitrate reductase activity were also determined on d 33. 
** 

Seedlings maintained in the basic culture solution received K-tungstate at a 

concentration of 0.2 mM at ~8 h after the addition of Na+ or ~+ (on d ·32). 

NO; Not determined. 
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Table 2 • ACCumulation of lsN in the insoluble- and soluble-nitrogen of the shoots of A. 

IS -tricolor plants during 9h-dark or lsh-light N03 -~xposure period. 

Data are the means and SO of 3 replicates. 

Exposure period 

9h-dark 

.. 

.. .. 

.. + 

Total N 

0.244 ! 0.02 

0.096 ! 0.02 . 

.. 0.839 ! 0.04 

0.531 ! 0.03 

Insoluble N 

15 mg N/g F.W • 

0.012 !. 0.001 

(3.27 ! 0.06) 

0.002 ! 0.004 

(2.81 t 0.02) 

0.384 • 0.017 

(3.98 :t 0.08) 

0.148 ! 0.012 

(3.09 .. 0.01) .. 

Soluble N 

0.232 !. 0.019 ... 
(1.23 :t 0.01) 

0.095 ! 0.011 

(1.·U t 0.06) 

0.449 ! o .0lB 

(1.16 t 0.01) 

0.380 t 0.013 

(1.46 ! 0.02) 

·fNO - -NI 
3 

(0.63 .! 0.01) 

(0.84 :t 0.02) 

(0.51 !: 0.02) 

(0.93 :!: 0.04) 

. On day 30 after germination. Na-defi~ient ~ tricolor plants received either 0.5 mM HaCl 

(.) or KCI (-) at the beginning of the dark period. The plants were transferred to a 

culture solution labelled with 9'.5 atom' ISH (2 ~M H0
3
-, at the the beginning of the 

dark period on d 32 or at the beginning of the light period on d 33, and five })lants each 

(one replicate) was harvested." 
.... 

Values in the parenthesis represent the contents of insoluble-. soluble and nitrate-N 

(lng N/g F.W.). 

the Na-treated plants was 254% of the K-treated plants (Table 2), 

indicating that N0 3- uptake was stimulated by the Na treatment. 

There was not a significant difference in the soluble-N contents 

between the treatments, however, N03--N content was higher in the 

K-treated plants. In the second experiment, the plants were 
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exposed to the 15 N03 - solution during 15 h-light period (Table 

2). Total 15 N uptake of the Na-treated plants was about 158% of 

that of the K-treated plants. contents of total-N of the Na-

treated plants was only 128% of the K-treated plants; however, 

insoluble 15 N content of the shoot of the Na-treated plants was 

about 259% of that of the K-treated plants, indicating greater 

capacities for N0 3- assimilation of the Na-treated plants. About 

72% of the total 15 N in the shoot remained in the soluble 

fraction of the K-treated plants and about 54% of the N8-treated 

plants. Although soluble-15 N content was higher in the Na-treated 

plants, contents of total soluble-N and nitr~te-N of the K-

treated plants were about 126% and 182% of the Na-treated plants, 

respectively. Rufty et al. (1987) reported that i5 N was readily 

assimilated into insoluble macromolecules following i5 N03 -

reduction without staying in soluble reduced nitrogen in soybean 

plants. It is, therefore, considered that much more 15 NO -
3 

remain in the K-treated plants than in the Na-treated plants. 

DISCUSSION 

Within 24 h of the addition of Na, NR activity in the leaves 

of the Na-deficient plants increased to the comparable level 

which were reported for other C4 plants (Hewitt et al. 1979) and 

the enhanced level was maintained thereafter. Therefore, I 

examine the possibility that the increased NR activities are 

responsible for the growth stimulation by Na. By Na 

application, RGR was most affected when the plants utilized N03-

N .as a sole nitrogen source, and application of tungstate (Heimer 

et al. 1969) canceled the stimuratory effect of Na on the NR 
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activity and RGR. These results suggest that Na is fUnctional 

when N0 3--N is utilized. The 15 N03 - studies revealed that N0 3 

assimilation was hindered by Na deficiency. To sum up, Na

deficient A. tricolor plants suffer from nitrogen deficiency and 

Na stimulates the growth through enhanced N0 3 assimilation. 

Beevers and Hageman (1980) have summarized the process of the 

transport and storage of N0 3 in the plant tissues as follows; 

(a) the movement of nitrate in and out of the cytoplasm is 

regulated at the plasmamembrane and tonoplast, (b) N0 3- appears 

to enter the cytoplasm more readily from the apoplast than from 

the vacuoles and its presence in the cytoplasm is transient. 

