A TWOSTATE MODEM
O
SMPLE REACTION TME

Yasuharu Oramoto

A TWO-STATE MODEL

OF

SIMPLE REACTION TIME
by
YASUHARU OKAMOTO

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in
Kyoto University, JAPAN
1982

TABLE OF CONTENTS

Page
Chapter
I. INTRODUCTION 1
II. EXPERIMENTS 31
III. TIME PERCEPTION 62
IV. A TWO-STATE MODEL. 80
V. SUMMARY 98
APPENDICES 102
REFERENCES 179

- 1 -

CHAPTER I

INTRODUCTION

When a stimulus is presented, the subject responds to it with some delay. This delay is called a reaction time(abbreviated as RT). RTs are classified into two types, simple RTs and choice RTs. When the subject responds to one of possible stimuli in one of more than two ways according to the stimulus presented, the RTs are called choice RTs. If there is only one stimulus and only one type of response is required, the RTs are called simple RTs. The interval from the start of the trial to the presentation of the stimulus is called foreperiod(abbreviated as FP).

In this article, a new model of simple reaction time is proposed. To appreciate the necessity of a new model, it is useful to review models not only for simple RT, but also for choice RT. First, let us review literatures on models for choice RT.

MODELS FOR CHOICE REACTION TIME

The following empirical relations between choice RT and the number of stimuli are well known(cf., Welford(1960,1980)),

$$
\begin{equation*}
\overline{R T}=K \cdot \log (n+1) \tag{1-1}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\mathrm{RT}}=\mathrm{a}+\mathrm{b} \cdot \log n \tag{1-2}
\end{equation*}
$$

where $\overline{\mathrm{RT}}$ and n are the mean choice reaction time and the number of stimuli, respectively. Welford $(1960,1980)$ explained that eqs.(1-1) and (1-2) were proposed by Hick(Hick(1952), cited in Welford(1960,1980)) and Hyman(1953), respectively. If the event that no signal is presented is conceived of as one of possible signals, eq.(1-1) means that mean RT is proportional to the uncertainty of choice situation. As to eq.(1-2), when we set $n=1, \overline{R T}=a+b \cdot \log n=a$. That is, a is the mean simple reaction time. $b \cdot \log n$ represents the increase over the simple RT due to the need for identification and choice. x bits of uncertainty means that we can identify the specific event by x steps of dichotomization process: Welford(1960) explained that Hick(1952) examined a serial dichotomous classification model.

According to Smith(1977,1980), low stimulus intensities should give a better fit against $\log n(e q \cdot(1-2))$, while high intensities should be better fitted against $\log (n+1)(e q .(1-1))$ (cf. the next section).
B. Stimulus-Response Compatibility。

Smith $(1977,1980)$ proposed the model which incorporated stimulus-response compatibility.

The onset of the stimulus,j, induces the following excitations.

$$
e(j)=q+\frac{u}{N}
$$

$$
e(i)=\frac{u}{N} \quad i \neq j .
$$

These stimulus-excitations,e(i)'s, are transformed into response excitations, $\rho(i)$. At cycle s of this transformation, the increment in $\rho(i)$ is $\frac{e(i)}{N}$, and the time required for this cycle is $\frac{\sum \alpha(i) \cdot e(i)}{S} \quad \alpha(i)$ is the parameter which represents the stimulus-response compatibility for stimulus,i. Let $\delta(\mathrm{m})$ be the response m's criterion, and x be the cycle time at which $\rho(\mathrm{m})$ reaches $\delta(\mathrm{m})$, then,

$$
\rho(m)=\int_{1}^{x} \frac{e(j)}{N} d s=\frac{e(j)}{N}(x-1)
$$

Therefore

$$
\begin{equation*}
x=\frac{\delta(m) \cdot N}{e(j)}+1 \tag{1-3}
\end{equation*}
$$

The mean reaction time of the response m to the stimulus j,
$\operatorname{RT}(j)$, is the sum of the integral of the x cycle duration, $\int_{1}^{x} \frac{\sum \alpha(i) \cdot e(i)}{S} d S$, and any non-processing delays, a.
That is,

$$
\begin{align*}
R T(j) & =a+\int_{1}^{x} \frac{\sum \alpha(i) \cdot e(i)}{s} d s \\
& =a+\left(\sum \alpha(i) \cdot e(i)\right) \cdot \log x \\
& =a+\left(\sum \alpha(i) \cdot e(i)\right) \cdot \log \left(\frac{\delta(m) \cdot N}{e(j)}+1\right) \quad \text { (by eq. } 1 \text { (1-3)) } \\
& =A+B \cdot \log \left(N+\frac{e(j)}{\delta(m)}\right) \tag{1-4}
\end{align*}
$$

where

$$
A=a+\left(\sum \alpha(i) \cdot e(i)\right) \cdot \log \frac{\delta(m)}{e(j)}
$$

and

$$
B=\sum \alpha(i) \cdot e(i)
$$

Eq. (1-4) includes eqs.(1-1) and (1-2) as special versions
for $\frac{e(j)}{\delta(m)}=1$ or 0 , respectively.
C. Laming(1966)'s Interpretation.

Laming (1966) used the following approximation

$$
\log (n+1) \fallingdotseq \sum_{r=1}^{n+1} \frac{1}{r}
$$

and generalized eq.(1-1) as follows,

$$
\begin{equation*}
R T=a+b \cdot \sum_{r=1}^{n} \frac{1}{r+k} \tag{1-5}
\end{equation*}
$$

Laming(1966) proposed two models, which predicted that the mean RT follows eq.(1-5).

The first model is extended version of the model proposed by Christie and Luce(Christie and Luce(1956), cited in Laming(1966)).

According to this type of model, the reaction time, t_{n}, to one of n equiprobable signals is determined by the longest of n elementary decision processes. Let $F(t)$ be the distribution function of this elementary decision latency, then
$R T=E\left(t_{n}\right)=\int_{0}^{\infty} t \cdot d\left(F(t)^{n}\right)$
Laming(1966) solved eq.(1-6) with respect to $F(t)$ in order that $R T$ satisfies eq. (1-5). Let $F(t)=y$ and $t=\phi(y)$, then the solution is given by the following equation;

$$
\phi(y)=\int \frac{b \cdot y^{k}}{1-y} \cdot d y+C
$$

For $\mathrm{k}=0$,
$F(t)=1-e^{-\lambda \cdot(t-a)}$

This is Christie and Luce(1956)'s version.

The second model proposed by Laming(1966) is an analogy to an epidemic model. With the assumption that the rate of interactions involving a given individual is constant λ, and independent of the size of the group, i.e., the number of equiprobable stimuli, he derived the following equation;

$$
\mathrm{RT}=\frac{2 \cdot(n-1)}{n \lambda} \cdot \sum_{r=1}^{n-1} \frac{1}{r}
$$

D. Fast Guess Model.

In the fast guess mode1(O11man(1966), Yellott(1967,1971)), there are two types of responses, guess responses and stimulus controlled responses. On any trial, the subject makes either a guess response with probability $1-q$, or a stimulus controlled response with probability q. When the subject guesses, he makes response $A_{i}(i=1,2)$ with bias probability b_{i} regardless of which stimulus (S_{1} or S_{2}) was presented. When the subject makes a stimulus controlled response, the response is correct with probability a>.5.

From these assumptions, Yellott(1971) derived the following equation;

$$
\begin{equation*}
\frac{p_{c} \cdot M_{c}-p_{e} \cdot M_{e}}{p_{c}-p_{e}}=\text { constant } \tag{1-7}
\end{equation*}
$$

where p_{c} and p_{e} are the probabilities of correct and error responses, respectively, and M_{c} and M_{e} are the mean reaction times of correct and error responses, respectively. Eq.(1-7) was supported by the experimental results reported in 011man(1966) and Yellott(1967,1971).

Yellott(1971) proposed a deadline model, which does not always predict the constancy of the left side of eq.(1-7). The deadline model assumes that on every trial, information about the identity of the choice stimulus takes the form of a single quantum which arrives \underline{S} msec after stimulus onset. \underline{S} has the distribution function $S(t)$ and density function $s(t)$. If the subject waits until the arrival of the information quantum, and then responds, his response is correct with probability one. On each trial, however, the subject presets a deadline \underline{D}. If the information quantum has not arrived \underline{D} msec after stimulus onset, the subject guesses with some bias probabilities b_{1} and b_{2} for responses r_{1} and r_{2}. \underline{D} has the distribution function $D(t)$
and density function $d(t)$.

From these assumptions, Yellott(1971) derived the following equation;

$$
\begin{equation*}
\frac{p_{c} \cdot M_{c}-p_{e} \cdot M_{e}}{p_{c}-p_{e}}=\frac{\int_{0}^{\infty} t \cdot s(t) \cdot(1-D(t)) \cdot d t}{\int_{0}^{\infty} s(t) \cdot(1-D(t)) \cdot d t} \tag{1-8}
\end{equation*}
$$

The right side of eq.(1-8) is not in general invariant under arbitrary transformations of $D(x)$. But, a special version of the deadline model yields the identical prediction of the fast guess model with $a=1$. That is, the deadline model can explain the constancy of the left side of eq.(1-7), too.

As to the speed-accuracy tradeoff, the fast guess model asserts that the error rate should be constant in order that the experimenter can controll the subject's strategy. In the fast guess model, the speed-accuracy tradeoff is controlled by the probability of guessing. Equality of the error rates between the experimental conditions means equality of the guessing probabilities between them. However, according to Ollman(1977)'s adjustable timing model, invariance of the error rate does not assure invariance of the strategy.

In the adjustable timing model, the joint density of the type and latency of the responses,f(r,t), is expressed as the product of two probabilities;

$$
f(r, t)=A(r \mid t) \cdot f(t)
$$

where $A(r \mid t)$ is the conditional probability that the response is the specified type($r=$ correct response or error), given the particular value of $R T(R T=t)$, and $f(t)$ is the marginal probability of the RT. Ol1man(1977) insists that $A(r \mid t)$ is specified only by the task and $f(t)$ is dependent only on the subject's strategy. Hence, in order to assure the invariance of the speed-accuracy tradeoff, the experimenter should control the reaction time, rather than the error rate. E. Accumulation Model.

Random walk models(Stone(1960), Laming (1962,1968), Link and Heath(1975), Link $(1975,1978)$, Thomas(1975), Swensson and Green(1977)) assumes that the subject accumulates information from periodic samples of the sensory input and responds when this accumulation reaches one of decision boundaries. Link and Heath(1975) derived the following equation;

$$
\begin{equation*}
E_{A}-E_{B}=\frac{D}{\mu} \cdot\left(\frac{c-1}{c}\right) \tag{1-9}
\end{equation*}
$$

In eq. (1-9), E_{A} and E_{B} are the expected numbers of steps to the boundaries for responses, A and B. D is the absolute value of the boundary positions. μ and c are determined by the distribution function of sample values. If the distribution function of sample values is normal or trinomial, $c=1$. In this case, $E_{A}=E_{B}$ from eq. (1-9). This means that the mean latency of the correct response is equal to the one of the error. But, if the distribution function of sample values is a Laplace distribution, i.e., difference between two exponential distributions, $c \neq 1$ in genera1. In this case, $E_{A} \neq E_{B}$, which means that the mean latency of the correct response is not equal to the mean latency of the error.

Kintsch(1963)'s model adopts a stochastic mechanism of random walk, although it is not an accumulation model. His model is described by the following equation;

$$
\mathrm{Q}=\mathrm{oB} \begin{gather*}
\mathrm{S} \tag{1-10}\\
\mathrm{~A} \\
\mathrm{~B}
\end{gather*}\left[\begin{array}{ccccc}
\mathrm{S} & \mathrm{OA} & \mathrm{oB} & \mathrm{~A} & \mathrm{~B} \\
0 & 1-\mathrm{a} & \mathrm{a} & 0 & 0 \\
0 & 0 & 1-\mathrm{b} & \mathrm{~b} & 0 \\
0 & 1-\mathrm{c} & 0 & 0 & \mathrm{c} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

On each trial the subject begins in the starting state, S , goes to one or the other orienting state (oA or oB), and from there, he either goes on to make the recorded response(A or B) or shifts to the other orienting state(oB or oA). Furthermore, Kintsch(1963) assumes that the time required to complete each transition step is the discrete random variable which follows the geometric distribution,eq.(1-11);

$$
\begin{equation*}
P(k)=p^{k-1} \cdot(1-p) \tag{1-11}
\end{equation*}
$$

From eqs. (1-10) and (1-11), the mean latency of responses
for the case $b=c$ can be derived;
The mean latency $=\frac{(1+b) \cdot p}{b \cdot(1-p)}$
In the recruitment theory proposed by LaBerge(1962), the accumulation process is determined by sampling by replacement. This model assumes that there are three types of elements, $\mathrm{C}_{1}, \mathrm{C}_{2}$
and C_{0}, C_{1} and C_{2} elements are connected to responses A_{1} and A_{2}, respectively. C_{0} elements are connected to no response alternatives. The subject chooses response A_{1}, when he draws r_{1} elements of type C_{1} while the number of drawings of type C_{2} elements, x, is less than r_{2}, where r_{1} and r_{2} are criterions for responses A_{1} and A_{2}. With these assumptions, LaBerge(1962) derived the following equation;

$$
\begin{aligned}
& \text { The average number of total draws (the mean latency) } \\
& =\frac{r_{1} \cdot I p_{1} /\left(p_{1}+p_{2}\right)\left(r_{1}+1, r_{2}\right)}{p_{1} \cdot I_{p_{1}} /\left(p_{1}+p_{2}\right)\left(r_{1}, r_{2}\right)}
\end{aligned}
$$

where p_{1} and p_{2} are the proportions of elements of types C_{1} and C_{2}, and

$$
I_{s}(t, u)=\sum_{k=0}^{u-1} \frac{(t+k-1)!}{(t-1)!\cdot k!} \cdot s^{t} \cdot(1-s)^{k}
$$

The variable criterion theory proposed by Grice et al.
(Grice, Nullmeyer and Spiker(1977), Grice, Spiker and Nullmeyer (1979), Grice and Spiker(1979), also of.,Link(1979)) assumes that the accumulation process is deterministic, but the decision criterion is random. The probabilistic character of the decision process is attributed to the random fluctuation of the decision
criterion. According to the variable criterion theory, the excitatory strengths of the correct response and the error at time $t, f_{c}(t)$ and $f_{e}(t)$, can be described as follows;

$$
\begin{align*}
f_{c}(t) & =V(t)+A(t) \\
f_{e}(t) & =E_{c}(t)-I(t)-A_{D}(t) \\
& =(V(t)-I(t))+\left(A(t)-A_{D}(t)\right) \tag{1-12}
\end{align*}
$$

where $V(t)$ is the value of the sensory detection component, $A(t)$ is associative strength of the correct stimulus, $I(t)$ is associative inhibition, and $A_{D}(t)$ is associative discrimination. If $f_{c}(t)$ (or $f_{e}(t)$) reaches the criterion C before $f_{e}(t)$ (or $f_{c}(t)$) reaches its criterion, the correct response (or the error) occurs. Eq.(1-12) means that the sensory and associative components, $\mathrm{V}(\mathrm{t})$ and $\mathrm{A}(\mathrm{t})$, are suppressed by the associative inhibition $I(t)$ and the associative discrimination $A_{D}(t)$, respectively.

Fo Timing and Counting Models.

Green and Luce(1974) examined timing and counting models for two-choice reaction time data. According to these models, the decision is made on the base of the estimation of the rate
of neural pulses. For the estimation, the timing model uses the inter-arrival-intervals of pulses and the counting model uses the number of pulses during a fixed time interval. For these models, Green and Luce(1974) derived the following equations for the mean two-choice reaction times for auditory stimuli; For the timing model,

$$
\begin{align*}
& \mathrm{MRT}_{1}=\left(\frac{M_{1}}{M_{2}}\right) \cdot M R T_{2}-\bar{r} \cdot\left(\frac{M_{1}}{M_{2}}-1\right) \tag{1-13}\\
& \mathrm{p}_{\mathrm{c}} \cdot \mathrm{MRT}_{\mathrm{c}}-\mathrm{p}_{\mathrm{e}} \cdot \mathrm{MRT}_{\mathrm{e}} \\
= & \bar{r} \cdot\left(p_{c}-p_{e}\right)+h(J, k, \sigma) \cdot\left\{M \cdot\left[P(1 \mid 1)-\frac{1}{2}\right]+M_{2} \cdot\left[P(2 \mid 2)-\frac{1}{2}\right]\right\} \tag{1-14}
\end{align*}
$$

For the counting model,

$$
\begin{align*}
& M R T_{1}=M R T_{2}=\bar{r}+\sigma \tag{1-15}\\
& \mathrm{P}_{\mathrm{c}} \cdot \mathrm{MRT}_{\mathrm{c}}-\mathrm{p}_{\mathrm{e}} \cdot \mathrm{MRT}_{\mathrm{e}}=(\bar{r}+\delta)\left(p_{\mathrm{c}}-p_{e}\right) \tag{1-16}
\end{align*}
$$

In the above equations, MRT_{1} and MRT_{2} are the mean reaction times for the two stimuli, S_{1} and $S_{2}, M R T_{c}$ and $M R T_{e}$ are the mean reaction times of the correct responses and errors, and p_{c} and p_{e} are the probabilities of the correct responses and errors. Eq. (1-13) means that $M R T_{1}$ is a linear function of $M R T_{2}$. Eq. (1-14) means that $p_{c} M R T_{c}-p_{e} M R T_{e}$ is an approximately
linear function of $p_{c}-p_{e}$ when intense stimuli are used, but the former is an accelerated function of the latter when weak signals are used. The meaning of eq.(1-15) is obvious. According to eq. $(1-16), \mathrm{p}_{\mathrm{c}} \cdot \mathrm{MRT}_{\mathrm{c}}-\mathrm{p}_{\mathrm{e}} \cdot \mathrm{MRT}_{\mathrm{C}}$ is an accelerated function of $p_{c}-p_{e}$, because $p_{c}-p_{e}$ increase with δ. Green and Luce(1974) concluded that the timing model is generally more plausible except in situations when it is distinctly to the subject's advantage to employ the counting mechanism. G. Preparation Model. Falmagne(1965)(also of.,Falmagne(1968), Theios and Smith (1972), Lupker and Theios(1977)) proposed a two-state model. According to this two-state model, the subject is either prepared or unprepared for each possible stimulus on any trial. If the subject is prepared (or unprepared) for the stimulus to be presented, his latency is shorter (or longer). The probability of the preparation for a particular stimulus depends on the events on the previous trial. From these assumptions, Falmagne(1965) derived many equations, which describe the sequential effects or
the effects of the probabilities of the possible stimuli.

$$
\begin{align*}
& \text { For example; } \\
& E\left(X_{i, n+1}\right)=(1-c) \cdot E\left(X_{i, n}\right)+c \cdot E\left(X_{k}\right) \quad \text { if } E_{i, n}=1 \tag{1-17}
\end{align*}
$$

and

$$
\begin{equation*}
E\left(X_{i}\right)=\frac{\pi_{i} \cdot C \cdot E\left(X_{k}\right)+\left(1-\pi_{i}\right) \cdot C^{\prime} \cdot E(X \bar{k})}{\pi_{i} \cdot C+\left(1-\pi_{i}\right) \cdot C^{\prime}} \tag{1-18}
\end{equation*}
$$

Eq. (1-17) describes the relation between the mean reaction times on trials n and $n+1, E\left(X_{i, n}\right)$ and $E\left(X_{i, n+1}\right)$, if stimulus i is presented on trial $n\left(E_{i, n}=1\right)$. Eq. (1-18) describes the relation between the mean reaction time for stimulus $i, E\left(X_{i}\right)$, and the probability of presentation of stimulus i, π_{i}.