Results have been reported so far indicate that availability of 

N0 3 at the induction and assimilation sites plays a major role 

in regulating the level of NR activity and the rate of N03 

reduction (Heimer and Filner 1971, Shaner and Boyer 1976 A, 1976 

B, Udayakumar et al. 1981, Soualmi-Boujemaa et al. 1985). Judging 

from the lower capacity for N0 3- assimilation and the lower NR 

activity level in the K-treated plants, the N0 3- concentration in 

the cytoplasm of the Na-deficient plants would be lower than that 

of the Na-sufficient plants. In other words, it is possible that 

the Na treatment may enhance the level of NR activity by 

increasing the N0 3- availability for the induction of the enzyme. 

This possibility was further investigated (Chapter 4). 
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CHAPTER .. 

SODIUM-STIMULATED "03 UPTAKE IN AHARANTI1lIS TRICOLOR L. PLAlfTS 

I have demonstrated that the Na treatment increased the NR 

activity level of the Na-deficient Amaranthus tricolor plants 

(Chapter 2) and promoted the growth by stimulating N0 3 

assimilation (Chapter 3). Howevei, it remains to be clarified 

whether the increase in NR activity level by the Na treatment is 

only one of consequences of the stimulation of metabolism by Na 

or Na directly affects the induction process of the enzyme. 

Here, I report on the Na-stimulated N03 uptake of A. tricolor 

plants and discuss a causal relation between the Na-stimulated 

N0 3 uptake and the enhancement of NR activity level by the Na 

application. 

MATERIALS AlfD METHODS 

Plant Culture. Seedlings of Amaranthus tricolor L. cv. 

Tricolor were cultured under Na-deficient condition until 30 days 

after germination as described previously (Chapter 1, 2). The 

standard culture solution (pH 6.0) prepared in distilled and 

deionized water contained 1 mH KCl, 1 roM Ca(N03)204H20, 0.25 roM 

(NH 4 )2HP0 4 and 0.5 roM MgS0 4 "7H20. The micronutrient composition 

was that of Arnon's solution cited by Hewitt (1966) except that 

all the iron was supplied as ferric citrate. The concentration 

of Na as an impurity in the culture solution was estimated to be 
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less than 5 ppb using atomic absorption spectrophotometry. 

Throughout this study, an environment chamber (NS280FHW, Takayama 

Seisakusho, Kyoto 610, Japan) was used under following 

conditions: temperature 30·C for whole growth period, RH 80 %, 

photo period 15 h and light intensity 350 pE m-2 s-l. Culture 

solutions were renewed every 3 days and continuously aerated. 

Ion Uptake Studies. Half-strength standard culture solution, 

adj usted with 0.1 M HCl to pH 6.0, was used as an uptake 

solution. 

Experiment 1. Roots of seedlings grown under the Na-deficient 

condition for 30 days after germination were rinsed with the 

uptake solution, and then four seedlings each were transferred to 

60 ml of the uptake solution supplemented with either 0.5 mM NaCl 

or 0.5 mM KCI at the end of the dark period. Uptake of ions by 

the seedlings was determined by following the disappearance of 

the ions from the uptake solution. 

Experiment 2. The following experiment was carried out to 

. +-evaluate the effects of ~ntracellular Na the N03 uptake of A. 

tricolor plants. The 30-d-old Na-deficient seedlings were 

treated with 0.5 mM HaCI during the dark period (9 h), and the 

seedlings were transferred to the uptake solution at the end of 

the dark per iod. They were allowed to stand for 10 min, then 

four seedlings each were placed in 60 ml of the uptake solution 

supplemented with either 0.5 mH HaCl or 0.5 roM KCl and ion fluxes 

were determined at 3 h intervals during 6 h of the light period. 

The amount of water lost from the uptake solutions due to 

evapotranspiration was determined from the decrease in the weight 

of vessels containing the experimental seedlings and water was 
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added to return the vessels to their initial weight. THe uptake 

solutions were continuously aerated throughout the experiment and 

were renewed at every sampling. All the data are the means of 

at least three replications and are represented on the g fresh 

weight basis of roots unless otherwise stated. 

Analysis. Nitrate, Cl-, and 8°4 2 - were determined USing ion 

chromatography (CDD-, LC-6A, Shimazu Co., Ltd., Kyoto 604, 

Japan). Phosphate (Murphy and Riley 1962) and NH 4+ (Weatherhurn 

1967) were determined calorimetrically. Sodium, K+, ta2 + and 

Mg2+ were determined using atomic absorption spectrophotometry. 

Sodium concentrations in the plant materials are presented on a 

tissue water basis. 

Proton release was measured with a H+ electrode and calculated 

on a basis of quantity of hydroxide required to return the 

solution to the initial pH. 

Concentration of 803- in Xylea Sap. The 30-d-old Na-deficient 

A. tricolor seedlings received either 0.5 roM NaCI or 0.5 111M KCl 

at the beginning of the 9 h-dark period and collection of xylem 

sap was started at the beginning of the following light period 

(at time a .h). Briefly, the plants were transferred to a 100 ml 

glass vessel containing the culture solution, which was placed in 

a pressure chamber, at intervals during the light period. The 

shoots were excised at about 5.0 mm above the root/shoot 

junction. A protruding stem of the decapitated plant above a 

steel lid was fixed with a sealing plug of silicon rubber and a 

silicon tube was inserted over the cut end for collection of the 

sap (about 10 p1). Xylem sap were obtained by applying 
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pressure to the roots of decapitated plants (Munns 1985). 

Exudate collection was completed within 15 min of root 

pressurization at 0.2 MPa. Higher pressures could not be 

applied without risk of tissue injury and leakage. 

NR Assay. For NR assay, the 30-d-old seedlings grown under the 

Na-deficient condition were treated with the same manner as 

r Experiment 1 f • All the leaves except the cotyledons were 

sampled and the NR activities were determined as described 

previously (Ohta et al. 1987, Chapter 2) ... 

To determine whether NR activity level respond to enhancement 

of N0 3 translocation or not, Na or N0 3 was loaded through cut 

stems. The 30-d-old Na-deficient A. tricolor plants were excised 

at the base about 5 mm above the root/shoot junction under 

distilled and deionized water, and the cut ends of the shoots 

were dipped in a solution containing either 10 roM NaCl or 10 roM 

NaCI plus 10 roM KN0 3 , and in the reference treatments, either 10 

mM KCl or 10 roM KCI plus 10 roM KN03 was supplied. Then the cut 

shoots were placed in a growth chamber conditioned as described 

above. After 10 h of continuous illumination, the youngest fully 

expanded leaves (3 g) were harvested from ten different shoots 

and extractable NR activities were determined. When the cut 

shoots were loaded with fuchsine, it took about 3 to 4 h for the 

dye to develop over the leaves. Therefore 10 h of the treatment 

period was considered to be sufficient to determine the effect of 

the test solutions on the NR activity levels. The enzyme activity 

is expressed as ?Mole of N0 2- 1 formed g-l fresh weight h-1 • 
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RESULTS AND DISCUSSION 

Within 30 min of application of Na at a concentration of 0.5 

mM, the seedlings showed signif icantly higher NO 3 uptake 

capacities (4.51 ± 0.06 pmol/g F.W. root/h) than seedlings which 

received 0.5 IBM KCI (1.90 ± 0.56 )lIIl0l/g F.W. root/h) (Fig. lA). 

After 4 h, the difference in the NO 3 uptake rate further 

increased. The total amount of N03 taken up by the Na-treated 

seedlings during the experimental period was about twice of that 

by the X-treated seedlings (Fig. 1B) • 
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FIG. 1. Effects of Na· application on NO] - uptake of A. tricolor 

seedlings. The 3O-d-old Na· -deficient A. ,rico lor seedlings were placed 
in the uptake solution supplemented with either O.S mM NaC or O.S mM 
KCI at the end olthe dark period (at lime 0 h). A. Changes in the NO) -
uptake rales with time; B. cumulative NO] - uptake. Results are rep
resented by solid lines lor the Na· -treated seedlings and by dotted lines 
Cor the K - -treated seedlings. Data are the means and SO of three rep
lications of each four plants and are expressed as p.mol g - I root FW. 
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Figure 2 shows changes in the Na concentration in the Na

treated seedlings. Following the Na application, Na concentration 

in the shoots increased linearly with t~e from an initial value 

of 0.06 mM to 0.35 roM after 5 h. On the other hand, that in the 

roots increased from 0.35 roM to 0.60 roM within 1 h, and then 

leveled off. 
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FIG. 2. Changes in Na· concentrations in the shoots (-) and the 
roolS (- - -) of Ihe 30-d·old A. ,ricolor seedlings following Na· ap
plication. The Na· -deficient A. tricolor seedlings were IIansfcrrcd to the 
uptake solution rontaining O.S mM NaQ at the end of Ihe dark period 
(al time 0 h) and were sampled II specified intervals during S h of the 
light period. Data arc the means and SO or determinations of four 
individual seedlings. Sodium conccnlralions (mM) were calculaled on the 
basis of tissue water contenu. 

Table 1 shows a summary of fluxes of Na+, K+, Cl- and N0 3-. 