In some article (Falmagne and Theios(1969), Theios(1973), Falmagne, Cohen and Dwivedi(1975), Lupker and Theios(1975)), the preparedness of the subject is interpreted in terms of the process of memory scan. According to these interpretations, the preparedness for a particular stimulus means that the prototype of this stimulus is in short term memory, so is easily processed. Since the capacity of this short term memory is limited, prototypes of some stimuli cannot be in this short term memory and the processing of these stimuli needs more time.
Many models have been proposed, each of which emphasizes a different aspect of choice reaction time. To the author, Falmagne(1965)'s two-state model is most interesting because of the following two reasons;
1). It has very simple structure, i.e., it assumes only two states. Comparing two-state, three-state and four-state models, Lupker and Theios(1975) concluded that the two-state model could be accepted, but the three-state and four-state models could be rejected. That is, the model with the smallest number of states was the best.
2). The two-state model is a discrete one. The question whether psychological states are discrete or continuous is one of fundamental problems. But, to determine experimentally whether the state is discrete or not is difficult, because the prediction made by a particular model is also dependent on the assumptions other than the one to test. The author is interested in the question how well models with discrete states can do.

Now, let us review literatures on models for simple reaction times.

MODELS FOR SIMPLE REACTION TIMES

A. Time Uncertainty and Simple Reaction Times.

Klemmer(1957) obtained the following equation for the pooled data;

$$
\begin{equation*}
R T=.018 \cdot \log _{10} \sigma_{T}+.235 \tag{1-19}
\end{equation*}
$$

where RT is the mean simple reaction time and σ_{T} is the measure of total time uncertainty, i.e., the standard deviation derived from adding variances from foreperiod and time-prediction distributions. According to Klemmer(1957), eq.(1-19) means that the averaged speed of information processing in simple reaction task is 18 msec per bit.

B. Thomas(1967)'s Anticipation Model.

Thomas(1967) proposed the model in which the state of readiness plays a central role. He assumed that, if T is the
subject's estimate of t at which the signal will be presented, the subject's state of readiness, $S R$, would rise to a local maximum proportional to p_{t} (the conditional probability that the signal would arrive at t given that it has not arrived before t) at T, and then decline. The following equation was proposed as an approximation,

$$
\begin{equation*}
\mathrm{SR}(z)=\ell \cdot p_{t}-m \cdot|z-T| \tag{1-20}
\end{equation*}
$$

where ℓ and m are positive constants. The reaction time, RT_{t}, was assumed to obey the following equation,

$$
R T_{t}= \begin{cases}\mathrm{f}(\mathrm{SR}(\mathrm{t})) & \left(0<\mathrm{p}_{\mathrm{t}} \leqslant \mathrm{p}_{\mathrm{x}}\right) \tag{1-21}\\ \mathrm{RT}_{\mathrm{m}} & \left(\mathrm{p}_{\mathrm{t}} \geqslant \mathrm{p}_{\mathrm{x}}\right)\end{cases}
$$

where

$$
f(x)=a+\frac{b}{x}
$$

and p_{x} is a some constant.
If the foreperiod distribution was uniform on the integers

1 to n, then,

$$
\begin{align*}
p_{t} & =\frac{\frac{1}{n}}{1-(t-1) \cdot \frac{1}{n}} \\
& =(n-t+1)^{-1}, \quad t=1,2, \cdots, n \tag{1-22}
\end{align*}
$$

Suppose that the signal arrives at time i•d; then the subject has to predict each of the time-point t.d, $t=1,2, \ldots, i$. It is assumed that the subject predicts one-point starting from the previous one, so that for each prediction the subject predicts an interval of length d and does so with an error \mathcal{E}. It is also assumed that \mathcal{E} is $\mathrm{N}\left(0, \sigma^{2}\right)$. Then the error, ε_{i}, in predicting the interval of length $i \cdot d$ is $N\left(0, i \sigma^{2}\right)$. Then, from eqs.(1-20),(1-21) and (1-22),

$$
\begin{aligned}
\mathrm{RI}_{\mathrm{i}} & =a+b \cdot E\left(\frac{1}{p_{i}-m \cdot\left|\varepsilon_{i}\right|}\right) \\
& \fallingdotseq a+b \cdot(n-i+1)+b \cdot g \cdot(n-i+1)^{2} \cdot \sqrt{i}
\end{aligned}
$$

where $g=m \cdot \sigma \cdot \sqrt{\frac{2}{\pi}}$, and $R T_{i}$ is the mean reaction time for foreperiod $=\mathrm{i} \cdot \mathrm{d}$.

C. Deadline Model.

A deadline model(O1lman and Billington(1972), Kornblum(1973))
assumes that in a simple reaction task the two processes, the signal detection and time estimation processes, race and a faster one determines a reaction time. Let T_{c} and T_{d} be the random variables which represent the time of the deadline and the time at which the signal detection may occur. Then, the
measured overt response time, T , is given by

$$
\mathrm{T}=\min \left(\mathrm{T}_{\mathrm{c}}, \mathrm{~T}_{\mathrm{d}}\right)
$$

Hence,

$$
(1-F(t))=\left(1-F_{c}(t)\right) \cdot\left(1-F_{d}(t)\right)
$$

where $F(t)=P(T \leqslant t)$ and so on.

From the above equation,

$$
\begin{equation*}
F_{d}(t)=\frac{F(t)-F_{c}(t)}{1-F_{c}(t)} \tag{1-23}
\end{equation*}
$$

$F(t)$ is the cumulative distribution of the observed response times, and $F_{C}(t)$ is given by the response times on the trials where no signal occurred. By eq.(1-23), we can estimate the true reaction time distribution, $F_{d}(t)$, using $F(t)$ and $F_{c}(t)$. D. Recruitment Model.

Recruitment model(LaBerge(1962)) assumes that there are two types of elements, C_{1} and C_{0}. The elements of type C_{1} are connected to the response, but the elements of type C_{0} are connected to no responses. The evocation of the response involves the sampling of r elements of type C_{1} plus w neutral elements. That is, r is the decision boundary for the response. If m
elements must be drawn to obtain the rth conditional element, then the latency is given as,

$$
\begin{equation*}
\text { latency }=\lambda \cdot m+t_{0} \tag{1-24}
\end{equation*}
$$

where λ is the time required for sampling one element, and t_{0} is the residual latency. If $m=r+w$, and the proportions of the elements of types C_{0} and C_{1} are p_{0} and p_{1}, respectively, then, $P(r+w)=\frac{(r+w-1)!}{(r-1)!\cdot w!} \cdot p_{1}^{r} \cdot p_{0}^{w}$

Hence, from eqs.(1-24) and (1-25),
the mean latency $=\lambda \cdot E(r+w)+t_{0}$

$$
\begin{equation*}
=\lambda \cdot\left(\frac{r}{p_{1}}\right)+t_{0} \tag{1-26}
\end{equation*}
$$

Eq. (1-26) means that, if p_{1} is an increasing function of the stimulus intensity, then the mean latency is a decreasing function of the stimulus intensity.

E. Variable Criterion Model.

Variable criterion model(Grice(1968,1972), Grice,Nullmeyer and Spiker(1977)) assumes that the accumulation process is deterministic, but the criterion is randomly varying. The basic formula is given as

$$
f(t)=H(t)+V(t)
$$

where $f(t), H(t)$ and $V(t)$ are the excitatory strength, the associative strength and the sensory component at time t. The response occurs when the excitatory strength $f(t)$ reaches the criterion T. The criterion T is assumed to be normally distributed. Grice(1977) determined the forms of the functions $H(t)$ and $V(t)$ from the experimental data. The $H(t) s$ were fitted with Gompertz growth functions, $H(t)=a \cdot b^{t}$ and the $V(t)$ s were fitted with exponential growth functions, $V(t)=a-b \cdot e^{-c \cdot t}$. F. Temporal Integration Model.

Hildreth(1973) proposed a temporal integration model of simple reaction time to brief visual stimuli. This model assumes that detection time, T_{d}, is the time required for the time integral of a nonnegative function, $v(t ; d, \ell)$, called the visual response function, to reach some fixed criterion,c. The parameters, d and l, represent the duration and luminance of the presented stimulus. The form of $v(t ; d, l)$ for a square-wave flash is assumed to be given as,

$$
v(t ; a, l)= \begin{cases}0 & \text { for } t \leqslant e_{l} \tag{1-27}\\ \lambda_{l} & \text { for } e_{l}<t \leqslant d \\ \lambda_{l} \cdot e^{-r_{l} \cdot(t-d)} & \text { for } d \leqslant t\end{cases}
$$

That is, the visual response function $v(t ; d, l)$ corresponding to a square-wave flash with intensity ℓ and duration d begins as a square-wave with amplitude λ_{ℓ} at $t=e_{\ell}$, is maintained until time d, and then decays exponentially following offset of the flash.

Then,

$$
\begin{aligned}
v(t ; d, l) & =\int_{0}^{t} v(t) \cdot d t \\
& = \begin{cases}0 & t \leqslant e_{l} \\
\lambda_{l} \cdot\left(t-e_{l}\right) & e_{l}<t \leqslant d \quad(1-28) \\
\lambda_{\ell} \cdot\left(d-e_{l}\right)+\frac{\lambda_{l}}{r_{l}} \cdot\left(1-e^{-r_{l} \cdot(t-\alpha)}\right) & d<t\end{cases}
\end{aligned}
$$

and

$$
\begin{equation*}
v\left(T_{d} ; d, \ell\right)=c \tag{1-29}
\end{equation*}
$$

From eqs. $(1-27),(1-28)$ and (1-29), we get the detection time, T_{d}, as the function of d,

$$
T_{d}= \begin{cases}\infty(n o \text { detection }) & d \leqslant \delta_{l} \\ d-\frac{1}{r_{l}} \cdot \log \left(r_{l}\left(d-\delta_{l}\right)\right) & \delta_{l}<d<\tau_{l}=\delta_{l}+\frac{1}{r_{l}} \\ \delta_{l}+\frac{1}{r_{l}}=\tau_{l} & \tau_{l} \leqslant d\end{cases}
$$

where δ_{ℓ} and τ_{ℓ} satisfy the following equations,

$$
\mathrm{v}\left(\infty ; \delta_{\ell}, \ell\right)=\mathrm{c}
$$

and

$$
\mathrm{v}\left(\tau_{l} ; \tau_{l}, l\right)=\mathrm{c} .
$$

That is, $\delta_{\mathcal{l}}$ is the shortest duration for which a flash with intensity ℓ is above threshold, and τ_{l} is the shortest duration for which $V(d ; d, \ell)>c$.
G. Timing and Counting Models.

According to the timing model(Luce and Green(1972), Green and Luce(1974)), inter-arrival-intervals,IAIs, of the pulses of sensory information is monitored, and the subject responds when the IAI is shorter than the criterion, β, which suggests that the reaction signal has been presented. The train of the pulses is assumed to obey a Poisson process. The following equation is one of the equations derived by Luce and Green(1972) with the assumption that the mean magnitude estimation, ME, is proportional to μ, the parameter of the Poisson process when the signal is presented, i.e., $\mathrm{ME}=\mathrm{D} / \mu$;
the mean $R T \fallingdotseq \bar{r}+ \begin{cases}\frac{2 D}{M E} & \text { for } \mu \text { large } \\ \frac{D}{M E}+\frac{D^{2}}{M E^{2} \beta} & \text { for } \mu \text { small }\end{cases}$
The poisson counting model proposed by Hildreth(1979) is a stochastic version of the temporal integration model proposed by Hildreth(1973). According to this counting model, the onset of the stimulus with intensity ℓ activates N_{ℓ} parallel Poisson processes with intensity parameter r_{l}. After the offset of the stimulus with duration d, each of the N_{ℓ} Poisson processes is left with exactly one more pulse to deliver to the detection center. The subject responds when the Kth pulse arrives at the detection center. Hildreth(1979) derived the following equation;

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{~W}_{\mathrm{K}, \ell} / \text { detection }\right) \\
& =\mathrm{P}\left(\mathrm{~W}_{\mathrm{K}, \ell} \leqslant \mathrm{~d}\right) \cdot \mathrm{E}\left(\mathrm{~W}_{\mathrm{K}, \ell} \mid \mathrm{W}_{\mathrm{K}, \ell} \leqslant \mathrm{~d}\right) \\
& \quad+\mathrm{P}\left(\mathrm{~d}<\mathrm{W}_{\mathrm{K}, \ell}<\infty\right) \cdot \mathrm{E}\left(\mathrm{~W}_{\mathrm{K}, \ell} \mid \mathrm{d}<\mathrm{W}_{\mathrm{K}, \ell}<\infty\right) \tag{1-30}
\end{align*}
$$

where $W_{K, \ell}$ is the random variable for the waiting time required for the Kth pulse to arrive at the detection center, i.e., the detection time.

Hildreth(1979) did not give the explicit form of eq. (1-30),
but the distribution function of $W_{K, \ell}, f_{K, \ell}(t)$, is given as

$$
\mathrm{f}_{\mathrm{K}, \ell}(\mathrm{t})=\frac{1}{(\mathrm{~K}-1)!} \cdot \mathrm{N}_{\ell} \cdot \mathrm{r}_{\ell} \cdot\left(\mathrm{N}_{\ell} \cdot \mathrm{r}_{\ell} \cdot \mathrm{t}\right)^{\mathrm{K}-1} \cdot \mathrm{e}^{-\mathrm{N}_{\ell} \cdot \mathrm{r}_{\ell} \cdot \mathrm{t}} \quad(\mathrm{t}>0)
$$

H. Spark Discharge Model.

Ida(1980) proposed a spark discharge model, which is modeled after the phenomena of the occurrence of spark discharge when voltage is applied between electrodes. This model assumes that the decay of neural information from the onset of a stimulus obeys the exponential distribution,

$$
\begin{equation*}
f(t)=\lambda \cdot e^{-\lambda \cdot t} \tag{1-31}
\end{equation*}
$$

where λ is a linear function of the stimulus intensity which is further assumed to be a linear function of time, i.e., $\lambda=C \cdot t$. Hence, eq. (1-31) can be rewritten as follows;

$$
f(t)=c \cdot t \cdot e^{-c \cdot t^{2}}
$$

Let $F(t)=\int_{0}^{t} f(t) \cdot d t$, then he derived the following equation;

$$
\begin{equation*}
F(t)=1-e^{-\frac{c}{2} \cdot t^{2}} \tag{1-32}
\end{equation*}
$$

That is, the distribution of the latencies obeys a Weibull distribution,eq.(1-32).

There are many models for the simple reaction time, too. The role of expectancy in the simple reaction time has been emphasized by Näätänen and his collaborators(Näätänen(1970,1971), Nạätänen and Merisalo(1977), Niemi and Näätänen(1981)), Only one of the models reviewed here gives a central role to the expectancy processes, the anticipation model(Thomas(1967)): But, this model ignores the sequential effects. The reaction time is affected by the foreperiod in the preceding trial(cf., the results of experiment III in this article, or the review by Niemi and Näätänen(1981)). In this dissertation, the author will propose a new model with the following characteristics;
1). The role of anticipation is emphasized.
2): The sequential effects are incorporated.
3). The model is described in terms of discrete states, i.e., the prepared and not-prepared states.

As to the third point, the author was encouraged by the following conclusion by Lupker and Theios(1977);
" The two-state model should serve as a useful tool in answering some of the basic questions regarding the temporal properties of
human choice behavior."

Although their conclusion was concerned with choice reaction times, the author is interested in the question whether a two-state model is useful in the domain of simple reaction time, or not.

EXPERIMENTS

In the previous chapter, we saw that we need a new model, which incorporates the process of expectation (or preparedness) and predicts sequential effects. In order to construct a model, we must collect the data relevant to the mode1. For our purpose, at least two types of data are necessary. One type of data is concerned to the existancy of the process of expectation and the other to the sequential effects. Inspecting available evidences reported in published papers, we find some difficulties.

1) Näätänen $(1970,1971)$ made the experiments, where the probability of the presentation of the stimulus at each moment was constant. He expected that under these conditions, the expectancy by the subject would disappear and the FP-RT relation could not be observed. However, we should not confuse objective probabilities with subjective ones, that is, under the conditions where the mathematical probability of the presentation of the stimulus is constant, the subject may expect the stimulus in some moment.

Another approach to effects of the expectancy by the subject
on RT is the attempt by Baumeister and Joubert(1969). They varied the relative frequency of the various FPs to manipulate the expectancy. But, the FPs used by them were $2,4,8,16 \mathrm{sec}$. These FPs are highly discriminable so that we suspect that the subject might be unduly forced to develop the expectancy during the experiment.
2) In some experiments reviewed by Niemi and Näätänen(1981), FPs were very short, i.e., shorter than 1 sec , and in others, they were very long, i.e., longer than 10 sec . For too short FPs, the subject may not be able to prepare his motor system before the presentation of the stimulus when no warning signal is used. When too long FPs are used, we suspect that multiple preparation may be invoked, i.e., the process of simple reaction for longer FPs may not be the same as that for other FPs.
3) Analyzing the data from trained and unexperienced subjects separately, Näätänen and Merisalo(1977) found differences between the two kinds of subjects in the sensitivity of the RT to manipulations of experimental conditions. In general, as to the kind of the subjects, experimenters used trained subjects or
untrained ones, or did not specify the kind of the subjects. Considering the three difficulties above, the author felt the need to carry out the series of experiments, which satisfy the following conditions;

1) Discriminability between the FPs is not so high.
2) Lengths of the FPs are not too long and not too short.
3) Kind of the subjects is controlled. In the experiemnts which will be reported here, all subjects are untrained at least with respect to reaction time experiments.
4) Ranges of the FPs used in the experiments are as equal to each other as possible。

In this dissertation, four of the experiments which were made will be reported. Experiments I and II are concerned to the phenomena which can be interpreted as effects of change in expectation. Experiments III and IV are concerned to the sequential effects.