The Na-treatment stopped the K+ and Cl- uptake and significant 

amounts of K+ and Cl were released. Taking into account the K+ 

and Cl- contents of the plants in long-term growth e:xperiment 

(Chapter 1), these effluxes were transient phenomena. Uptake 

rates of HPO. 2- , Ca2 + and Mq2+ did not differ 
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Table 1. Flllxes of No·. K·. CI-. alld NO~ - Affecled b.l· Na
Applicalioll 10 A. Iricolor Seedli/lgs 

Values represent net inOuxes (+) and efOuxes (-). Sodium innux 
was calculated from the data of Figure 2. Net fluxes of K" and CI
during 5 h of the uptake period were taken from the identical experiment 
presented in Figure 1. Data are the means and SD of three replications. 

Element 

H'" 

Na· -Treated K· -Treated 
Seedlings Seedlings 

p.mo/lg FW rOOl15 h 
+2.3 
- 1.2 :t 1.7 

+ 26.6 :t 4.2 
- 3.5 :t 2.3 

-14.5 ::!; 0.6 

+ 10.3 ::!; 3.9 
+ 12.6 ::!: 1.7 
+35.2 ::!: 18.4 
-6.1 ::: 1.8 

• Amount of OH - required to return the medium pH to the initial 

value. 

significantly between the treatments during the experimental 

period (data not shown). The anion uptake exceeded the cation 

uptake more in the K-treated seedlings, and the excess mainly 

consisted of Cl • Acidification of the medium was faster in the 

Na treatment. 

How is Na involved in the enhancement of N0 3 uptake ? The 

uptake of N03 is about ll-fold higher than that of Na+ (Table 1) 

and Na+ in the uptake solution had no significant effect on the 

N0 3 uptake and acidification of the medium when the plants were 

pre-loaded with Na (Table 2). Moreover, the Na-preloaded 

seedlings released Na+ into the uptake solution supplemented with 

0.5 roM KCl. Accordingly the Na+ influx was not essential to the 

N0 3 uptake process in the roots but intracellular Na stimulated 

the N0 3 - uptake. These results argue against the Na+/N03-

symport which appeared in the report of the Na-dependent N0 3-

uptake by a marine diatom Phaeodactylum tricarnutum (Rees et al. 

1980) • 

55 



+ Table 2 Effects of ·intracellular Na on the N03 uptake of 30-d-

old Na+-preloaded ~ tricolor seedlings. 

Values are the means and SO of fiV'e replications of each four 

plants. 

0-3ha 3-6ha 

(pmol/g F.W. root/h) 

N0
3 

uptake +a 21.5 ± 3.74 25.3 ± 2.59 

a 22.1 ·5.69 29.5 :t 3.38 ± 

Na+ release + Nob NO 

0.16 ± 0.07 0.05 :t 0.01 

+ 2.64 ± 0.12 3.33 ± 0.40 

2.52 ± 0.25 2.91 ± 0.20 

aSodium-preloaded seedlings were placed in the uptake solution 

supplemented with either 0.5 roM NaCl (+) or 0.5 roM KCl (-) at the 

beginning of the 1 ight per iod (at. time 0 h). The N0
3 

- uptake and 

Na+ release were determined at 3 h intervals. b NO : Not deter

mined. cAmount of OH required to re~urn the medium pH to the 

initial value. 

It is well known that NR activity is induced by its substrate 

N0 3 and in turn NR activity then influences N03- uptake from the 

external medium (Beevers and Hageman 1980, Guerrero st al. 1980). 

Therefore NR activities ·in the leaves were measured at the 
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same time as N0 3 uptake using the same batch of the plants (Fig. 

3) • Enhancement of the NR activity became appreciable 

after 1 to 3 h of the addition of Na, i. e. the 

stimulation of N0 3 uptake by the roots preceded the increase in 

£8 -~ 
u.: 
0\ 

IN6 
0 
z 
U'l 
Q) 

°4 E 
::l. 

~ -.:;: 2 -u 
0 

a::: 
z 0 

0 1 2 3 4 5 
Time (h) 

Flo. 3. Effects of Na'" application on' NR induction in the Na'" -de
ficient A. tricolor leaves. The 30-d-old seedlings were placed in the uptake 
solution supplemented with either 0.5 mM NaCI (e) or 0,5 mM KCI (0) 
at the beginning of the light (at time 0 h), and the changes in, the ex-

: tractable NR activity in the light period were followed. Curves are tbe 
, representatives of three independent experiments. 

NR activ i ty in the leaves (Fig. 1 and 3). In addition, NR 

activities were not detected in the roots. Accordingly, it 

seemed difficult to correlate the stimUlation of N0 3 Uptake by 

Na with the increased levels of NR activity. 

Concentration of N0 3 1n xylem sap of the Na-treated plants was 

higher than that of the K-treated plants even at the beginning of 
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the light period (at time 0 h), and the difference between the 

treatments became greater with time (Fig. 4). At 12 h of the 

5 
e +No 

0 -No 

I. 

~ 
E 

1M 
a 
Z 3 

oL. .f 
0 2 I. 6 9 12 

Time (h) 

Fig. "- Changes in the N03- concentration of xylem sap of 

AmaraDtbus tricolor seedlings following Na application. The 30-d-

old Ha-deficient AmaraDhtus tricolor seedlings received elthex: 

0.5 mH NaCI (e) or 0.5 mK KCI (0) at the beginning of the 9 h-

dark period on the day 30 after germination. Xylem sap were 

collected at required intervals from the beginning of the 

following light period <at time 0 h). Data are the means and SD 

of at least three replicates. 

light period, N0 3 concentration of the Na-treated plants was 

about 160 % of that of the K-treated plants. These results 

indicated that Na stimulated N0 3 - uptake by the roots, thereby 

the N0 3 translocation to the shoots was also stimulated. In 

plant tissues, it is considered that electrogenic proton pumps 

located at the plasmamembrane of epidermal and cortical cells 

provide a means of the ion fluxes from outside to the symplast 
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(Pitman 1977 I Poole 1978). Recently it has been reported that 

electrogenic proton pumps working at the xylem/parenchyma 

symplast interface mediate ion exchange between xylem and 

surrounding tissue, then facilitate the upward transport of ions 

(DeBoer et a1. 1983, DeBoer et a1. 1985). It should be noted here 

that stimulation of H+ efflux was observed simultaneously with 

the stimulation of N0 3 uptake (data not shown). 

When the cut shoots of the Na-deficient plants were supplied 

via the xylem stream, leaf NR activity level 

Nitrate reductase activity 

()Jmol NO;/gF.WJh) 

024 6 

+ 
10mM Na 

+ -
10mMK +10mMN031--________ ....J 

10mM Na+ .10mM NO; 

Fig. 5. Effect of Ha- or H03--loading via xylem stream on the HR 

activity level of the cut shoots of AmBraDtbu5 tricolor. The 30-

d-old Ha-deficient A. tricolor seedlings were excised at about 5 

mm above the root/shoot junction and the cut ends of the shoots 

were dipped in the test solution containing either 10 mM HaCl or 

10 mH HaCl plus 10 mH KH03 • and in the reference treatments •. 10 

mH KCI or 10 mH KCI plus 10 rnH KH03 was supplied. After 10 h 

under continuous illumination, the youngest fully expanded leaves 

were harvested from ten different shoots from each treatment and 

extractable NR activities were determined. 
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increased by about 180 % of that of the plants supplied with K+ 

(F ig. 5). On the other hand, the level of NR activity of the 

shoots loaded with Na+ was comparable to that of the shoots 

supplied with K+ plus N0 3-, and the loading of Na+ plus N0 3- was 

most effective in the enhancement of NR activity level (Fig. 5). 

It is considered that there are two pools for N0 3 called 

the metabolic (presumably in the cytoplasm) and storage pools 

(presumably in vacuoles), respectively, and the former pool size 

is closelY related to the capacity for NR induction (Beevers and 

Hageman 1980). Heimer and Filner (1971) first demonstrated that 

the decline of NR activity occurred even though substantial 

amounts of N0 3 were present in the tissues, indicating that most 

of the N0 3 was sequestered in the storage pools and relatively 

unavailable for reduction. The maintenance of NR in corn leaves 

has been shown to be more closely associated with the flux of 

N0 3- to the leaves from the roots than to the existing N0 3 

concentrations in the leaves (Shaner and Boyer 1976 A, 1976 B). 

Subsequently, a close relationship between concurrent absorption 

and xylem transport has been demonstrated (MacKown et al. 1981, 

Rufty and Volk 1986). It is evident, therefore, that provision 

of N0 3- by the root system for transport in the xylem is a 

important determinant of the rate of N0 3 reduction in 

illuminated leaves (Rufty et al. 1987). 

In conclusion, the presented results indicate that delivery 

of N0 3 to leaves was promoted by the application of Na in terms 

of the stimulation of N0 3 uptake, thereby the levels of NR 

activity increased. Also it is possible that Na may increase 
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the N0 3- supply from the storage pool to the NR induction site, 

since the Na-treatment of the cut shoots enhanced the levels of 

NR activity without additional supply of N03- to the shoots (Fig. 