Two ranges of FPs were used. If expectancy plays a role in a simple reaction task, we can observe shift of the optimum FP, for which the RT is the shortest, when the range of FPs is shifted. Very short FPs entails the problem of refractoriness of responses. Very long FPs entails the problem of boredom. The following two ranges were used, from 1.00 to 3.69 sec , and from 2.84 to 7.01 sec .

Apparatus

The subject was seated in front of a desk, on which a box, $6 \mathrm{~cm} \times 20 \mathrm{~cm} \times 30 \mathrm{~cm}$, was laid. On the upper surface, $20 \mathrm{~cm} \times 30 \mathrm{~cm}$, of the box, nine microswitches and one red 7-segment LED(LightEmitting Diode) were laid(Figure 1). One microswitch was at the center of the box and the other eight microswitches were arranged horizontally to fit the arrangement of the eight fingers and they were about 3 cm above the switch in the center. The LED was about 5 cm above the microswitch in the center. This 7segment LED displayed the number 0 as the imperative stimulus

Figure 1. Arrangement of the microswitches and the LED
on the box used in experiments I and II.
and only the microswitch at the center was used as the response switch. AIDACS-3000 microcomputer system(Ai Electronics Corp.) controlled presentation of the stimulus and recorded RTs.

Subjects

Six male students participated in experiment I_{0} They were all untrained with respect to this type of experiment and unpaid.

Procedure

The experiment consisted of 16 blocks, each of which had 51 trials. Each block started by experimenter's key pressing of a CRT display. A trial started with an imperative stimulus which went out when the subject pushed down the microswitch. He was instructed to press the microswitch as fast as possible after the LED lit up. The next trial began after a prescribed time(foreperiod(FP)) elapsed from the subject's response. If the subject responded before the LED lit up, that trial was discarded and the next FP was timed from the preceding false-alarm response: After one block of 51 trials finished, the subject was given as much rest time as he desired to refresh himself. Total times of experiment I were between 40 and 80 minutes.

Two sets of FPs, set S and set L, were prepared. Each set was used in one of two experimental conditions, namely, Short FPs and Long FPs conditions. In the Short FPs condition, the FPs were $1.00,1.30,1.69,2.19,2.84$ and $3.69 \mathrm{sec}($ set S$)$. In the Long FPs condition, the FPs were $2: 84,3.40,4.07,4.88$, 5.85 and $7.01 \mathrm{sec}(\operatorname{set} \mathrm{L})$. Three subjects (subjects 1,2 and 3) were tested under the Short FPs condition, and the other three (subjects 4,5 and 6) in the Long FPs condition. In a block, 50 FPs were used. The first two FPs were 2.00 sec in the Short FPs condition, and 5.00 sec in the Long FPs condition. The other 48 FPs were randomized sequence of eight set Ss in the Short FPs condition and of eight set Ls in the Long FPs condition. The programs which were used in experiment I are given in appendix A:

RESULTS

The data from blocks 2 to 16 were used. Trials in which the subject responded before the LED lit up were discarded. Too slow

RTs were also discarded, because these were produced by the subject's distraction and so on. Proportions of these discarded trials were between 0 and 1% when calculated individually. Figures 2 a and 2 b depicts the mean RTs graphically for separate subjects. ANOVA(Analysis of Variance) shows that differences in RTs between FPs are significant at 5 \% level, except for subject 6. The differences for subject 6 can be observed at 10% level.

In summary, we can conclude that optimum FP in the Short FPs condition is between 2.19 and 2.84 sec , and, in the Long FPs condition, between 4.88 and 5.85 sec . That is, optimum FP depends on the range from which the FPs are sampled.

EXPERIMENT II

In experiment $I I$, the range of FPs is fixed, but the relative frequencies of FP s are varied! If the subject anticipates the time point at which the stimulus appears, he may be induced to expect the FP which is subjectively most often used. Two sets

Figure 2a.
Mean RTs as a function of FP for separate subjects.

Figure 2b. Mean RTs as a function of FP for separate subjects.
of frequencies are used. In set Sw of FPs , shorter FPs are more often used than longer ones: In set Lw, longer FPs are more often used than shorter ones. It is predicted that the optimum FP is shorter for set $S w$ than for set Lw.

Apparatus

The apparatus used in experiment II was the same as in experiment I_{0}

Subjects

Six male subjects participated in experiment II. They were all untrained with respect to this type of experiment and unpaid. No one subject participated in both experiment I and II.

Procedure

The procedure was the same as in experiment I except for the following points;

Experiment II consisted of 24 blocks, each block with 103 trials. Twenty-four blocks were divided into two sessions of 12 blocks each. Two sets of $F P s$ were prepared, set $S w$ and set Lw. In group $S w$, there were three 1.00 , one 1.30 , three 1.69, one 2.19 , one 2.84 and one 3.69 sec FPs. In set Lw ,
one 1.00 , one 1.30 , one 1.69 , three 2.19 , one 2.84 and three 3.69 sec FPs. That is, in set Sw , shorter FPs were weighted and, in set Lw, longer FPs weighted. In a block, 102 FPs were used. The first two FPs were 2.00 sec . The other 100 FPs were consisted of a randomized sequence of ten set $S w$'s or ten set Lw.'s. In order to investigate contextual effects on RT under a within-subject design, the following two conditions were prepared. In the $S-L$ condition, $F P s$ used in the first session belonged to set Sw , and FPs in the second session to set Lw . In the L-S condition, FPs used in session 1 belonged to set Lw and FPs in session 2 to set Sw . Three subjects (subject 7,8 and 9) were tested under the S-L condition, and the other three (subjects 10,11 and 12) under the L-S condition. Total times of experiment II were between 120 and 140 minutes. The programs which were used in experiment II are given in appendix B.

The data from blocks 2 to 12 of sessions 1 and 2 were used. Trials in which the subject responded before the LED lit up were discarded. Too slow RTs were also discarded because these RTs were caused by the subject's distraction and so on. Proportions of these discarded trials from blocks 2 to 12 of sessions 1 or 2 were below 2 \% when calculated individually.

For each subject, ANOVA was applied to $\operatorname{FP}(1.30 \mathrm{vs} .2 .84 \mathrm{sec})$ x context from which the FPs were picked out(shorter vs. 1onger FPs weighted, i.e.,session 1 vs. 2). Table I summarizes the results. The interaction effect was significant at 5 \% level for subjects 7,8 and 10 . Figures $3 \mathrm{a}, 3 \mathrm{~b}$ and 3 d show mean RTs of subjects 7,8 and 10 for various FPs . As to subject 11 , the median test showed that medians of RTs for $1.00,1.30$ and 1.69 sec FPs were significantly different at 5% level when longer FPs were weighted, and not significantly different when shorter ones were weighted. From this difference we can conclude that, for subject 11, the optimum FP, when longer FPs were being weighted, was shifted toward a longer FP than when shorter ones were weighted. As to subjects 9 and 12, no statistically

Table I
Significant effects in ANOVA of experiment II

	Subject 7	subject8	subject 9	subject 10	subject 11	subject 12
main effect of context	non.	sig.	sig。	sig.	sig.	sig.
main effect of FP	non.	non.	non.	non.	non.	sig.
Interaction effect	sig.	sig.	non.	sig.	non.	non.

Note: sig.: significant at 5% level; nono: nonsignificant at 5% level.

4

Figure 3a. Mean RTs as a function of FP for subject 7.

Figure 3b. Mean RTs as a function of FP for subject 8.

Figure 3c. Mean RTs as a function of FP for subject 9.

Figure 3d. Mean RTs as a function of FP for subject 10.

Figure 3e. Mean RTs as a function of FP for subject 11.

Figure 3f. Mean RTs as a function of FP for subject 12.

```
significant results which might show an effect of change in
weight on optimum FP could be found. But as to subject 12,
the pattern of the graph shows the optimum FP is shorter for
the shorter FPs weighted condition than for the longer FPs weighted
condition, although no significant statistical evidence could
be found.
Considering the general pattern of the results obtained from experiment II, we can conclude that change in weight on FPs can bring about shift of optimum FP.
```


EXPERIMENT III

When the subject anticipates the time point at which the next stimulus will be presented, his anticipation may be affected by the preceding context of the experimental situation. Reaction times for a particular FP may depend on the FP at the preceding trial.

In experiment III, this dependency of RT on the FP at the preceding trial were investigated.

Apparatus

The subject was seated in front of a desk, on which a box, $5 \mathrm{~cm} \times 14 \mathrm{~cm} \times 24 \mathrm{~cm}$, was laid. On the upper surface, $14 \mathrm{~cm} \times 24 \mathrm{~cm}$, of the box, two microswitches and one 7-segment LED(green) were laid(Figure 4). These microswitches were arranged horizontally, separated 12 cm apart, 4 cm above the nearest edge of the box to the subject. The LED was mounted between and 6 cm above the microswitches. When the LED, which was the imperative stimulus to respond to, lit up, it always displayed number 0. An AIDACS -3000 microcomputer system(Ai Electrics Corp.) controlled these apparatus and recorded responses of the subject.

Subjects

Three students from the undergraduate course of the faculty of letters of Kyoto University participated. They were all untrained with respect to this type of experiment.

Procedure

Figure 4. Arrangement of the microswitches and the LED on the box used in experiments III and IV.

The experiment consisted of 7 blocks, each of which had 103 trials. Each block started when the subject pressed down the left microswitch. When 0.5 sec had passed after this response, the LED lit up. The subject was instructed to press down the right microswitch as fast as possible when the LED lit up. The LED went out immediately when the subject responded. After some time (FP) had passed, the next trial began, that is, the LED lit up and the subject responded. An FP-LED-response cycle was repeated until the end of the block.

In a block, 102 FPs were used. The first two FPs were 2 sec. The other 100 FPs were in a randomized sequence of 20 sets of FPs. Each set consisted of $1.00,1.30,1.69,2.19$ and 2.84 sec FPs. It was randomized with the following restriction; $1.00,1.69$ and 2.84 sec FPs were preceded by each of the members of the set, which included itself, at least two times, respectively. The subject was allowed to rest between blocks as long as he would like to.

The program for experiment III is given in appendix C.

RESULTS

Total times of experiment III were between 27 and 54 minutes. The data from blocks 2 through 7 were used, although the first 3 RTs and RTs for immediate FPs of 1.30 and 2.19 sec were discarded. Blocks 2 and 3 (blocks 4 and 5, blocks 6 and 7, respectively) were pooled as session 1 (session 2 , session 3 , respectively). The medians of RTs to $1.00,1.69$ and 2.84 sec FPs, which were classified according to the FPs in the preceding trials, were calculated. To calculate mean RTs for each combination of the immediate FPs and the preceding FPs of individual subjects, these medians were averaged over the three sessions. These mean RTs were analyzed by ANOVA with the design, immediate $\operatorname{FP}(1.00,1.69$ and 2.84 sec$) \mathrm{x}$ preceding $\operatorname{FP}(1.00,1.30$, $1.69,2.19$ and 2.84 sec$)$. Main effect of immediate FP and the interaction effect of immediate FP x preceding FP were significant at 5 \% level. This results indicates that mean RT is dependent on immediate FP and the preceding FP (Figure 5).

Figure 5. The mean RTs for immediate FP 1.00, 1.69 and 2.84 sec as a function of the FP in the preceding trial.

In experiment I, II and III, the subject's response terminated the trial and started the next trial. That is, foreperiod(FP) was timed from the subject's response to the stimulus.

But, FP can be timed from another event, e.g., a warning signal. In this case, the sequence of the events in a trial is as follows; the warning signal - FP - the stimulus - the response. That is, there is a time lag between the response and the start of the next FP. This time lag may have some effect on the sequential effects found in experiment III.

In experiment IV, to investigate this possibility, an
interval was inserted between the response and the start of the next FP .

Apparatus

The apparatus used in experiment IV was the same as in experiment III, except that, in experiment IV, an electric buzzer was used as a feedback signal.

Subjects

Eight subjects from the undergraduate course of the faculty of letters of Kyoto University participated in experiment IV. They were all untrained with respect to this type of experiment. Procedure

The procedure was the same as in experiment III, except for the following points;

Experiment IV consisted of 10 blocks, which were divided into 2 groups, sessions 1 and 2. In one of the two sessions, the experimental condition was the same as in experiment III (the continuous condition). In the other session (the discrete condition), each trial began after the buzzer sounded for 0.2 sec. In the first trial, the buzzer sounded when the experimenter pushed down the start key on the CRT display. After trial 2, the buzzer sounded after 0.5 sec had passed on from the subject's response, pressing down the right switch, to the LED in the preceding trial. After the buzzer sounded, the subject was allowed to press the left switch. FPs were timed after this laft switch pressing. If he pressed down the left switch
> before 0.5 sec had passed after the preceding response or during the sounding of the buzzer, the buzzer continued to sound for 5 sec after the release of the left switch. By this prolonged sounding, the subject was informed that he pressed down the left switch too early.

> Four subjects served in the continuous (or discrete) condition in session 1 (or 2 , respectively), and the other four the discrete (or continuous) condition in session 1 (or 2 , respectively).

> The programs which were used in experiment IV are given in appendix D .

RESULTS

Total times of experiment IV were between 48 and 71 minutes. The data from blocks 2 to 5 and from blocks 7 to 10 were used, although the first 3 (or 2) RTs of each block in the continuous (or discrete, respectively) condition and RTs for the immediate FPs of 1.30 and 2.19 sec were discarded.

Table II. The mean RT(sec) for immediate FPs of 1.00 , 1.69 and 2.84 sec as a function of the FP in the preceding trial.

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Medians of RTs for each combination of 3 immediate FPs, $1.00,1.69$ and 2.84 sec , and the preceding FPs, $1.00,1.30$, $1.69,2.19$ and 2.84 sec , were calculated for sessions 1 and 2. These medians were analyzed by ANOVA with the design, FP (1.00, 1.69 and 2.84 sec$) \mathrm{x}$ the preceding $\mathrm{FP}(1.00,1.30,1.69,2.19$ and 2.84 sec) x conditions of sessions (continuous vs. discrete) x order of conditions (from the continuous(in session 1) to the discrete condition(in session 2) vs. from the discrete(in session 1) to the continuous condition(in session 2)).

Main effects of immediate FPs and of the preceding FPs, and interaction effect of immediate FP x the preceding FP were significant at 5% level. The use of the warning signal had no statistically significant effects. Medians of RTs, which were averaged over non significant factors, were summarized in Table II. DISCUSSION The results of experiments I and II suggest that expectation
plays some role in simple reaction task and the results of experiments III and IV indicate that this expectation in part depends on the FP in the preceding trial. These conclusions are compatible with the review by Niemi and Näätänen(1981).

Of course, expectation or anticipation of the occurrence of the stimulus in simple reaction task depends on the perception of time. Hence, we must review studies on the time perception, before we construct a new model, which is based on the process of anticipation.

- 62 -

CHAPTER III

TIME PERCEPTION

A. The Power Law.

Many authors adopted power functions as psychophysical functions, which relate subjective time to physical one. Ekman(1958) proposed the model, which determined the exponent by the method of fractionation. In the method of fractionation, the subject is instructed to adjust a variable stimulus so that it appears subjectively equal to a certain fraction of the standard, usually half the standard. Ekman(1958) set the power function as eq. (3-1),

$$
\begin{equation*}
R=c\left(S-S_{0}\right)^{n} \tag{3-1}
\end{equation*}
$$

where R (or S) is a subjective (or physical) scale of time, C is a constant related to the unit of measurement of R, S_{0} is a kind of absolute threshold, and n is the exponent determining the curvature of the function.

When the subject adjusts the variable stimulus to a value, S_{p}, which, subjectively, is p times that of the subjective value of the standard, S,

$$
\begin{equation*}
\mathrm{pR}=\mathrm{c}\left(\mathrm{~S}_{\mathrm{p}}-\mathrm{S}_{0}\right)^{\mathrm{n}} \tag{3-2}
\end{equation*}
$$

Combining eqs.(3-1) and (3-2) and solving for S_{p},
$S_{p}=s_{0}(1-k)+k s$
where $\mathrm{k}=\mathrm{p}^{1 / \mathrm{n}}$.

Eq. (3-3) describes a relation between S, a standard stimulus, and S_{p}, a variable stimulus. Applying eq.(3-3) to the data, we can get the value of k, the slope of eq. (3-3), and $S_{0}(1-k)$, the intercept when $\mathrm{S}=0$.

From the values of k and $S_{0}(1-k)$, we can get
$n=\frac{\log p}{\log k}$
and
$s_{0}=\frac{s_{0}(1-k)}{1-k}$
With these values of n and S_{0}, we can specify eq.(3-1)
except the unit parameter, C.

The model proposed by Björkman and Holmkvist(1960)
incorporated the effect of time-order. Their model is based on the power law, $\mathrm{R}=\mathrm{C}\left(\mathrm{S}-\mathrm{S}_{0}\right)^{\mathrm{n}}$, and the empirical relation (eqs.(3-4) and (3-5)) between the standard stimulus, S, and the variable stimulus, S_{L} and $S_{1 / 2}$, where S_{L} and $S_{1 / 2}$ are the adjusted
stimulus as equal to or as half of the standard stimulus S.

$$
\begin{align*}
& S_{L}=b S+a \tag{3-4}\\
& S_{1 / 2}=b_{1} S+a_{1} \tag{3-5}
\end{align*}
$$

Let $P_{r}(t)$ be the proportion retained after t time passed from the end of S. For a suitable pair of standard stimuli, S_{1} and $S_{2}, \quad S_{L}=S_{1 / 2}$. For this pair of S_{L} and $S_{1 / 2}(=t)$,

$$
\begin{aligned}
& \frac{\left(S_{L}-S_{0}^{\prime}\right)^{n}}{\left(S_{1}-S_{0}\right)^{n}} \\
= & P_{r}(t) \\
= & \frac{2\left(S_{1 / 2}-S_{0}^{\prime}\right)^{n}}{\left(S_{2}-S_{0}\right)^{n}}
\end{aligned}
$$

where S_{0} and S_{0}^{j} are the absolute thresholds for the standard and variable stimuli.