5). From Figures 2 and 3, the stimulatory threshold of Na 

concentration in the leaves for the enhancement of the NR 

activity is presumed to be in a range of 0.1 roM to 0.2 roM on a 

basis of whole cell water, although intracellular localization of 

Na is probable. Taking into accoun~ that growth reduction in the 

Na-deficient A. tricolor plants was attributable to the lowerling 

of the capacity for N0 3 assimilation (Chapter 3), it is 

considered that the Na requirement of A. tricolor plants is due 

to the involvement of this element in the N03 uptake, hence in 

keeping the N0 3- availability in leaf tissues, for which is 

enough to maintain the normal NR acitvity level and N0 3 

assimilation capacity. While it remains to be determined whether 

Na stimulates the N0 3- uptake and NR induction in o~her C4 plants 

or not, the reason why C4 plants require Na for growth may be 

explained at least in part by the study on the Na-stimulated ion 

transport. 
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CHAPTER 5 

SODIUM REQUIREMENT OF MONOCOTYLEDONOUS C. PLANTS 

Now that I have demonstrated that the Na requirement of a NAD-ME 

type C4 plant, Amaranthus tricolor L. is due to the involvement 

of this element in the N0 3 - assimilation process (Ohta et al. 

1988 A, B) , it should be determined whether C4 species other 

than A. tricolor plants require Na "for the N0 3- assimilation or 

not. 

For this purpose, I studied on the effects of Na application 

on the NR activity levels and growth of several monocotyledonous 

C4 species (Ohta et al. 1988 C). 

MATERIALS AND METHODS 

Seven species of C4 plants representing three C4 sub-types: 

NADP-ME type, Zea mays cv. Golden Crossbantam Bell and 

Echinochloa crus-galll; NAD-ME type, Panlcum miliaceum, Panicum 

coloratum cv. Kabulabula and Panicum dichotomiflorum; and PEP-CK 

type, Panicum maximum var. Trichoglume and Chloris gayana plants 

were grown under Na-deficient condition. Seeds were germinated 

an a sheet of cheesecloth covering acid washed polyethylene 

beads. After germination, seedlings were supplied with the 

basal culture solution"(Matoh et ale 1986, Chapter 1) containing 

1 roM KCl, 1 mM Ca(N0 3 )2' 4HZO, 0.25 mM (NH4)2HP04' and 0.5 roM 

MgS0 4 '7H 20 and Arnonts micronutrients cited by Hewitt (1966) 

except that all the iron was supplied as ferric citrate. The 
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basal culture solution was adjusted with 0.1 N HCl to pH 6.0. 

Sodium concentration as an impurity in this culture solution was 

estimated to be less than 5 ppb using atomic absorption 

spectrophotometry. When the seedlings became approximately 5-10 

cm in heights, ten seedlings each was transferred to a 3 L 

plastic container containing the basal culture solution. After 

3 days of the transfer, 

supplemented to the culture solution. Culture solution was 

continuously aerated and renewed every 2 days. Throughout this 

study, a controlled environment chamber was used under following 

conditions: RH 70 %, ,photo period of 15 h-light/9 h-dark cycle, 

and temperature 3o·C for whole growth period. 

-2 -1 intensity was 300 pE m s . 

The light 

Fresh weights of the identical plants were determined at the 

end of the light period on day 5 and day 6 after the treatments 

and RGR was calculated from the fresh weight values using a 

equation described in Chapter 2. Although the RGR values were 

calculated from the changes in the fresh weight, since the water 

content per fresh weight of the plants did not vary appreciably 

during this period, it is assumed that the changes in the fresh 

weight closely reflected the daily changes in dry matter 

production. 

For determination of NR activities, shoots of the plants were 

harvested on d 5 after the treatments and leaf laminae were 

ground in a pre-chilled mortar and pestle with 50 roM K-phosphate 

buffer (pH 7.5) containing 1 roM EDTA, and 10 % (W/V) insoluble 

PVP. The concentration and kind of the sulphydryl-protectant 

used were changed according to species (See Table 3). The 
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homogenate was squeezed through 4 layers of cheesecloth and 

centrifugated at ZO,OOO g for 10 min. The supernatant was 

desalted using a Sephadex G-Z5 column (Pharmacia PD-10) 

equilibrated with the grinding medium and used for the enzyme 

assay at 30 ·C. All the extraction procedures were carried out at 

4"C. NR activities were determined as described previously (Ohta 

et al. 1987). 

Total chlorophyll content and chlorophyll alb ratio were 

determined according to the method of Arnon (1949). 

RESULTS AHD DISCUSSION 

Plants of Echinochloa crus-galli (NADP-ME), Panicum coloratum 

(NAD-ME) P. dichotomiflorum (NAD-ME), P. maxumum (PEP-CK) and 

Chloris gayana (PEP-CK) which had been grown under Na-deficient 

condition for 10 to 15 days after germination showed poor growth 

and had leaves of yellow green color. Within five days of the 

addition of 0.5 roM Na ZS0 41 these symptoms disappeared and the 

plants seemed to have almost recovered from Na deficiency, while 

the addition of 0.5 roM KZS0 4 had no effect. Relative growth 

rates of the Na-deficient plants of these species were 

Significantly higher than those of the K-treated plants (Table 

1). Especially, RGRs of P. coloratum and P. maXLmUIn increased 

by about 300 % and ZOO % by the addition of Na, respectively. 