Substituting for S_{1} and S_{2} the values obtained from eqs. (3-4) and (3-5),

$$
\frac{b^{n}\left(S_{L}-S_{0}^{\prime}\right)^{n}}{\left(S_{L}-a-b S_{0}\right)^{n}}
$$

$$
=P_{r}(t)
$$

$$
=\frac{2 b_{1}^{n}\left(s_{1 / 2}-s_{0}^{\prime}\right)^{n}}{\left(s_{1 / 2}-a_{1}-b_{1} s_{0}\right)^{n}}
$$

Substituting t for S_{L} and $S_{1 / 2}$,
$b^{n}\left[\frac{t-s_{0}^{\prime}}{t-a-b S_{0}}\right]^{n}=2 b_{1}^{n}\left[\frac{t-s_{0}^{\prime}}{t-a_{1}-b_{1} S_{0}}\right]^{n}$
hence

$$
\frac{b}{t-\left(a+b S_{0}\right)}=\frac{2^{\frac{1}{n}} b_{1}}{t-\left(a_{1}+b_{1} S_{0}\right)}
$$

This should hold for all positive values of t.

Thus,

$$
n=\frac{\log \frac{1}{2}}{\log \left(\frac{b_{1}}{b}\right)}
$$

and

$$
S_{0}=\frac{a_{1}-a}{b-b_{1}}
$$

Eisler(1975) derived the power law from the empirical
linearity described as eqs.(3-4) or (3-5), which is formulated again as eq.(3-6),

$$
\begin{equation*}
\Phi_{\nabla}=a \oiint+b \tag{3-6}
\end{equation*}
$$

where Φ denotes the physical value of the standard duration, and $\mathbb{\#}_{V}$ the variable duration (these notational changes are in accord to Eisler's notation.).

Let f and g be the psychophysical functions whioh relate subjective values, ψ and ψ_{V}, to physical values, $\mathbb{\#}$ and Φ_{∇}, as follows,

$$
\begin{align*}
& \psi=f(\Phi) \tag{3-7}\\
& \psi_{\nabla}=g\left(\mathbb{\Phi}_{\nabla}\right) \tag{3-8}
\end{align*}
$$

If the subject carried out an r setting, we have
$\psi=r \psi$
Eqs.(3-6) to (3-9) yield
$r f(\mathbb{\#})=g(a \mathbb{\#}+b)$
Taking the derivative of eq.(3-10) with respect to r yields $f(\mathbb{\#})=\left(a^{\prime} \Phi+b^{\prime}\right) \cdot g^{\prime}(a \oiint+b)$
and with respect to $\mathbb{\$}$ yields

$$
\begin{equation*}
r f^{\prime}(\mathbb{\#})=a g^{\prime}(a \Phi+b) \tag{3-12}
\end{equation*}
$$

Dividing eq. (3-12) by eq.(3-11) yields

$$
\begin{equation*}
\frac{r f^{\prime}(\mathbb{\#})}{f(\mathbb{\#})}=\frac{a}{a^{\prime} \mathbb{\#}+b^{\prime}} \tag{3-13}
\end{equation*}
$$

and integrating eq.(3-13) with respect to $\mathbb{\$}$ yields

$$
r \log f(\mathbb{\Psi})=\frac{a}{a_{1}} \log \left|a^{\prime} \#+b^{\prime}\right|+C_{1}(r)
$$

or
$f(\Phi)=C(r) \cdot\left(a^{\prime} \Phi+b^{\prime}\right)^{\frac{a}{a^{\prime} r}}$
Because $f(\mathbb{\Phi})$ is independent of $r, f(\mathbb{I})$ is rewritten in the following way,

$$
\psi=f(\Phi)=\alpha\left(\Phi-\mathbb{\Phi}_{0}\right)^{\beta}, \quad \oiint>\mathbb{\Phi}_{0}
$$

Eisler(1976) reviewed 111 studies from 1868 to 1975 and
concluded that a value of .9 seemed to come closest to the
exponent of subjective duration. From table 1 in the review by Eisler(1976), we can see the exponents ranging from . 31 to 1.36 . Blankenship and Anderson(1976) tested their simple weighted sum model, eq.(3-14), for time perception.

$$
\begin{equation*}
R_{i j}=A\left(w_{1} d_{i}+w_{2} d_{j}\right)+B \tag{3-14}
\end{equation*}
$$

They had the subject to rate the total duration, $\mathrm{R}_{\mathbf{i j}}$, of two time intervals, d_{i} and d_{j}, which were presented successively. Analyzing their data by ANOVA, they concluded that eq.(3-14) was confirmed

Cuttis and Rule(1977) proposed a more general model, eq. (3-15), than eq. (3-14),

$$
\begin{equation*}
J_{i, j}=a\left[w \phi_{i}^{k}+(1-w) \phi_{j}^{k}\right]^{m}+b \tag{3-15}
\end{equation*}
$$

where $J_{i j}$ denotes the judgement by the subject, ϕ_{i} and ϕ_{j} denote the two stimuli, w denotes the weight, and a and b are coefficients of the linear equation.

Curtis and Rule(1977) got the values of parameters in eq. (3-15) as follows,

$$
\begin{equation*}
J_{i j}=.95\left(.51 \phi_{i}^{1.94}+.49 \phi_{j}^{1.94}\right)^{.49}+.94 \tag{3-16}
\end{equation*}
$$

for judgment of total magnitude of simultaneously presented temporal intervals,
and

$$
\begin{equation*}
J_{i j}=.53\left(.46 \phi_{i}^{1.09}+.54 \phi_{j}^{1.09}\right)^{1.08}+1.25 \tag{3-17}
\end{equation*}
$$

for judgments of average duration of successively presented stimuli.

With the assumption that subjective duration is related to measured duration by a linear function, both equations can be rewritten as follows,

For eq. (3-17),

$$
\begin{equation*}
\psi_{i j}=\psi_{i}+\psi_{j} \tag{3-18}
\end{equation*}
$$

For eq.(3-16),

$$
\begin{equation*}
\psi_{i j}=\left(\psi_{i}^{2}+\psi_{j}^{2}\right)^{\frac{1}{2}} \tag{3-19}
\end{equation*}
$$

That is, they concluded that (1) when the information to be integrated was presented sequentially, the judgment was made in the way which was consistant with a linear composition rule, eq. (3-18), and (2) when the information was presented simultaneously, judgments were based on the vector summation rule, eq.(3-19).

B. Logarithmic Psychophysical Law.

In his model of the "internal clock", Treisman(1963) adopted a logarithmic function to represent the magnitude of the time interval stored in the short term memory. Treisman(1964) criticized the psychophysical power law. He argued; "... a model sufficient to account for the result of any direct scaling experiment can be based on either a power function or a \log function law. This is true of each scaling procedure, not just of fractionation, when the model is adapted appropriately."。 For example;

Let the weight W_{c} was chosen as being subjectively half as great as the given weight W_{S}. If the power law was adopted,
$2 W_{c}^{n}=W_{s}^{n}$
hence,
$n \log W_{S}-n \log W_{C}=\log 2$
That is, if we write,

$$
s=n \log W+C
$$

then

$$
\begin{equation*}
s_{s}-s_{c}=\log 2 \tag{3-20}
\end{equation*}
$$

Eq. (3-20) means, according to Treisman(1964), that the log function can also describe the data from the ratio (1/2) setting experiment, as well as the power function does.

C. Weber's Law Models.

Getty(1975) compared Weber's law models with counter models. He generalized Weber's law as follows,

$$
\begin{equation*}
\operatorname{Var}(\mathrm{T})=\mathrm{k}_{\mathrm{W}}^{2} \cdot \mathrm{~T}^{2}+\mathrm{V}_{\mathrm{R}} \tag{3-21}
\end{equation*}
$$

where $\operatorname{Var}(\mathrm{T})$ is the total variance, V_{R} is sum of the all magnitudeindependent variances and $\mathrm{k}_{\mathrm{W}}^{2} \cdot \mathrm{~T}^{2}$ is sum of the all magnitudedependent variances.

Square-root of $k_{W}^{2} \cdot T^{2}$ is $\sqrt{k_{W}^{2} \cdot T^{2}}=k_{W} \cdot T$, so k_{W} is the Weber fraction.

According to the counter model, which was proposed by Creelman (1962), the total variance can be divided as follows,

$$
\begin{equation*}
\operatorname{Var}(T)=k \cdot T+V_{R} \tag{3-22}
\end{equation*}
$$

That is, the sum of the all magnitude-dependent variances is proportional to stimulus magnitude (time interval) T.

In general, Poisson counter models produce the variance and the mean, both of which are proportional to the time interval T ,
in which the counting was made.

Distribution of number of counts in an interval T approaches to normal distributions with a mean $\lambda \cdot T$ and a variance $\lambda \cdot T$, as I becomes larger. So, Kinchla(1972), in his data analysis, used a Gaussian random variables.

Getty(1975) tested eq.(3-21) and eq.(3-22) against his data from his forced-choice experiment and concluded that Weber's law model is better.

Getty(1976) also compared Weber's law models with proportional variance models, using the silent counting task, and reached to the same conclusion as in Getty(1975).

D. Constant Variance Models.

In the model proposed by Allan, Kristofferson and Wiens (1971), variances associated with time perception are constant irrespectively of length of time intervals. They conceptualized the mechanism of time perception as follows;

Suppose that at some time after the onset of a $d_{i}-m s e c$ stimulus, an interval timing process is activated by the stimulus onset. This delay is called the psychological onset time.

Similarly, the offset of the stimulus terminates the internal
timing process after a time delay called the psychological offset time. The psychological onset and offset times were assumed to have uniform distributions, $f_{1}(u)$ and $f_{2}(u)$, respectively.

$$
f_{1}(u)= \begin{cases}1 / q & \text { if } 0<u<q \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{2}(u)= \begin{cases}1 / q & \text { if } d_{i}<u<d_{i}+q \\ 0 & \text { otherwise }\end{cases}
$$

where q is constant irrespective of d_{i}.

Then, the distribution of durations of the internal timing process, denoted as $g\left(u^{\prime}\right)$, is

$$
\begin{aligned}
g\left(u^{\prime}\right) & =\int f_{2}(u) \cdot f_{1}\left(u-u^{\prime}\right) \cdot d u \\
& = \begin{cases}\frac{q+d_{i}-u^{\prime}}{q^{2}} & \text { if } d_{i}<u^{\prime}<d_{i}+q \\
\frac{q-d_{i}+u^{\prime}}{q^{2}} & \text { if } d_{i}-q<u^{\prime}<d_{i} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

That is, the graph of $g\left(u^{\prime}\right)$ is an isosceles triangle with a base of 2 q msec.

The real-time criterion model by Kristofferson(1977) also
made the distribution of the time at which a criterion occurs an isosceles triangle.
E. Nontemporal Factors.

Hornstein and Rotter(1969) found effects of sex and methods on temporal perception. They employed three methods, the method of verbal estimation (MVE) in which a subject makes a verbal judgment of the length of a physical interval, the method of production (MP) in which a subject must translate a verbalized interval into a physical one, and the method of reproduction (MR) in which a subject must reproduce physically an interval of a given duration first presented physically by an experimenter. Their data showed that (1) as to male subjects, in $M R$, they reproduced shorter intervals than presented, but, in MVE and MP, their responses were accurate, and (2) as to female subjects, in MVE, their verbal estimations were larger than physical ones, but, in MP and MR, they produced or reproduced shorter intervals.

Cahoon and Edmonds(1980) investigated an effect of expectancy on time estimation. They instructed the experimental subjects as follows: "There will be a delay in starting the experiment.

I will return for you when we are ready. Would you mind calling me in the other room when the water starts boiling? Thanks.". In the instruction to the control subjects, reference to the water was omitted. After giving the instruction, the experimenter left the room for 240 sec . At the end of that interval, the experimenter returned and asked the subject to estimate the elapsed time. The experimental group tended to overestimate the time relative to the control group.

Thomas and Weaver(1975, also cf. Thomas and Cantor(1975)) proposed the following model:

A visual stimulus is analized by a timer called f processor and by visual information processors called g processors. The output, $f(t, I)$, of the f processor is a temporal encoding which is directly related to t and the amount of attention allocated to the timer. The output, $g(I, t)$, of the g processors contains encodings of the nontemporal stimulus features and an encoding, $\mathrm{g} \%(\mathrm{I}, \mathrm{t})$, of the time spent processing I. It is assumed that perceived duration, τ, is a weighted average,

$$
\tau=a \cdot f(t, I)+(1-a) \cdot g *(I, t)
$$

Massaro and Idson(1978) investigated perception of duration of the tones which were followed by masking tones. They proposed the following model,

$$
\begin{equation*}
\mathrm{JD}=\mathrm{PD}+\mathrm{K} \cdot \mathrm{t}_{\mathrm{m}} \tag{3-23}
\end{equation*}
$$

and

$$
\begin{equation*}
P D=X+Y \tag{3-24}
\end{equation*}
$$

where

$$
x=\alpha \cdot\left[1-e^{-\left(\theta_{D} \cdot t_{D}\right)}\right]
$$

and

$$
\mathrm{Y}=(\alpha-x) \cdot\left[1-e^{-\left(\theta_{I} \cdot t_{I}\right)}\right]
$$

$P D$ is the perceived duration of the target tone and JD is the judged duration of the target. Eq. (3-23) means that JD is PD plus a constant proportion, K, of mask duration, t_{m}. Eq. (3-24) means PD consists of two components, X and $\mathrm{Y} . \mathrm{X}$ is the perceived duration obtained during the actual duration of the target. The value of α is the asymptotic value of perceived duration, θ_{D} represents the rate of growth of PD during the time of target presentation, t_{D}. Y is the component which is added during the silent interval, t_{I}, following target offset. θ_{I} represents
the growing rate during this silent interval.

Pöppel(1978) proposed a taxonomy of time experiences into five elementary ones (experience of duration, simultaneity/ successiveness, sequence, present, and anticipation). His basic assumption is that time perception has to be related to the occurrence of events as they are perceived and actions taken by the subject. Duration estimation of longer intervals is determined by the amount of information processed (and/or stored) or by the mental content. As to experiences of simultaneity/successiveness, he pointed out two aspects of temporal resolving power, that is, fusion and order thresholds. Fusion threshold is dependent on sensory modalities, but, order threshold is independent on them. Experience of sequence is concerned to the order in which events occurred. As to the experience of present, he insisted that temporal intervals up to a few seconds are experienced in a way qualitatively different from longer temporal intervals. Time interval of approximately 2 sec is experienced as a unit, that is, as a present. Anticipation is concerned to temporal organization, that is, to the programming of future behavior sequences.

Most prevailing psychophysical functions are power functions. But, in Eisler(1976)'s review of 111 studies, the exponents range from . 31 to 1.36 . This wide range of exponents of the power functions which relate physical stimuli to psychological scales let the author doubt of the validity of power functions as psychophysical functions. Treisman(1964) criticized the power law from theoretical point of view, which was briefly reviewed in section B of this chapter.

Apart from the discussion which of the power law or the logarithmic law is proper one, Allan et. al(1971) proposed a constant variance model. According to their model, perception of time is essentially a linear function of physical time. But, Getty(1975) generalized Weber's law and his model succeeded in describing his data.

At present, there are two types of psychophysical functions, power or \log functions, and two types of variance models,
constant variance models and Weber's law.

Reviewed in section E, time perception is also affected by nontemporal factors. Pöppel(1978) insisted that intervals longer than 2 sec are perceived in a way qualitatively different from shorter ones.

With all these varieties of theories of time perception
in mind, we cannot adopt the specific model of time perception, on which a model of simple reaction time would be based. Foreperiods in a simple reaction task may include both shorter and longer than 2 sec intervals.

CHAPTER IV

A TWO-STATE MODEL

In chapter I, we saw that, for choice reaction time, the two-state (prepared and unprepared states) model by Falmagne (1965) is simple with respect to its structure and successful in describing data. For simple reaction time, we found one model, which incorporates a process of expectation/anticipation. But, this model does not predict the sequential effects, the effects of the preceding FPs.

In chapter II, the author reported experiments, which confirmed importance of expectation in simple reaction task and the effects of the preceding FP. In this chapter, the author proposed a model, which has the following three characteristics;

1) The model is based on the process of expectation (cf. the results of experiments I, II, III and IV).
2) The sequential effects are incorporated (cf. the results of experiments III and IV).
3) The model is described in terms of discrete states, i.e., the prepared and not-prepared states. As to the term preparedness, there are other terms, which have close relationships to it, i.e., expectation, anticipation and refractoriness. Refractoriness
frequently refers to the physiological state of being not able to respond immediately after some event. The term 'adaptation level' is used in reference to sensory processes. Expectation or anticipation refers to a process at higher level. The term 'preparedness' may be used in reference to mental or motor system. As to our two-state model, it is not important to determine to which kind of processes the term 'state' refers, physiological, sensory or conscious ones. These processes may occur simultaneously. What we should make clear is that there are two states in one of which the subject can be at a given time. But, if these states have some names, it would be better. According to Falmagne(1965)'s terminology, the term 'prepared' will be used.

As to the type of the new model, it should be qualitative. In order to make the model quantitative, we must adopt a specific psychophysical scale of time, because the anticipation is based on the perception of time. But, as reviewed in chapter III, there is no scale of time which is accepted by most investigators.

A MODEL

When we fixed a set of FPs to use, we observe that mean RTs for the various FPs differ (cf. the results of experiment I). It seems that the subject was prepared to respond for FPs with about relatively middle length. Having this in mind, the following three assumptions were proposed.

Assumption 1.

A subject is in one of two states, the prepared state (abbreviated as Sp) and the not-prepared state (abbreviated as Snp).

Assumption 2。

When the subject is in Sp (or in Snp, resp.), the distribution function of reaction time is
$\mathrm{Fp}(\mathrm{x})($ or $\mathrm{Fnp}(\mathrm{x})$, resp.).

Assumption 3.

At the start of a trial, the subject is in Snp.

After some time has passed, the subject enters into

Sp. The distribution function of the time at which

the subject enters into $S p$ is $D(x)$.

As to the exact form of $F p(x)$ or $F n p(x)$, the general-gamma distribution, eq.(4-1), was proposed by McGi11 and Gibbon(1965) and the Weibull distribution, eq.(4-2), by Ida(1980).

$$
\begin{align*}
& F(x)=1-\sum_{i=0}^{i=k} C_{i} \cdot e^{-\lambda_{i} \cdot x} \tag{4-1}\\
& F(x)=1-e^{-\lambda \cdot(t-L)^{m}} \tag{4-2}
\end{align*}
$$

The general-gamma distribution is obtained when exponential distributions are summed. The gamma distribution is the special case of the generalmgamma distribution in which the values of parameters of the exponential distributions are equal to each other (cf. McGill(1963)). The Weibull distribution is obtained when the conditional probability at time x that a subject who has not yet responded will come to respond, $r(x)$, obeys the following equation;

$$
r(x)=\lambda \cdot m \cdot(x-L)^{m-1}
$$

In this article, the aspects of the two-state model which do not depend on the exact forms of $F p(x)$ and $\operatorname{Fnp}(x)$ are discussed. Only the relation that the mean of $\mathrm{Fp}(\mathrm{x})$ is shorter than the one of $\operatorname{Fnp}(x)$ is assumed.

Assumption 4 was introduced to account for the effect of the preceding FP.

Assumption 4.
$T_{0}=f\left(T_{B}, w_{B}, T_{p r}, w_{p r}\right)$
where Tpr is the FP in the preceding trial and T_{B}
is determined by the background context. w_{pr} and
w_{B} are weights for Tpr and T_{B}. That is, T_{0} depends on gloval (T_{B}) and local (Tpr) contexts. T_{0} is defined as one of parameters of $D(x)$, that is, $D(x)$ should be written as $D\left(x, T_{0}\right)$.

It seems evident that a subject cannot maintain his preparedness indefinitely.

Assumption 5 。

After entering into $S p$, the subject remains
in it for a while. The distribution function of this distribution is $R(x)$.

Now, because the model proposed here is a qualitative approximation, let us make the functions, $D(x), R(x)$ and $f\left(T_{B}, w_{B}, T_{p r}, w_{p r}\right)$, simple ones.

Assumption 3-1.

$$
D\left(x, T_{0}\right)= \begin{cases}0 & x \leqslant T_{0} \\ \left(x-T_{0}\right) / \delta_{0} & T_{0} \leqslant x \leqslant T_{0}+\delta_{0} \\ 1 & T_{0}+\delta_{0}<x\end{cases}
$$

where $\quad \delta_{0}=\delta \cdot T_{0}$
At this point, $D\left(x, T_{0}\right)$ should be written as $D\left(x, T_{0}, \delta_{0}\right)$.

See Figure 6.

Assumption 4-1.

$$
\begin{aligned}
T_{0} & =f\left(T_{B}, w_{B}, T_{p r}, w_{p r}\right) \\
& =\left(w_{B} \cdot T_{B}+w_{p r} \cdot T_{p r}\right) /\left(w_{B}+w_{p r}\right)
\end{aligned}
$$

Assumption 5-1.

$$
R(x)= \begin{cases}0 & x \leqslant \rho \\ (x-\rho) / \lambda & \rho<x \leqslant \rho+\lambda \\ 1 & \rho+\lambda<x\end{cases}
$$

At this point, $R(x)$ should be written as $R(x, \rho, \lambda)$ 。

See Figure 7.

With these assumptions, we can derive a distribution function of simple RT at time t, which is measured from the start of the trial. To simplify notations, some of the

Figure 6. The distribution function, $D(x)$, of the time at which the subject enters into S_{p} from $S_{n p}$.

Figure 7. The distribution function, $R(x)$, of the duration for which the subject remains in S_{p}.
parameters of the distribution functions are suppressed, but the reader should not be confused by this notational simplification. Let $\tilde{R}(x)=1-R(x)$. That is, $\tilde{R}(x)$ is the probability that the subject remains in S p during more than x time units. Then, $\tilde{R}(t-x) \cdot d D(x)$ is the probability that the subject enters into $S p$ at time x and be still in Sp at time t . The probability that the subject is in $S p$ at time $t, P\left(t, T_{0}\right)$, can be expressed as follows,

$$
\begin{equation*}
P\left(t, T_{0}\right)=\int_{0}^{t} \tilde{R}(t-x) \cdot d D(x) \tag{4-3}
\end{equation*}
$$

Now, let $\mathrm{RT}\left(\mathrm{x}, \mathrm{t}, \mathrm{T}_{0}\right)$ be the distribution function of simple RT when the stimulus is presented after time t has elapsed from the start of the trial.

Then,

$$
\operatorname{RT}\left(x, t, T_{0}\right)=P\left(t, T_{0}\right) \cdot F p(x)+\left(1-P\left(t, T_{0}\right)\right) \cdot \operatorname{Fnp}(x)
$$

Hence, mean RT at time $t, \overline{\operatorname{RT}}\left(t, T_{0}\right)$, is

$$
\begin{align*}
\overline{\operatorname{RT}}\left(t, T_{0}\right) & =\int_{0}^{\infty} x \cdot d R T\left(x, t, T_{0}\right) \\
& =P\left(t, T_{0}\right) \cdot \int_{0}^{\infty} x \cdot d F p(x)+\left(1-P\left(t, T_{0}\right)\right) \cdot \int_{0}^{\infty} x \cdot d \operatorname{Rnp}(x) \\
& =P\left(t, T_{0}\right) \cdot \overline{\operatorname{RTp}}+\left(1-P\left(t, T_{0}\right)\right) \cdot \overline{\operatorname{RTn}} \quad \tag{4-4}
\end{align*}
$$

where $\overline{\mathrm{RT}} \mathrm{p}$ and $\overline{\mathrm{RT}} \mathrm{n} p$ are the mean RTs when the subject is in Sp or in Snp, respectively.

Figure 8 shows the graph of the theoretical $\overline{\mathrm{RT}}\left(\mathrm{t}, \mathrm{T}_{0}\right)$ for immediate FPs of $1.00,2.00$ and 3.00 as a function of Tpr value (Tpr $=1.00,1.50,2.00,2.50$ and 3.00) when we set $\rho=\lambda=2.00, \delta=1.5, W_{B}=2.0, W_{p r}=1.0, T_{B}=0.0$, $\overline{R T_{p}}=0.2$ and $\overline{R T_{n p}}=0.3$.

The program which was used to calculate the values in Figure 8 is given in appendix E.

Figure 9 shows the graph of the theoretical mean RTs, $\overline{\mathrm{RT}}(\mathrm{t})=$ averaged $\overline{\mathrm{RT}}\left(\mathrm{t}, \mathrm{T}_{0}\right)$ over T_{0} values.

Inspecting the qualitative trends in Figures 8 and 9, we can conclude that the model proposed here fits qualitatively to the fact that 1) there is the optimum FP (Figure 9, also compare Figure 9 with Figures 2a and 2b), and 2) mean RTs depend on the FP in the preceding trial (Figure 8, also compare Figure 8 with Figure 5.).

MATHEMATICAL ANALYSIS

If we want to calculate the integration of eq.(4-3), we

Figure 8. The theoretical mean RT for immediate FP 1.00, 2.00 and 3.00 in the psychological unit as a function of the preceding FP. The parameters were set as follows: $\rho=2.00, \lambda=2.00, \delta=1.5, T_{B}=0.0, W_{B}=2.00$, $W_{p r}=1.00, \overline{R T}=0.20$ and $\overline{R T_{n p}}=0.30$.

Figure 9. The theoretical mean RT as a function of immediate FP. The values of the parameters were the same as in Figure 8.
meet rather complex situation, where we must investigate many situations, each of which corresponds to each combination of the ranges of values of the parameters, $\mathrm{T}_{0}, \delta_{0}, \rho$ and λ, of the functions, $D(x)$ and $R(x)$. The forms of $D(x)$ and $R(x)$ are natural approximations to the real ones. Densities of $D(x)$ and $R(x)$ are concentrated on rather restricted ranges, which are some distant from the origin 0 . The forms of $D(x)$ and $R(x)$ are very simple, so the programming and calculation by computer of these functions is very easy.

But, computer calculations leave some dissatisfaction. We can see only the narrow range of the behaviors of the model which were simulated. The other part of the range of the behaviors which have not yet simulated is unknown until it is calculated.

In the following part of this chapter, in order to analyze the model mathematically, we make the forms of $D(x)$ and $R(x)$ mathematically analyzable ones.

Assumption 3-2.

$$
D(x, \delta)=1-e^{-\delta \cdot x}
$$

where δ is a decreasing function, $g\left(\mathrm{~T}_{0}\right)$, of T_{0}.

Assumption 5-2.

$$
R(x)=1-e^{-\rho \cdot x}
$$

The assumption that δ is a decreasing function of T_{0} is due to the fact that $\int_{0}^{\infty} \mathrm{x} \cdot \mathrm{dD}(\mathrm{x}, \delta)=\frac{1}{\delta}$
δ is a monotonic function of I_{0} and can be written as
$\delta=g\left(f\left(T_{B}, w_{B}, T_{p r}, w_{p r}\right)\right)$ by assumption 4 . In assumption 3-2, $D(x, \delta)$ has δ instead of T_{0} as one of the explicit parameters. So, in the following analysis, we use δ as the parameter which depends on the FP in the preceding trial.

With assumptions 3-2 and 5-2, eq.(4-1) can be calculated as follows;

$$
\begin{aligned}
P(t, \delta) & =\int_{0}^{t} \tilde{R}(t-x) \cdot d D(x) \\
& =\int_{0}^{t} e^{-\rho \cdot(t-x)} \cdot \delta \cdot e^{-\delta \cdot x} \cdot d x \\
& =\delta \cdot e^{-\rho \cdot t} \cdot \int_{0}^{t} e^{(\rho-\delta) \cdot x} \cdot d x \\
& =\delta \cdot e^{-\rho \cdot t}\left[\frac{1}{(\rho-\delta)} \cdot e^{(\rho-\delta) \cdot x}\right]_{0}^{t} \\
& =\delta \cdot e^{-\rho \cdot t}\left\{\frac{1}{(\rho-\delta)} \cdot e^{(\rho-\delta) \cdot t}-\frac{1}{(\rho-\delta)}\right\}=\frac{\delta}{\rho-\delta}\left(e^{-\delta \cdot t}-e^{-\rho \cdot t}\right)
\end{aligned}
$$

Hence, eq.(4-4) is given as

$$
\begin{aligned}
\overline{\mathrm{RT}}(t, \delta) & =\mathrm{P}(t, \delta) \cdot \overline{\mathrm{RT}}_{\mathrm{p}}+(1-\mathrm{P}(t, \delta)) \cdot \overline{\mathrm{RT}} n \mathrm{p} \\
& =\overline{\mathrm{RTn}} \mathrm{np}+(\overline{\mathrm{RT}} \mathrm{P}-\overline{\mathrm{RT} n p}) \cdot \frac{\delta}{\rho-\delta} \cdot\left(e^{-\delta \cdot t}-e^{-\rho \cdot t}\right) \\
\frac{\partial \overline{\mathrm{RI}}(t, \delta)}{\partial \mathrm{t}} & =\left(\overline{\mathrm{RT}}_{\mathrm{p}}-\overline{\mathrm{RT} n p}\right) \cdot \frac{\delta}{\rho-\delta} \cdot\left(-\delta \cdot e^{-\delta \cdot t}+\rho \cdot e^{-\rho \cdot t}\right) \\
& =\left(\overline{\mathrm{RT}}_{\mathrm{p}}-\overline{\mathrm{RT} n p}\right) \cdot \frac{\rho \delta}{\rho-\delta} \cdot e^{-\rho \cdot t} \cdot\left(1-\frac{\delta}{\rho} \cdot e^{(\rho-\delta) \cdot t}\right)
\end{aligned}
$$

Let $\frac{\partial \overline{\mathrm{TT}}(t, \delta)}{\partial \mathrm{t}}=0$
Then

$$
\begin{aligned}
1-\frac{\delta}{\rho} \cdot e^{(\rho-\delta) \cdot t} & =0 \\
e^{(\rho-\delta) \cdot t} & =\frac{\rho}{\delta} \\
t & =\frac{1}{\rho-\delta} \log \frac{\rho}{\delta}
\end{aligned}
$$

Let $h(\delta)=\frac{1}{\rho-\delta} \cdot \log \frac{\rho}{\delta}$
Then

$$
\begin{aligned}
\frac{d \AA}{d \delta} & =\frac{1}{(\rho-\delta)^{2}} \cdot \log \frac{\rho}{\delta}+\frac{1}{\rho-\delta} \cdot \frac{-1}{\delta} \\
& =\frac{1}{(\rho-\delta)^{2}} \cdot\left(\log \frac{\rho}{\delta}+(\rho-\delta) \cdot \frac{-1}{\delta}\right) \\
& =\frac{1}{(0-\delta)^{2}} \cdot\left(\log \frac{\rho}{\delta}-\frac{\rho}{\delta}+1\right) \\
& \leqslant 0
\end{aligned}
$$

Hence, the point, $t=h(\delta)$, at which $P(t, \delta)$ becomes minimal is a decreasing function of δ (i.e., a increasing function of T_{0}). This means that, when the FP in the preceding trial is larger one, then the value of T_{0} is also larger (which is
implicitly assumed in assumption 4.), δ becomes smaller, and the optimum FP becomes longer. This is the sequential effect (cf. the results of experiment III).

Now, let $U(x)$ be the distribution function of δ 。
Then,
$\overline{\mathrm{RT}}(\mathrm{t})=\int_{0}^{\infty} \overline{\mathrm{RT}}(\mathrm{t}, \delta) \cdot \mathrm{dU}(\delta)$
If $U(x)$ is a discrete distribution, eq.(4-5) can be written
as,

$$
\begin{equation*}
\overline{\mathrm{RT}}(\mathrm{t})=\sum_{i=1}^{n} p_{i} \cdot \overline{\mathrm{RT}}(\mathrm{t}, \delta) \tag{4-6}
\end{equation*}
$$

where $\quad p_{i} \geqslant 0, \quad \sum_{i=1}^{n} p_{i}=1$.
When the distribution of FPs is discrete, the distributions of T_{0} and δ are also discrete by assumption.

In experiment II, six FPs were used. Consider two
distributions, $\left\{\mathrm{p}_{i}^{1}\right\}_{i=1}^{6}$ and $\left\{\mathrm{p}_{i}^{2}\right\}_{i=1}^{6}$,
and let

$$
\mathrm{p}_{1}^{1}=\mathrm{p}_{2}^{1}=\mathrm{p}_{3}^{1}=\frac{2}{9}, \quad \mathrm{p}_{4}^{1}=\mathrm{p}_{5}^{1}=\mathrm{p}_{6}^{1}=\frac{1}{9},
$$

and

$$
\mathrm{p}_{1}^{2}=\mathrm{p}_{2}^{2}=\mathrm{p}_{3}^{2}=\frac{1}{9}, \quad \mathrm{p}_{4}^{2}=\mathrm{p}_{5}^{2}=\mathrm{p}_{6}^{2}=\frac{2}{9}
$$

Denote $\overline{\mathrm{RT}}(t)$'s corresponding to $\left\{p_{i}^{1}\right\}$ and $\left\{p_{i}^{2}\right\}$ as $\overline{\mathrm{RT}}^{1}(t)$ and $\overline{\mathrm{RT}}^{2}(t)$, respectively.

$$
\begin{aligned}
& \text { Then, by eq. }(4-6) \text {, } \\
& \overline{\mathrm{RT}}^{1}(\mathrm{t})=\frac{2}{9} \overline{\mathrm{RT}}^{\mathrm{a}}(\mathrm{t})+\frac{1}{9} \overline{\mathrm{RT}}^{\mathrm{b}}(\mathrm{t})
\end{aligned}
$$

and

$$
\overline{\mathrm{RT}}^{2}(\mathrm{t})=\frac{1}{9} \overline{\mathrm{RT}}^{\mathrm{a}}(\mathrm{t})+\frac{2}{9} \overline{\mathrm{RT}}^{\mathrm{b}}(\mathrm{t})
$$

where

$$
\overline{\mathrm{RT}}{ }^{\mathrm{a}}(\mathrm{t})=\overline{\mathrm{RT}}\left(\mathrm{t}, \delta_{1}\right)+\overline{\mathrm{RT}}\left(\mathrm{t}, \delta_{2}\right)+\overline{\mathrm{RT}}\left(\mathrm{t}, \delta_{3}\right)
$$

and

$$
\overline{\mathrm{RT}}^{\mathrm{b}}(\mathrm{t})=\overline{\mathrm{RT}}\left(\mathrm{t}, \delta_{4}\right)+\overline{\mathrm{RT}}\left(\mathrm{t}, \delta_{5}\right)+\overline{\mathrm{RT}}\left(\mathrm{t}, \delta_{6}\right)
$$

So,

$$
\begin{equation*}
\overline{\mathrm{RT}}^{1}(\mathrm{t})-\overline{\mathrm{RT}}^{2}(\mathrm{t})=\frac{1}{9} \cdot\left(\overline{\mathrm{RT}}^{\mathrm{a}}(\mathrm{t})-\overline{\mathrm{RT}}^{\mathrm{b}}(\mathrm{t})\right) \tag{4-7}
\end{equation*}
$$

When $\delta_{i}>\delta_{j}$ for $i<j$ then the value of t at which $\overline{\mathrm{RT}}^{\mathrm{a}}(\mathrm{t})$ becomes minimal is smaller than the one at which $\overline{\mathrm{RT}}^{\mathrm{b}}(\mathrm{t})$ becomes minimal, because $h\left(\delta_{i}\right)<h\left(\delta_{j}\right)$ for $i<j$.

Hence, eq. (4-7) means that the value of t at which $\overline{\mathrm{RT}}^{1}(\mathrm{t})$ becomes minimal is smaller than the one at which $\overline{\mathrm{RT}}^{2}(\mathrm{t})$ becomes. minimal. This means that the optimum FP depends on the relative
frequencies of FPs, the results of experiment II.

A new model of simple reaction time was proposed in this dissertation. In order to recognize the need to propose a new model, literatures on models of choice reaction time were reviewed in the first part of chapter I and literatures on models of simple reaction time were reviewed in the following part. We found that the two-state model of choice reaction time proposed by Falmagne(1965) was simple and successful in predictions. As to models of simple reaction time, there are many models. But, only one of the models reviewed in chapter I incorporated a process of expectancy/anticipation, although the role of expectancy in simple reaction time has been emphasized by Nảätänen and his collaborators (Näätänen(1970,1971), Näätänen and Merisalo(1977), Niemi and Näätänen(1981)). However, this anticipation model ignores the sequential effects. In chapter II, the author reported four experiments, which gave the data needed to construct a new model. In experiments I and II, factors, which seemed to affect the expectancy, were manipulated. Shift of the range of FPs caused shift of the optimum FP. The optimum FP in the case where shorter FPs were
more often used was shorter than in the case where longer FPs were more often used. In experiements III and IV, the sequential effects were investigated. When the FP in the preceding trial is longer, the reaction time for short $F P$ is longer.