On the other hand, Z. mays (NADP-ME) and P. miliaceum (NAD-ME) 

plants grown without Na had dark green leaves and could not be 

distinguished from those grown with Na by their appearance, and 

there were not significant differences in RGRs between the Na-
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Table I Effects of Na application on the relative growth rates of C 4 

monocotyledonous plants grown under Na-deficient condition. 

Data are the means and SO of 6 repl icates. 

Species 

NADP-ME 

Zea mays 

Echinochloa crus-galli 

NAD-ME 

Panicum miliaceum 

P. coloratum 

P. dichotomiflorum 

PEP-CK 

• 

P. maximum 

** Chloris gay ana 

age at treatment 

days 

9 

15 

15 

15 

15 

15 

25 

gIg/day 

0.23 * 0.02 

0.30 t 0.02 

0.23 ± 0.03 

: 0."10 ± 0.01 

0.33 ± 0.02 

0.14 s 0.02 

0.40 t 0.01 

0.23 ± 0.01 

0.36 t 0.01 

0.23 1:. 0.01 

0.30 t 0.02 

0.41 :t 0.03 

0.29 .t 0.03 

0.47 :t. 0.01 

Seedlings grown under Na-deficient condition in a growth chamber were 

supplied with 0.5 mM of Na 2S0 4 or K2S0 4 • Relative growth rates were 

calculated from the changes in the fresh weight values determined after 5 

to 6 days of the treatments. 

treated and the K-treated plants. Although the threshold 

concentrations of Na in the tissues to promote the healthy growth 

may be different from species to species, Z. mays and P. 

miliac8W1l plants judged not to require Na for growth at least 

under my culture condition. 

Chlorophyll contents of the plants which showed Na-

reqUirement, i. e. , E. crus-galll, P. coloratum, P. 

dichotomiflorum, P. maximum and C. gayana, markedly increased by 

the Na application (Table 2). However, increase in the Chi alb 
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Table2 Chlorophyll contents and chlorophyll alb ratio of monocotyledonous 

C4 plants grown with or without Na. 

Data are the means and SO of at least three replicates. 

Species 

NADP-ME 

* 

+ 

Echinochloa crus-galli 

+ 

NAO-ME 

panicum miliaceum 

+ 

P. coloratum 

~ dichotomiflorum 

+ 

PEP-CK 

!:. maximum 

+ 

Chloris gay ana 

+ 

* 

Chlorophyll 

3.45 :t 0.11 

3.25 * 0.12 

2.45 :t 0.19 

3.50 :t. 0.32 

2.81 :1 0.17 

2.84 :t 0.17 

0.73 :t 0.12 

1.58 x 0.32 

1.22 ±. 0.05 

1.66 ±. 0.11 

1.15 ± 0.12 

1.92 :I:. 0.09 

1.88 i. 0.11 

3.39 ,t 0.18 

Chlorophyll alb 

3.31 :t. 0.11 

3.21 t 0.06 

3.S8 * 0.07 

3.62 ;t 0.06 

3.68 :t 0.01 

3.71 :1 0.04 

3.19 :t 0.13 

3.68 :t 0.06 

3.79 :t. 0.25 

3.69 t 0.09 

3.22 ± 0.08 

3.S3 ± 0.04 

3.01 't 0.12 

3.22 ;to.OS 

Plants grown under Na-deficient,condition received either D.S·mM of Na
2
so

4 
or 

K2S0 4 when the seedlings ~ecame 5 em in heights. 

out for S days. 
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ratios were observed only in P. coloratum and P. maximum plants 

which seemed most susceptible to Na deficiency (Table 1). 

Johnston et al. (1984 B) proposed that the chlorophyll 

concentration and the ChI alb ratio are closely involved in the 

systems affected by Na nutrition. Johnston et al. (1984 B) also 

reported that ChI alb ratios of Na-deficient C4 species including 

c. gayana plants increased by Na application. It is possible 

that the responses of ChI alb ratios to Na in C4 plants may be 

different according to plant species, varieties and culture 

conditions. 

The correlation between the possession of the C4 

photosynthetic pathway and the essentiality of Na may indicate a 

possible role of Na in the C4 dicarboxylic acid pathway (Brownell 

1979), however not all C4 plants require Na for growth (Hewitt 

1983). The growth responses of C4 plants to Na application were 

observed irrespective of the C4 photosynthetic subgroups to which 

the plants belong (Table 1). Therefore, it is unlikely that Na 

is solely involved in the C4 dicarboxylic acid pathway. Now it 

has been made clear that Na in involved in the N03 uptake 

process (Ohta et al. 1988 B, Chapter 4), thereby affected N0 3-

assimilation in the leaves of A. tr1color (Ohta et al. 1988 A, 

Chapter 3). Present results suggest that the function of Na in 

the maintenance of the levels of NR activity exists not only in 

A. tricolor plants but also in the C4 plants which require Na for 

growth except for E. crus-gal11 (Table 3). There were not 

differences between the levels of NR activities of the Na-treated 

and the K-treated plants of Z. mays and P. miliaceum. At 

present it is uncertain whether Na directly affects NR activity 
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Table 3 Effects of Na application on extractable nitrate reductase 

activities in the shoots of Na-deficient monocotyledonous C4 plants grown 

with or without Na. 