To incorporate a expectation process into a quantitative model, we must adopt a specific model of time perception. Literatures on models of time perception were reviewed in chapter III, but we could not find the model which is accepted by most investigators. We must be content to construct a qualitative model.

In chapter IV, the author proposed the new model of simple reaction time which has the following characteristics;

1) The model is based on the process of expectation.
2) The sequential effects are incorporated.
3) The model is a two-state one.

In computer simulation, the proposed model produced the data which are similar to the data of experiments I and III. Mathematical analysis showed that the proposed model can predict the effects of the FP in the preceding trial and of the relative
frequencies of FPs.

- 102 -

APPENDICES

APPENDIX A

The programs for experiment I.

EXP.AS 1

```
            DIAENSION CHHT(1E), STTM(1Q), SEJNH(1Q), XENDTA(1Q),
            * FTT(48),INTVLT(192),ISBT1(49),ISET2(48),
            * * ISBT3(43),I SET4(48), FTSTKI(24), ETSTK2(24)
            EGIIVALENCE (I!TVLT(1),ISETI(1)),(INTVLT(49),ISET2(1)),
            *
            EATA ISET 1/
            * 4,1,2,1,4,5,2,3,0,5,3,2,
            * 0, 5,1,1,2,3,2,4,3,5,4,0,
            * 0,3,2,3,1,0,5,4,2,4,1,5,
            * 0,3,5, [, 1,5,1,4,2,3,2,4/
            DATA ISETE/
            * 5,2,4,4,3,1,5,3,1,0,E,2,
            * 3,5,4,5,1,3,2,0,4,1,Q,2,
            * 1,0,3,3,5,4,5,4, ,,2,2,1,
            * 3,4,1,1,Q,2,5,4,3,2,5, ,1
            DATA ISET3/
            * Q,2,5,5,3,3, , 4, 1,4,2,1,
            * 5,0,2,1,2,4,5,0,3,1,3,4,
            * 4,0,3,4,1,5,2,3,2,5,0,1,
            * }5,4,4,5,2,2,0,3,1,1,3,8
            DATA ISET4/
            * 1,4,3,1,4,2,e,2,5,3,e,5,
            * 1,4,1,5,3,4,C,C,3,5,2,2,
            * 2,2,4,3,5,1,1,5,3,4, [,0,
                            * 5,5,1,3,4,3, 2,2,2,4,0,1/
C
C
    YRITE(2,1010)
101@ FORMAT(25(/),'COMMENT')
            FEAD(1,1011)C:MNT
L@\1 FORMAT(1RAA)
            WEITE(2, 1QEE)
IREQ FORMAT(//'START TIME')
            PEAD(1, 1&Q1)STTM
1QO! FOIMMAT(10A4)
            WRITE(2, 10Q2)
lore FOFMAT(//'SLEJ. NAME')
            FEAD(1,1QQ3) SBJIN:
10Q3 FORIAT(10A4)
            FENIND 8
            DO 100 NSSN1=1,4
            D0 1e1 NSSN2=1,4
            ISSN=(NSSN1-1)*4+NSSN2
            URITE(2, e巳1C)I SSN
2010 FORMAT('SESSION', I 3, 1X,'FEADY?')
            FEAD(1, 20QQ)A
2QED FORMAT(A4)
            CALL OUT4E(1)
C
C ******* PEE-TEIAL *******
C
2QG CALL INPAQ(IMES)
    IF(IPES.EG.B)GO TO 2OQ.
```

```
EXP.AS 1
    54:
    55:
    56:
    57:
    53:
    59:
    6E:
    61:
    62:
    63:
    64:
    65:
    66:
    67:
    63:
    69:
    70:
    71:
    72:
    73:
    74:
    75:
    76:
    77:
    78:
    79:
8E:
81:
82:
33:
84:
85:
36:
87:
38:
39:
9C:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104: 330E FORMAT('SESSION',I3, 1K,'ENDS.')
105: C
106: C ******** DATA STACK ROLTINE
```

t

```
EYP.A2 1
107: C
103: DO 4Q0 III=1,24
169: II2=1I 1+84
11C: FTSTKI(III)= RTT(II1)
111: FTSTH2(II1)=FTT(II2)
112: 4ee CONTINLE
113: GRITE(3,3ECC)FTSTK1
114: 3RCE FOFAAT(24F6.2)
115: NFITE(3,3QCO)FTSTKQ
116: 101 CONTINUE
117: 1月0 CONTINUE
119: CALL OWAFI
119: -WRITE(2,4000)
120: 4RQE FOPIAT(////,'ALL SESSIONS FINISHED'////
121: * 'END TIME ?')
122: FEAD(1,40®1)XENDT:
123: 4EE1 FORMAT(1RA4)
124: WEITE(6,4QE2) CMOJT, SEJNM, STTM,XENDTM
125: 4CQ2 FOPMAT(1H1////////5X, 1QA4//5X,'NAME OF THE SEJ.', 1GX, lQA4//
126: * 5K, STAFT TIME'/10X, 1QA4//
127: * 5K,'END TIME'/10K,1EA4)
123: C
129: C
130: C
131: PEWIND %
132: DO 600 NSSN1=1,4
133: DO 601 NSSN2=1,4
134: I SSN=(NSSN1-1)*4+NSSNS
135: WFITE(6,500C)ISSN
136: 50CE FOFHAT(1H1,5X,'SESSION NO. IS',I O//EX,'FOFEFEFICD',
137: * 5%,'REACTION TIME'//)
138: FEAD(8,3EQC)FTSTKI
139: PEAD(8,3000)PTSTK2
140: DO 602 III=1,24
141: II2=111+24
142: PTT(II|)=RTSTKI(II1)
143: RTT(II2)=RTSTK2(III)
144: 602 CO:JTINUE
145: DO 603 I STFL=1,48
146: I STRLI=(HSSN2-1)*4S+I STRL
147: IFSI=100
148: HCNTR=INTVLT(ISTRL1)
149: 605 IF(NCNTR.EQ.Q)G0 TO 6Q4
150: IFSI=IFIX(FLOAT(IESI)*1.3)
151: NCNTR=NCNTP-1
152: GO TO 605
153: 604 XIFSI=FLOAT(IFSI)*Q.01
154: WRITE(6,50Q1)XIRSI, RTT(I STPRL)
155: 5001 FOFMAT(4X,F5.2,' SEC.',7K,F7.2,' SEC.')
156: 6『3 CONTINUE
157: 6&1 CONTINLE
153: 600 CONTINUE
159: WPITE(6,5050)
```

```
EXP.AR I
    160: 5050 FOF|AT(1:%1////////////)
    161: STOF
    162: END
```

EXP.A3

```
            DIMENSION CMNT(10), STTM(10), SBJNM(10),XENDTM(10),
            * FTT(48),INTVLT(192),ISBT1(48),ISET2(48),
                    ISET3(48), I SBT4(48),RTSTK1(24), RTSTK2(24)
            EQUIVALENCE (INTVLT(1),ISBT1(1)),(INTVLT(49),ISET2(1)),
                (INTVLT(97),I 5BT3(1)),(INTVLT(145),ISBT4(1))
            DATA ISBTI/
            * 4,1,2,1,4,5,2,3,0,5,3,0,
            * 0, 5,1,1,2,3,2,4,3,5,4, ,,
            * R,3,2,3,1,0,5,4,2,4,1,5,
            * 0,3,5,0,1,5,1,4,2,3,2,4/
            DATA ISET2/
            * 5,2,4,4,3,1,5,3,1,0,0,2,
            * 3,5,4,5,1,3,2,0,4,1,0,2,
            * 1,0,3,3,5,4,5,4,0,2,2,1,
            * 3,4,1,1,0,2,5,4,3,2,5, 日/
            DATA ISBT3/
            * }\quad,2,5,5,3,3,|,4,1,4,2,1
            * 5,0,2,1,2,4,5,0,3,1,3,4,
            * 4, b,3,4,1,5,2,3,2,5,0,1,
            * 5,4,4,5,2,2,0,3,1,1,3, &/
            DATA ISET4/
            * 1,4,3,1,4,2,0,2,5,3,0,5,
            * 1,4,1,5,3,4,0,0,3,5,2,2,
            * 2,2,4,3,5,1,1,5,3,4,0,0,
                            * 5,5,1,3,4,3,0,2,2,4,0,1/
C
C
    CALL DFFILE
    WRITE(2,1016)
    1010 FORMAT(25(%),'COMMENT')
        READ(1,1011) CMNT
1011 FORMAT(1QA4)
    WRITE(2,1000)
    IEQ\emptyset FORMAT(//'START TIME')
        FEAD(1, 1QQ1)STTM
1EO1 FOFMAT(10A4)
        WEITE(2,1002)
    1002 FORMAT(//'SUEJ. NAME')
        READ(1,1003) SEJNM
1203 FOPMAT(1&A4)
        REVIND 8
        DO 10D NSSN1=1,4
        DO 101 USSN2=1,4
        I SSN=(NSSN1-1)*4+NSSN2
        URITE(2,2010)ISSN
2010 FORMAT('SESSION',I 3, 1X,'READY?')
        READ(1, 2QOC)A
2000 FORMAT(A4)
        CALL OUTAb(1)
50: C
51: C ******* PRE-TRIAL *******
52: C
53: 206
    CALL INP4O(IRES)
```

```
EXP.A3 1
    54: IF(IFES.EG.0)GO T0 2Q0
    55: CALL INTLTM
    56:
    57:
    58:
    59:
    60:
    61:
    62:
    63:
    64:
    65:
    66:
    67:
    63:
    69:
    76:
    71:
    72:
    73:
    74: C
    75: C
    76:
    77:
    78:
    79:
    8l:
    81:
    82:
    83:
    84:
    85:
    86:
    87:
    88:
    89:
    90
    91:
    92
    93
    O4
    95:
    96:
    97:
    98
    99:
100: 500 CALL TMR(I 10MS,ISEC)
101: IF(I10MS.LT.50)GO TO 500
102: ISTRL=ISTRL+1
103: IF(ISTRL.LE.48)G0 T0 305
104: WRITE(2,3300)ISSIJ
105: 3300 FOBMAT('SESSION',I 3, 1X,'ENDS.')
106: C
```

```
EXP.A.3 1
    107: C ******** DATA STACK FOUTINE
    108: C
    1@9: DO 400 III=1,24
    11E: IIE=II1+24
    111: RTSTrid(II1)=RTT(II1)
    112: RTSTK2(II1)=FTT(II2)
    113: 4RC CONTINUE
    114: WIITE(8,30QE)ETSTK1
    115: 3ROC FOFNAT(24F6.2)
    116: WFITE(8,30QQ)RTSTK2
    117: 181 CONTINUE
    113: 100 . CONTINUE
    119: CELL OWARI
    120: WEITE(2,4ROE)
    121: 4RQ0 FOFMAT(////,'ALL SESSIONS FINISHED'////
    122: * 'EHD TIME ?')
    123: READ(1,4QQ1)XENDTM
    124: 40R1 F0F:AT(10A4)
    125: WPITE(6,40巴2)CMNT, SEJNM, STTM,XENDTM
    126: 40Q2 FORMAT(1H1///////5X, 1QA4//5X, 'NAME OF THE SEJ.', 1EX, 1QA4//
    127: * 5X,'STAFT TIME'/1EX,10A4//
    128: * 5X,'END TIME'/10X,10A4)
    129: C
    130: C
    131:
    132:
    133:
    134:
    135:
    136:
    137: 5QEQ FOFNAT(1H1,5X,'SESSION NO. I S',I 3//5X,'EOREFEFIOD',
    138:* * 5X,'REACTION TIME'//)
    139: READ(8,3@DB)RTSTK1
    140: PEAD(8,30Q0)RTSTM2
    141: DO 602 III=1,24
    142: I I 2=III+24
    143: RTT(III)=RTSTKI(III)
    144: RTT(II2)=RTSTK2(II1)
    145: 60: CONTINUE
    146: DO 603 I STPL=1,48
    147: I STRLI=(NSSN2-1)*48+I STRL
    148: IPSI=284
    149: NCNTR=INTVLT(ISTRLI)
    150: 605 IF(NCNTF.EG.Q)G0 TO 604
    151: IRSI=IFIX(FLOAT(IPSI)*I. 2)
    152: NCNTR=NCNTE-1
    153: GO TO 6Q5
    154: 604 XIRSI=FLOAT(IRSI)* O.DI
    155: WRITE(6,5EQI)YIRSI,RTT(I STRL)
    156: 50Q1 FOFMAT(4X,F5.2,'SEC.',7X,F7.2,'SEC.')
    157: 603 CONTINUE
    158: 601 CONTINUE
    159:600 CONTINUE
```

```
EXP.A3 1
    160: VFITE(6.5050)
    161: 5050 FORIAT(1H1////////////)
    162: STOP
    163: END
```

1 ,
r

APPENDIX B

The programs for experiment II.

The program for $\mathrm{S}-\mathrm{L}$ condition.

EXP.E1 1

```
C
C ******* MAIN FROGRAM
        DIMENSIOH INTVLT(400);
    * ISETI(1QQ),ISET2(IDQ),ISET3(IQQ),ISET4(1QR)
    EGUIUALENCE (INTULT(1),ISBTI(1)),(INTVLT(101),ISBT2(1)),
    * (INTVLT(201),ISET3(1)),(INTVLT(301),ISBT4(1))
        DATA ISETI/
    * 1,2,9,9,3,8,7,6,6,3,4,0,5,4,0,7,2,5,8,1,
    * 3,4,7,5,2,1,7,9,0,2,6,8,5,3,9,4,8,6,1, 2,
    * 2,2,9,6,7,4,1,5,9,5,6,8,4,3,3,1,8,6,7,0,
    * 9,3,2,5,7,8,5,2,0,3,7,0,8,1,6,9,6,1,4,4,
    * 8,1,2,0,4,6,7,9,1,3,5,7,4,6,0,3,9,2,5,81
    DATA. ISET2/
    * 4,8,5,6,0,5,9,7,0,3,9,7,3,1,2,4,2,1,8,6,
    * 8,2,0,9,3,5,7,1,9,1,0,8,2,5,4,3,4,7,6,6,
    * 4,7,5,2,9,6,0,4,1,8,3,5,9,6,8,0,3,7,2,1,
    * 7,8,0,4,0,2,6,7,1,6,5,1,5,3,8,9,3,4,2,9,
    * 4,8,0,5,9,1,3,6,7,1,0,6,2,8,7,5,3,4,9,21
    DATA I SBT3/
    * 1,7,7,9,4,6,3,5,3,0,2,9,1,2,5,6,4,0,8,8,
    * 9,6,8,6,7,5,0,8,8,5,4,3,1,7,4,2,1,3,2,9,
    * 7,6,9,3,5,2,6,9,4,1,8,8,5,1,4,7,3,2,8,8,
    * 1,4,0,0,6,8,3,3,5,8,7,1,2,9,2,7,4,5,6,9,
    * 3, Q,2,0,1,6,6,8,7,1,9,4,4,9,5,3,2,5,8,7/
    DATA ISET4/
    * 4,5,9,3,2,1,0,6,3,2,1,4,5,7,8,9,6,8,8,7,
    * 1,6,4,2,3,2,3,5, 6,6,5,4,\ell,9,7,8,1,0,7,8,
    * . 6,4,6,4,7,8, 2,5,2,3,1,1, 8,9,7,9,5,8,2,3,
    * 1,5,7,2,8,4,7,3,6,8,0,2,9,3,1,4,5,6,8,9,
    * 9,0,4,0,9,2,6,7,1,3,2,4,8,6,7,3,5,5,1,8/
C
C
    CALL DFFILE
    CALL SUBI(INTVLT)
    CALL SUB2(INTULT)
    STOP
    END
C
C
C
    SUBROUTINE SUBI(INTVLT)
    C
        DIMENSION INTVLT(4QQ), CMNT(10), STTM(10), SBJNM(10), XENDTM(10
        * fitt(lQe)
        WRITE(2,1610)
    1010 FOPMAT(25(/),'COMMENT')
        READ(1,1011)CMNT
1E11 FORMAT(10A4)
    WHTTE(2, 10QE)
    IDQE FORMAT(//'START TIME')
        READ(1, 1RQ1)STMM
```

EXP.E1

```
IRQI FORAAT(1EA4)
    VFITE(2,1E@2)
    1022 FORMAT(//'SUEJ. NAME')
        READ(1, 1EE3)SEJINM
    1003 FOFMAT(10A4)
        FEMIND %
        DO 100 INSSNR=1,2
        DO 1EO NSSNI=1,3
        DO 101 1.SSN2=1,4
        ISSN=(NSSN&-1)*12+(NSSN1-1)*4+NSSN2
        UPITE(2,2010)15SN
    2010 FOFMAT('SESSION',I 3, M,'READY?')
        READ(1,20EO)A
    2CDC FOFMAT(AL)
        CALL OUTAR(1)
    C
    C ******* PRE-TRIAL *******
    C
    2RQ CALL INF4Q(IRES)
        IF(IPES.EG.E)GO TO 2QQ
        CALL INTLT:A
        CALL OUT4B(D)
    23@ CALL TME(IIDMS,I SEC)
        IF(IIDHS.LT.50)GO TO 230
        DO 210 1 1=1.2
    202 CALL TMP(I 10NS,I SEC)
        IF(IIGMS.LT.5Q)GO TO 2G2
        CALL INP4O(IPES)
        IF(IPES.NE.0)GO TO 201
        IF(I1GMS.LT.20E)GO TO 202
        CfilL OUTAE(1)
    203 CALL INP4E(IRES)
        IF(IRES.EQ.0)EO TO 2&3
        CALL OUTAB(B)
    201 CALL INTLTM
    2!日 CDNTINUE
    C
    C ******** MAIN TRIALS **********
    C
        I STRL= 1
    305 ITAL=(NSSN2-1)*100+ISTFL
        NCNTR=INTVLT(ITRL)
        IF(NSSN|.EQ.1)CALL STINTI(NCNTR,IRSI)
        IF(NSSNQ.EQ. 2)CALL STINT2(NCNTR,IRSI)
    310 CALL TME(I IOMS,ISEC)
        IF(IID:AS.LT.50)GO TO 310
        301 CALL INF4O(IRES)
        CALL T:MR(IIOMS,I SEC)
        IF(IRES.NE.Q)GO TO 300
        IF(IIEMS.LT.IRSI)GO TO 301
        GO TO 302
    3QDं FTT(ISTRL)=FLOAT(I 1QUS+10CO)*Q.Q1
    GO TO 303
```

```
EXP\cdotE1 1
```

```
1E7: 302 CALL OLITAE(1)
```

1E7: 302 CALL OLITAE(1)
108: C\&LL INTLTM
108: C\&LL INTLTM
109:384 CALL INF4C(IRES)
109:384 CALL INF4C(IRES)
110: CALL TMR(I1@MS,ISEC)
110: CALL TMR(I1@MS,ISEC)
111: IF(IRES.EG.e)GO TO 3e4
111: IF(IRES.EG.e)GO TO 3e4
112:
112:
113:
113:
114:
114:
115:
115:
116:
116:
117:
117:
118:
118:
119:
119:
120: C
120: C
121: C
121: C
122:
122:
123:
123:
124: 100 CONTINLE
124: 100 CONTINLE
125: 19e CONTINUE
125: 19e CONTINUE
126: CALL OWAFI
126: CALL OWAFI
127: WAITE(2,4QEO)
127: WAITE(2,4QEO)
128:
128:
129:
129:
130:
130:
131:
131:
132:
132:
133:
133:
134:
134:
135:
135:
136:
136:
137: C
137: C
138: C
138: C
139:
139:
140:
140:
141:
141:
142:
142:
143:
143:
144:
144:
145:
145:
146:
146:
147:
147:
148:
148:
149:
149:
150:
150:
151:
151:
152:
152:
153:
153:
154:
154:
155: 5001 FOFMAT(4X,F5.2,' SEC.',7X,F7.2,' SEC.')
155: 5001 FOFMAT(4X,F5.2,' SEC.',7X,F7.2,' SEC.')
156: 603 CONTINUE
156: 603 CONTINUE
157: 601 CONTINUE
157: 601 CONTINUE
158: 600 CONTINLE
158: 600 CONTINLE
159: 690 CONTINUE

```
159: 690 CONTINUE
```

```
EXP.B1 1
160: MFITE(6.5Q5巳)
161: 5&50 FONMAT(1H1///////////)
162: RETUFN
163: END
164: C
165: C
166: C
167: C
168:
169: C
17e: IF(NCNTR*(NCNTF-1)*(NCNTR-2).EG.G)IRSI=1@Q
171: _ IF(NCNTR-EC*3)IRSI=13R
172: IF((NCNTR-4)*(NCNTR-5)*(NCNTR-6).EG.6)IFSI=169
173: IF(NCNTR.EG.7)IRSI=219
174: IF(NCNTR.EG.8)IRSI=254
175: IF(NCNTR.EQ.9)IRSI=369
176: RETURN
177: END
178: C
179: C
180: C
131: C
182: SUEFOUTINE STINT2(NCNTR,IRSI)
183: C
184: IF(NCNTR\cdotEQ.0)IRSI=100
185: IF(NCNTR.EQ.1)IRSI=130
186: IF(NCNTR.EQ.2)IRSI=169
187: IF((NCNTR-3)*(NCNTF-4)*(NCNTR-5).EG.G)IFSI=219
188: IF(NCNTR.EQ.6)IRSI=284
189: IF (NCNTR-7)*(NCNTF-3)*(NCNTR-9).EG.E)IRSI=369
190: RETURN
191: END
192: C
193: C
194: C
195: C
196:
197:
198:
199:
200:
201:
2C2:
203:
204:
205:
206:
207:
208:
209:
210: 2eQO FORMAT(IEX,'SESSION NO. IS 'sI5///
211: , * 5X,'( & )',6X,'( 1 )',6X,'( 2 )',6X,'( 3 )',
212: * 6K,'(4)',6K,'( 5 )'/
```

EXF.B1 1

```
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
233:
239:
240:
241:
242:
243:
244:
245:
246:
247:
243:
249:
250:
251:
252:
253: 350 1105=N05+
254: RRT5(NO5)=RT
255: GO TO 360
256: 340 NO4=NO4+1
257: RRT4(NO4)=RT
258: GO TO 360
259: 330 NO3=NO 3+1
260: FFFT3(NO3)=RT
261: . GO TO 360
262: 320 NO2=NO2+1
263: RRT2(NO2)=RT
264: GO.TO 360
265: 310 NOI=NOI+1
```

```
EXP.B1 1
    266: PRT1(NO1)=RT
    267: 360 CONTINUE
268: 300 CONTINUE
269: DO 400 I 1=1,10
270: UFITE(6,4COC)RRTO(I1),FET1(I1),RRT2(I1), RRT3(I1),
271: * FRT4(I1),FRTS(I1),RRT6(I1),RRT7(I1),
272: * FRTG(I1),FRT9(I1)
273: 4000 FOBMAT(5X,F6.2,5(6X,F6.2)/2X,4(6X,F6.2))
274: 4@@ CONTINUE
275: WPITE(6,40E1)
276: 4RO1 FORMAT(////////)
277: 101 CONTINUE
273: 100 CONTINLE
279: 102 CONTINUE
28G: WRITE(6,44QQ)
231: 44E0 FOFMAT(1H1///////////////////)
282: FETUNN
283: END
```

The program for L-S condition.


```
1CE1 FORAAT(1Q&4)
    WFITE(2,1002)
    1CE2 FORMAT(//'SUEJ. NAI'E')
        PEAD(1, 1C03) SBUNM
        1EQ3 FONMAT(1EA4)
        FEWIND g
        DO 19@ NSSNO=1,2
        EO 1ED NSSNL=1,3
        DO 101 NSSN2=1,4
        ISSN=(NSSN(-1)*12+(NSSN1-1)*4+NSSN2
        WEITE(2,201G)ISSN
    201&. FORMGT('SESSION',I 3, IX, 'READY?')
        FEAD(1,2000)A
    2RQQ FOFMAT(AA)
        CALL OLT4OC(1)
    C
    C ******* PRE-TRIAL *******
    CRO CALL INF4Q(IfES)
        IF(IPES.EG.G)GO TO 2RQ
        CALL INTLTM
        CALL OUTAE(B)
    23@ CALL TMR(I|OMS,ISEC)
        IF(I10MS.LT.50)GO TO 230
        DO 2!@ I I= 1, e
    2C2 CALL T:IR(IlQ:MS,ISEC)
        IF(IIOMS.LT.5@)GO TO 202
        CALL INP4E(IRES)
        IF(IRES.NE.E)GO TO 2RI
        IF(IIQMS.LT-2&G)GO TO 202
        CELL OUT4C(1)
    ED3 CALL INP4Q(IFES)
        IF(IFES.EQ.G)GO TO 203
        CALL OUTAO(E)
    201 CALL INTLTM
    210 CONTINUE
    C
    C ******** MAIN TRIALS **********
    C
        ISTRL=1
    305 ITPL=(NSSN2-1)*1QE+ISTRL
        NCNTR=INTVLT(ITIBL)
        IF(NSSNQ.EG.1)CALL STINT2(NCNTR,IRSI)
        IF(NSSND.EQ.2)CALL STINTI(NCNTR,IISI)
    310 CALL TMR(IIQMS,ISEC)
        IF(I10MS.LT.50)GO TO 318
        3el CALL INF4O(IFES)
            CALL THR(IIGMS,ISEC)
            IF(IRES.NE.Q)GO TO 3QO
            IF(IIQ4S.LT.IFSI)GO TO 301
            GO T0 302
3Q0 RTT(ISTRL)=FLOAT(I 10AS+10QQ)*Q.RI
            GO TO 303
```

```
EXP.E2
    1E7: 3R2 CALL OLTAC(1)
    108: CALL INTLTA
    109: 304 CALL INP4O(IFES)
    11E: CPLL TMF(IIEMS,ISEC)
    111: IF(I\GammaES.EG.C)CO TO 3@4
    112: ETT(ISTPL)=FLOAT(I 1QMS)*E.E1
    113: 3&3 CALL OUT4@(0)
    114: CALL INTLTM
    115: ISTFL=I STRL+1
    116: IF(ISTPL.LE.1QQ)GO TO 3&5
    117: VRITE(2,33E0)ISSN
    118: 33&E FORMAT("SESSION',I 3, 1X,'ENDS.')
    119: C
    12R: C ******** DATA STACK ROUTINE
    121: C
    1ع2:
    123
    CONTINLE
    124: 102 CONTINLE
    125: 190 CONTINLE
    126: CALL OUAPI
    127: NFITE(2,4DCO)
    128:
    129:
    13C:
    131:
    132:
    133:
    134:
135:
    136:
    137: C
    138: 6
    139:
    14年:
    141:
    142:
    143:
    144:
    145:
    146:
    147:
    148:
    140:4
    15e:
    151:
    15民:
    153:
    154:
    155: 5EQ1 FOFHAT(4X,FE.2,' SEC.',7X,F7.2,' SEC.')
    156: 603 CONTINLE
    157: 6&1. CONTINUE
    158: 6RQ COHTINLE
    159: 69e CONTINLE
```

```
EXF.ES 1
    160: WFITE(6,5050)
    161: 5RSQ FOFIfT(1H1///////////)
        RETLEN
    163: EIDI
    164: C
    165: C
    166: C ****** SET INTERVAL ********
    167: C
    168:
    160:
    17Q:
    .171:
    172:
    173:
    174:
    175:
    176:
    177:
    178:
    179:
    180: C
    181: C
    182:
    183:
    184:
    185:
    186:
    187:
    188:
    189:
    190:
    191:
    192: C
    193: C
    194: C
    195: C
    196:
    197:
    198:
    199:
200:
201: C
202:
203:
204: 1000 FORMAT(1H1, SX, 'DATA ARRANGED'///////)
205: DO 1Q2 ISTFE=1,2
206: DO leQ ISTPl=1,3
207: DO 1R1 ISTF2=1,4
208:
209:
210: 2000 FORMAT(10X,'SESSION NO. IS ',IS///
211: * 5K,'( 0 )',6X,'( 1 )',6X,'( 2 )',6X,'( 3 )',
212: * 6K,'(4)',6X,'( 5 )'/
```

```
    EXF.EQ 1
    213:
    214:
    215:
    216:
    217:
    218:
    219:
    2&&:
    221:
    222:
    223:
    224:
    225:
    226:
    227:
    228:
    229:
    230:
    231:
    232:
    233:
    234:
    235:
    236:
    237:
    2.38:
    239:
    240:
    241:
    242:
    243:
    244:
    245:
    246:
    247:
    248:
    249:
    250:
    251:
    252:
    253:
    254:
    255:
    256:
    257:
    258:
    259:
    26&:
261:
262:
263:
264:
265:
```

```
*
```

* 8X,'(6)',6X,'(7)',6X,'(8)',6X,'(9)'//)
8X,'(6)',6X,'(7)',6X,'(8)',6X,'(9)'//)
READ(8)RTT
READ(8)RTT
HO R=\square
HO R=\square
NO 1=0
NO 1=0
NO2=Q
NO2=Q
NO 3=0
NO 3=0
NO4=e
NO4=e
NO5=\varnothing
NO5=\varnothing
106=e
106=e
N07=\varnothing
N07=\varnothing
N08=Q
N08=Q
N09= 吕.
N09= 吕.
DO 30E I 1=1,100
DO 30E I 1=1,100
ITRL=(ISTFR-1)*1RQ+I|
ITRL=(ISTFR-1)*1RQ+I|
NTECK=INTVLT(ITPL)
NTECK=INTVLT(ITPL)
RT=RTT(II)
RT=RTT(II)
IF(NTRCK.EG.9)GO TO 390
IF(NTRCK.EG.9)GO TO 390
IF(NTPCK.EQ.8)GO TO 380
IF(NTPCK.EQ.8)GO TO 380
IF(NTRCK.EG.7)GO TO 370
IF(NTRCK.EG.7)GO TO 370
IF(NTACK.EG.6)GO TO 366
IF(NTACK.EG.6)GO TO 366
IF(NTFCK.EQ.5)G0 TO 350
IF(NTFCK.EQ.5)G0 TO 350
IF(NTFCK.EG.4)GO TO 340
IF(NTFCK.EG.4)GO TO 340
1F(NTRCK.EO.3)GO TO 330
1F(NTRCK.EO.3)GO TO 330
IF(NTACK.EG.2)GO TO 320
IF(NTACK.EG.2)GO TO 320
IF(NTFCK.EG.1)GO TO 310
IF(NTFCK.EG.1)GO TO 310
NOE=NOO+1
NOE=NOO+1
RFTQ(NOQ)=FT.
RFTQ(NOQ)=FT.
GO TO 360
GO TO 360
NO9=NO9+1
NO9=NO9+1
RRT9 (NO9)=RT
RRT9 (NO9)=RT
GO T0 36B
GO T0 36B
NOB=N08+1
NOB=N08+1
RFT8(NOB)=RT
RFT8(NOB)=RT
GO TO 36@
GO TO 36@
NO7=NO7+1
NO7=NO7+1
RNT7(NO7)=ET
RNT7(NO7)=ET
GO TO 360
GO TO 360
NO6=N06+1
NO6=N06+1
ABTG(NO6)=RT
ABTG(NO6)=RT
GO TO 360
GO TO 360
NO5=NO5+1
NO5=NO5+1
RRT5(NO5)=RT
RRT5(NO5)=RT
GO TO 36%
GO TO 36%
NO4=NO4+1
NO4=NO4+1
RRT4(NO4)=RT
RRT4(NO4)=RT
G0 T0 360
G0 T0 360
NO 3=NO3+1
NO 3=NO3+1
RFT 3 (NO3) = RT
RFT 3 (NO3) = RT
GO T0 36\&
GO T0 36\&
NO2:NO2+1
NO2:NO2+1
FRTZ(NOE)=F:T
FRTZ(NOE)=F:T
GO TO 36\&
GO TO 36\&
NO1=NO1+1

```
        NO1=NO1+1
```

```
EXP.EQ
    1
    266: FFT1(NO1)=FT
    267: 360 CONTINLE
    26.8: 300 CONTINUE
    269: DO 400 I 1=1,18
    278:
    271:
    272:
    273:
    274: 4QE CONTINLE
    275: WRITE(6,4EE1)
    276: 4001 FOFMAT(////////)
    277: lQ1 CONTINUE
    278:10e CONTINLE
    279: 1Q2 CONTINUE
    280: WEITE(6,44C0)
    281: 44EQ FOFMAT(1H1///////////////////)
    282: FETUFN
    283: END
```


APPENDIX C

The program for experiment III.

SRTEXP 1

```
54: STOP
55: END
```

SRTEXP 2

```
1:
2:
3:
4:
5:
6:
7:
8:
9:1000
10:
11:
12:
13: WRITE(8)ISTM,XRT
14: RETUFN
15: END
```

SRTEXP
3

2:
3:
4:
5:
6:
7:
8:
9:

```
1000. FORMAT('BLOCK 2...READY ?')
```

CPLL BLKO(ISTM,XPT)
CALL FL2
REWIND 8
WRITE(8)ISTM, XRT
RETURN
END

SRTEXP

1:
2: 3: 4: 5:

4
SUBROUTINE ELK 3
DIMENSION ISTM (100), XPT (10θ)
DATA ISTM/1, $4,1,0,0,4,4,3,1,0,4,2,1,1,4,1,2,1,4,4$, * $\quad 3,4,2,2,2,4,2,0,0,1,2,3,0,3,3,1, \theta, 2,0,1$, * $4,4,0,1,4,2,0,2,4,0,2,0,0,3,1,2,4,3,4,3$, * $\quad 3,2,3,3,0,2,3,1,1,4,2, \theta, \theta, 1,3,2,3,3, \theta, 1$, * $\quad 3,1,2,0,4,0,2,3,4,3,3,4,2,1,4,8,3,2,1,1 /$ WRITE(2, 1000)
1000 FORMAT ('BLOCK 3...READY ?')
CALL BLK $\cap(I S T M, X R T)$
CALL FL3
REWIND 8
WEITE(8) I STM, XET
RETURN
END

SRTEXP
5

```
            SUBROUTINE BLK4
            DIMENSION ISTM(100), XRT(10日)
```



```
            * 2,1,0,1,3,2,0,4,4,4,4,0,1,1,3,0,1,3,3,0,
            * 3,1,2,4,3,2,2,3,4,0,1,3,0,3,4,2,2,2,3,1,
                2,0,1,3,2,0,1,4,2,2,4,3,1,0,3,0,4,2,3,0,
                        2,2,4,1,3,4,4,1,2,4,1,1,1,3,0,2,3,2,3,0,
            WRITE(2,1000)
1DRD FOFMAT('BLOCK 4...READY ?')
            CALL BLKO(ISTM,XRT)
            CALL FL4
            REWIND 8
            WRITE(8) I STM, XRT
            RETURN
            END
```

SRTEXP
6

SRTEXP ' 7

```
SUBROUTINE BLK6
    DIMENSION ISTM(100), XRT(100)
    DATA ISTM/4, 1, 3, 4, 1, 1,4,4, 1,2,2,0,2,1,2,1,0,4,4,0,
        * 1,4,0,4,1,2,3,2,1,0,2,2,3,1,0,4,0,4,3,3,
    * 4, 1, 0,4,0,3,2,1,3,1,1,3,0, 0,4,3,1,3,2,2,
    * }\quad0,3,1,2,3,3,0,3,4,2,2,1,4,2,4,3,4,3,3,1
    * 0, 0, 3,2,0,0,2,0,1,2,3,1,3,4,0,2,4,4,0,21
        WRITE(2,1000)
    1000 FORMAT('BLOCK 6...READY ?')
        CALL BLKO(ISTM,XRT)
        CALL FLG
        REWIND 8
        WRITE(8)ISTM, XRT
        RETURN
        END
```


SRTEXP 8

```
1: SUBROUTINE BLK7
DIMENSION ISTM(100), XRT(10|)
    DATA I STM/0,2,0,1,1,4,4,3,3,0,2,0,1,4,2,0,1,0,3,2,
    * 3,3,3,3,3,2,4,3,4,0,2,1,2,4,1,0,1,3,0,2,
    * b, 1, 1, 1,2,3,4,1,4,3,2,1,2,1, 0,4,3,2,4,1,
    * 2,0,0,3,3,1,3,1,0,1,4,0,0,1,2,4,3,0,4,4,
    WRITE(2,1000)
    1000 FOPMAT('BLOCK 7...READY ?')
    CALL BLKD(ISTM,XRT)
    CALL FL7
    REWIND 8
    WRITE(8)ISTM, XRT*
    RETURN
    END
```