Values are the means and SO of three replicates. 

Species 

NAOP-ME 

Zea mays 

Echinochloa crus-galli 

NAD-ME 

Panicum millaceum 

f.:. coloratum 

f.:. dichotomiflorum 

PEP-CK 

f.:.. maximum 

Chloris gayana 

age at harvest. 

days 

14 

20 

20 

20 

20 

20 

30 

10.0 t 1.18 

14.8 * 1.93 

13.2 ± 1.66 

8.1 :t 0.93 

13.8 .:t: 0.38 

2.6 :t. 0.38 

17.2 t 0.27 

12.5 :t 1.13 

15.3 :I:. 0.93 

13.9 t 1.40 

15.0 * 1.15 

22.8 .t. 1.57 

8.8 t 0.81 

21.6 t 0.55 

To determine the effects of Na application on the levels of nitrate 

reductase activities of the shoots, plants receiving O.S mM of Na
2

S0
4 

or 

K2S04 for 5 days· were harvested after 6h from the beginning of the light 

period. 
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levels or not; however, it is sure that the increased NR 

activities could contribute to the growth enhancement. The NR 

activity of the E. cIus-ga11i plants was not influenced by Na 

nutrition, while RGR of the plants grown under Na deficient 

condition increased in response to the addition of Na (Table 1). 

Therefore there must be some target site(s) of Na other than N0 3-

uptake and C4 pathway. The fact that C4 photosynthetic pathway 

has arisen in relatively few families of terrestrial plants 

suggests that this special photosynthetic pathway is only one of 

many features which contribute to ecological success in different 

environment (Osmond et a1. 1982), and Brownell (1979) pOinted out 

that Na may affect some part of metabolism not yet defined which 

occurs in C4 and CAM plants but not in C3 plants. It is 

possible that C4 plants may have acquired metabolism besides the 

C4 pathway, during the evolutionary process, which would be 

affected by Na, such as the Na-facilitated N03 uptake process in 

A. tricolor plants (Ohta et a1. A). 
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CONCLUSION 

I have investigated the Na requirement of C4 plants using a NAD

ME type C4 plant, Amaranthu5 tricolor L. cv. tricolor and found 

that A. tricolor plants requires Na for assimilation of N03-. 

When the Na-deficient A. tricolor plants were supplied with 

0.5 mM NaCl, the relative growth rate increased within 24 h. 

Since metabolic responses which can be detected prior to the 

growth enhancement are considered.to be the primary steps of 

recovery from Na def iciency , studies were concentrated on the 

responses of the plants within 24 h of the Na treatment and 

following sequence of metabolic responses was demonstrated. 

Within 30 min of the addition of 0.5 mM NaCl, N0 3- uptake was 

stimulated by about 240 % of that of the plants treated with 0.5 

mM KCl. Consequently, translocation of N03 to the shoots was 

also stimulated. At 1 to 3 h of the Na treatment, the level of NR 

activity began to increase and after 24 h it reached about 350 % 

of that of the K-treated plants. By the 15 N studies I it was 

demonstrated that the capacity for N0 3- assimilation of the Na

treated plants was about 260 % of that of the K-treated plants. 

On the other hand, photosynthetic oxygen evolution by leaf discs 

increased within 24 h of the Na treatment; however, there were 

not detectable increase in the levels of the C4 photosynthetic 

enzymes, whereas the photosynthet ic e Ie ctron transport by 

thylakoids increased significantly. 

From these results, I concluded that A. tricolor plants require 

Na because the N0 3- uptake process necessitates this element. As 

the Na requirement of several monocotyledonous C4 species were 

observed irrespectively of the C4 subgroups to which the plants 
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belong, it is undoubtedly that Na is not involved in the main 

pathway of the C4 photosynthesis but there may be a metabolism, 

which require Na for its functioning, other than C4 pathway. This 

idea implies that C4 plants might have acquired metabolism 

besides the C4 pathway, which do not occur in C3 plants, during 

the evolutionary process. One of the possibilities is that the 

involvement of Na in solute transport system which is 

indispensable for normal growth, such as the Na-stimulated N03-

uptake, may be prevailing in C4 plants. 
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