SRTEXP 9

```
C
DIMENSION ISTM(10\emptyset),XRT(1Ø日)
C
1QO1 FORMAT(Aム)
100 CALL INPAO(IRES)
IF(IRES.EQ. Ø) GO TO 100
CALL INTLTM
101 CALL TMR(I 10MS,I SEC)
IF(I10MS.LT.,50).GO TO 101
CALL OUT4Q(128)
102 CALL INP41(IRES)
IF(IRES.EQ.D)GO TO 102
CALL OUT40(曾
DO 110I1=1,2
CALL INTLTM
111 CALL TMR(IIOMS;ISEC)
IF(ISEC-LT.2)GO TO 111
CALL OUT40(128)
112 CALL INP41(IRES)
IF(IRES.EQ. Ø) GO TO 112
CALL. OUT4O(\emptyset)
110. CONTINUE
DO 200 I 2=1.100
CALLL INTLTM
I21=ISTM(I2)
ITI=100
201 IF(I21.EQ. Ø)GO TO 211
ITI=IFIX(FLOAT(ITI)*1.3)
I2I=I21-1
GO TO 201
211. CALL. TMR(IIOMS.ISEC)
IF(I1gMS.LT.ITI)GO TO 211
CALL OUT4O(128)
CALL INTLTM
212 CALL INP41(IRES)
CALL. TMR(I|EMS,ISEC)
IF(IRES.EQ.Q)GO.TO 212
CALL OUT4Q(D)
XRT(I2)=FLOAT(I 1 GiNS)/1\varnothing\emptyset.\emptyset
2ØD CONTINUE
CALL OWARI
RETURN
END
```

1:		SUBROUTINE	DTANL 1
$2:$	C		
3:		DIMENSION	ISTM (10日), XRT(100)
4:	C		
5:		CALL FLI	
$6:$		REWIND 8	
7:		PEAD (8) I STM	, XRT
8:		WRITE(6, 100	
9:	1000	FORMAT (1H1,	$10 \mathrm{X}, \mathrm{D}$ DTA OF BLOCK 1'///
10:		* 1X,5	('ITI RT(SEC) '),//)
11:		CALL DTANL \emptyset	(ISTM, XRT)
12:		RETURN	
13:		END	

SRTEXP 11

$$
2:
$$

$$
2: 0
$$

$$
3:
$$

SUBROUTINE DTANL2 DIMENSION ISTM $(1 \emptyset \theta), X R T(10 \theta)$

CALL FL2
REWIND 8 READ (8) I STM, XRT WRITE(6,1000)
1000 FORMAT (1H1, 10X, 'DATA OF BLOCK 2'/// * 1X,5('ITI RT(SEC) '), /1)

CALL DTANLD(ISTM,XRT) RETURN END

SRTEXP 12

SUBROUTINE DTANL3
: C
DIMENSION ISTM (100),XRT(100)
C
CALL FL 3
REWIND 8
READ (8) ISTM, XRT
WRITE 6,1000$)$
100D. FOPAAT (1H1,10X, 'DATA OF BLOCK 3'///

* $\quad 1 \mathrm{X}, 5$ (1TTI RT(SEC) 1) $1 / 1$)

CALL DTANL $日(I S T M, X R T)$
RETURN
END

SRTEXP 13

```
C
C
    CALL FL4
    REWIND 8
    READ(g)I STM, XRT
        WRITE(6,1000)
100\emptyset FORMAT(1H1,10X, 'DATA OF ELOCK 4'///
        * 1X,5('ITI RT(SEC) '),//)
        CALL DTANLO(ISTM&XRT)
        RETURN
        END
```

14

C
DIMENSION ISTM(10D), XRT(100)
C
CALL FLS
REWIND 8
$\operatorname{READ}(8)$ I STM, XRT
WRITE 6,1000$)$
$100 \emptyset$ FORMAT (1H1, 1 QX,' DATA OF BLOCK 5'///
1X,5('ITI RT(SEC) '),//)
CALL DTANLQ(ISTM, XRT)
RETURN
END

SRTEXP 15

```
C
C •
```

SUBROUTINE DTANL6
DIMENSION ISTM (10日), XRT(10ロ)
CALL FLG
REWIND 8
READ (8) I STM, XRT
WRITE(6, 1000)
100D FORMAT (IH1, 10X, 'DATA OF BLOCK 6'///

* $1 \mathrm{X}, 5$ ('ITI RT(SEC) '),//)

CALL DTANLD(ISTM, XRT)
RETURN
END

```
SRTEXP 16
```


SRTEXP

```
        SUBROUTINE DTANLO(ISTM,XRT)
C
        DIMENSION ISTM(1\varnothingC),XRT(1QQ),XITI(5),XTEL(5,5,10),
        *
C
        DO 100 I 1=1,20
        DO 110 I 11=1,5
        J1=(I1-1)*5+I 11
        XXRT(I11)=XRT(J1)
        KSTM=1Ø0
        KSTP=ISTM(J1)
112 IF(KSTP.EQ.G)GO TO 111
        KSTM=IFIX(FLOAT(KSTM)*1.3)
        KSTP=KSTP-1
        GO TO 112
111 XSTM(I|1)=FLOAT(KSTM)/100.0
110 CONTINUE
        WRITE(6,110\ell)(XSTM(J1),XXRT(J1),JI=1,5)
1100 FORMAT(1X,5(F5.2;F6.2,3X))
100 CONTINUE
C
C
        DO 2@Q I 2=1,5
        DO 201 121=1,5
        DO 202 1 22=1,10
        XTEL(I2,I 21, 1 22)=99999.9
202 CONTINUE
        JTBL(I2,I21)=0
201 CONTINUE
200 CONTINUE
        K 2=1 STM(1)+1
        D0 210 I 2=2,100
        Kl=K2
        K2=ISTM(I2)+1
        JTBL(K1,K2)=JTBL(K1,K2) +1
        K3=JTBL(K1,K2)
        XTBL(K1,K2,K3)=XRT(I2)
210 CONTINUE
        KITI=100
        DO 300 I 3=1,5
        XITI(I3)=FLOAT(KITI)/100.0
        KITI=IFIX(FLOAT(KITI)*I.3)
300 CONTINUE
        WPITE(6,2#DD)
2Q@D FORMAT(1H1,5X,'CONTINGENCY TABLES')
        DO 40\emptyset I 4=1,5
        WFITE(6, 2100)XITI(I4), (XITI(J4),J4=1,5)
2100 FORMAT(///15X,'FT''S FOR',F5.2,1X,'SEC, FP'//
    * 12X,'CONTINGENT ON PREVIUOS FP''S.'//
    * 10X,5(F5.2,' SEC.')//)
    WFITE(6,2&GQ)((XTBL(JK 1,I 4,JK2),JK 1= 1,5),JK 2=1,1D)
2200 FOFMAT(10(18X,5(F5.2,5X),1))
40D CONTINUE
```


SATEXP 17

54: C
55: C
56:
RETURN
57:
END

- 141 -

APPENDIX D

The programs for experiment IV.

- 142 -

The program for the continuous(in session 1)-then-discrete(in session 2) condition.

```
SRT.C.D 1
2: 0
C *
C * MAIN PROGRAMM *
C *
C. *
C *
C *
C *
C *
C *
C
C
C
C
C
C
C
C
CALL OUT4Q(0)
        CALL OUT41(Q)
        WPITE(2, 120Q)
12&O FORMAT(//'CONTINUOUS-DISCFETE CONTEXT CONDITION.'//)
        WFITE(2,10QC)
1QEQ FORMAT('SUBJECT NAME ?')
        READ(1, 110Q)A1
1100 FORMAT(15A4)
        WFITE(2,130E)
1300 FOPMAT('START TIME ?')
        FEAD(1,11CE)A3
        CfLL BLKIC
        CALL BLK2C
        CALL BLK3C
        CALL BLK4C
        CALL ELK5C
        WFITE(2, 4EQQ)
40GG FORMATC///'CONTEXT WILL CHANGE.'/
            * 'ATTENTION PLEASE !'//)
            CALL BLKGD
            CALL BLK7D
            CALL ELK8D
            CALL BLK9D
            CALL BLKAD
        WFI TE(2,14QD)
1400 FORMAT('END TIME ?')
        READ(1,1100)A4
        WFITE(6,2Q00)A1,A3,A4
    2000 FOPMAT(1H1,10(/),10X,
            * '**** CONTINUOUS-DISCRETE CONTEXT ****'
            * ///,3(18X,15A4//))
            CALL DTANL 1
```

SRT.C.D 1

54:		CALL DTANL 2
55:		CALL DTANL 3
56:		CALL DTANL 4
57:		CALL DTANL 5
58:		CALL DTANL 6
59 :		CALL DTANL 7
68:		CALL DTANL 8
61:		CALL DTANL9
62:		CALL DTANLA
63:		WFITE $6,30 \mathrm{CO})$
64:	3000	FOEMAT (1H1, 10(/))
65:		STOP
66:		END

SRT.C.D 2

SRT.C.D 3

```
SUBROUTINE BLK2C
    DIMENSION ISTM(100), XRT(10\emptyset)
    DATA ISTM/0,1,1,0,2,0,4,4,1,3,3,1,0,1,1,3,0,1,2,3,
                                    2,1,2,2,3,3,3,0,2,1,4,0,4,2,2,1,4,3,2,0,
                                    0,4,2,1,4,4,1,3,2,0,2,1,0,3,0,4,4,2,4,3,
                                    2,1,1,1, ,, 2,4,4,3,3,1,3,3,0,0,2,1,3,4,2,
                                4,1,3,4,2,3,3,1,4,2,0,2,0,4,4,0,3,4,0,0,
            WRITE(2,1000)
            1000 FORMAT('BLOCK 2...READY ?')
            CALL ELK@C(ISTM,XRT)
                            CALL FL2
                            REWIND 8
                            WHITE(B)ISTM, XRT
                            RETURN
                            END
```

SRT•C.D 4

```
    SUBROUTINE ELK3C
    DIMENSION ISTM(100), XRT(100)
    DATA ISTM/1,4,1,0,0,4,4,3,1,0,4,2,1,1,4,1,2,1,4,4,
    * 3,4,2,2,2,4,2,0,0,1,2,3,0,3,3,1, , 2, ,, 1,
    * 4,4,0,1,4,2,0,2,4,0,2,0,0,3,1,2,4,3,4,3,
    3,2,3,3, ,, 2,3,1,1,4,2,0,0,1,3,2,3,3,0,1,
    3,1,2,Q,4, 日, 2,3,4,3,3,4,2,1,4,0,3,2,1,1/
    WRITE(2,1000)
10DD FORMAT('BLOCK 3...READY ?')
    CALL ELK@C(I STM, XRT)
    CALL FL3
    REWIND 8
    WRITE(8)ISTM, XRT
    RETURN
    END
```

 SFT.C.D 5
 | 1: | | SUBROUTINE BLK4C |
| :---: | :---: | :---: |
| 2: | | DIMENSION I STM (100), XRT (100) |
| 3: | | DATA ISTM/ D, 0, 0, 3, 4, 3, 4, 6, 2, 4, 1, Q, 1, 4, 4, 4, 0, 1, 1, 2, |
| 4: | | * $2,1,0,1,3,2,0,4,4,4,4, \theta, 1,1,3,0,1,3,3, \theta$, |
| 5: | | * . $3,1,2,4,3,2,2,3,4,0,1,3,0,3,4,2,2,2,3,1$, |
| 6: | | * $2,0,1,3,2,0,1,4,2,2,4,3,1,0,3,0,4,2,3,0$, |
| 7: | | * $2,2,4,1,3,4,4,1,2,4,1,1,1,3,0,2,3,2,3, \mathrm{E} /$ |
| 8: | | WRITE(2, 1000) |
| 9: | 1000 | FORMAT ('BLOCK 4...READY ? ') |
| 10: | | CALL ELKDC(ISTM, XFT) |
| 11: | | CALL FLA |
| 12: | | RENIND 8 |
| $13:$ | | WRI TE(8)ISTM, XRT |
| 14: | | RETUPN |
| 15: | | END |

```
SRT.C.D 6
1: SUEROUTINE BLK5C
2:
3:
4:
5:
6:
7:
8:
9:1
1C:
11:
12:
13:
14:
15: END
```

SRT.C.D 7
1:
SUBROUTINE BLKGD
DIMENSION ISTM (10日), XFT(10(0)
DATA ISTM/4, 1, 3, 4, 1, 1, 4, 4, 1, 2, 2, 0, 2, 1, 2, 1, 0, 4, 4, 0,
* $1,4,0,4,1,2,3,2,1,0,2,2,3,1,0,4,0,4,3,3$,
* $4,1,0,4,0,3,2,1,3,1,1,3,0,0,4,3,1,3,2,2$,
* $\quad 0,3,1,2,3,3,2,3,4,2,2,1,4,2,4,3,4,3,3,1$,
* $\quad \theta, 0,3,2,0, \theta, 2,0,1,2,3,1,3,4, \pi, 2,4,4, \theta, 21$
WRITE(2,1000)
$100 \emptyset$ FORHAT('BLOCK 6...READY ?')
CALL BLK日D (ISTM,XRT)
CALL FL6
REWIND 8
WRITE(8)ISTM, XRT
RETURN
END

```
SRT.C.D 8
```

```
1: SUBROUTINE ELK7D
3:
4:
5:
6:
7:
8:
RITE(2,10Q0)
100\emptyset FOPMAT('ELOCK 7...READY ?')
CALL BLKOD(ISTM,XRT)
    CALL FL7
    REWIND }
    WRITE(8)ISTM,XRT
    RETURN
    END
```

SRT.C.D 9

```
SUBROUTINE BLK8D
    DIMENSION ISTM(10®),XRT(100)
    DATA ISTM/2,4,2,4,2,1,1,2,4,4,2,2,1, 日, 2, 日, 1,3,3,0,
    * 4, , 3,2,4,2,2,3,4,1,4,1,1,0,1,3,1,3,0,1,
    * 2,3,2,1,4,0,2,1,3,3,1,2,4,4,1,2,4,0,4,1,
    * 0, 4,4,1,3,4, 日, 1,3,0,0,3,0,0,3,0,2,4,3,1,
    * 2,3,0,2,1,0,2,2,0,3,4,3,1,4,3,4,0,0,3,31
    WRITE(2,1000)
1000 FOFMAT('BLOCK 8...READY ?')
    CALL BLKOD(ISTM,XFT)
    CALL FL8
    REWIND 8
    WRITE(8)ISTM, XRT
    RETURN
    END
```

SRT.C.D 10

1:		SUBROLTINE BLK9D
2:		DIMENSION I STM ($10 Q)$, XRT (10θ)
3:		DATA ISTM/ $1,3,2,1,4,3,4,4,1,4,4,3,4,0,0,1,3,4,2,2$,
4:		$3,0,2,4, \pi, \theta, 1,1,3,3,4,4,0,3,1,0,0,4,0,0$,
5:		$2,3,2,3,0,2,4,4,2,2,4,0,2,1,2,3,2,0,1,1$,
6:		$1,3,1,1,1,2,2,0,4,0,0,1,1,4,4,1,0,3,2,2,1$
7:		* $2,3,0,3,1,3,3,1,4,1,0,0,2,3,2,3,4,3,4,2 \%$
8:		WRITE(2, 1000)
9:	1000	FOPMAT ('BLOCK 9...READY ? ${ }^{\prime}$
10:		CALL BLKOD(I STM, XRT)
11:		CALL FL9
12:		REWIND 8
13:		WRITE(8) I STM, XRT
14:		RETURN
15:		END

SRT.C.D 11

1:		SUBROUTINE ELKAD
2:		DIMENSI ON I STM (100), XRT (100)
3:		DATA ISTM $3,1,4,2,3,4,4,4,1,0,0,2,0,3,0,2,0,2,1,3$,
4:		* $\quad 0,0,3,1,1,0,4,4,0,1,2,2,4,2,3,0,0,3,0,4$,
5:		* $3,1,2,4,0,3,4,4,2,0,2,1,3,1,1,3,0,3,1,1$,
6:		* $0,4,4,2,0,2,3,4,4,1,0,2,0,4,4,4,2,2,2,3$,
7:		* $3,2,3,2,1,3,1,4,1,4,1,3,2,1,3,2,3,2,1,1 /$
$8:$		WRITE 2,1000$)$
9:	1000	FOPMAT ('BLOCK 10...READY ? ${ }^{\text {() }}$
10:		CALL ELKOD(ISTM, XRT)
11:		Call fla
12:		REWIND 8
13:		WRITE(8) IS TH, XFT
14:		FETURN
15:		END.

```
SFT.C.D12
```

```
C
```

C
C
C
1ED1 FORMAT(AS)
1ED1 FORMAT(AS)
100 CALL INF4Q(IRES)
100 CALL INF4Q(IRES)
IF(IRES.EQ.G)GO TO 100
IF(IRES.EQ.G)GO TO 100
CALL INTLTM
CALL INTLTM
101 CALL TMR(I|0MS,ISEC)
101 CALL TMR(I|0MS,ISEC)
IF(I10MS.LT.50)GO TO 101
IF(I10MS.LT.50)GO TO 101
CALL OLTT4O(128)
CALL OLTT4O(128)
102 CALL INP41(IRES)
102 CALL INP41(IRES)
IF(IRES.EG•0)GO TO le2
IF(IRES.EG•0)GO TO le2
CALL OUT4O(O)
CALL OUT4O(O)
DO 110 1 1= 1,2
DO 110 1 1= 1,2
CALL INTLTM
CALL INTLTM
111 CALL TMR(IIRMS,ISEC)
111 CALL TMR(IIRMS,ISEC)
IF(ISEC.LT.2)GO TO 1111
IF(ISEC.LT.2)GO TO 1111
CALL OUT40(128)
CALL OUT40(128)
112 CALL INP4I(IRES)
112 CALL INP4I(IRES)
IF(IFES.EQ.E)GO TO 112
IF(IFES.EQ.E)GO TO 112
CELL OUT4E(G)
CELL OUT4E(G)
110 CONTINUE
110 CONTINUE
DO 200 I 2=1,100
DO 200 I 2=1,100
CALL INTLTM
CALL INTLTM
I21=ISTM(I2)
I21=ISTM(I2)
ITI=100
ITI=100
2Q1. IF(I21.EG.0)GO TO 211
2Q1. IF(I21.EG.0)GO TO 211
ITI=IFIX(FLOAT(ITI)*I\cdot3)
ITI=IFIX(FLOAT(ITI)*I\cdot3)
I 2.1=I21-1
I 2.1=I21-1
GO TO 201
GO TO 201
211 CALL.TMR(I|OMS,ISEC)
211 CALL.TMR(I|OMS,ISEC)
IF(I10MS.LT.ITI)GO TO 211
IF(I10MS.LT.ITI)GO TO 211
CALL OUT4E(128)
CALL OUT4E(128)
CALL INTLTM
CALL INTLTM
212 CALL INP4I(IRES)
212 CALL INP4I(IRES)
CALL TMF(I IGMS.ISEC)
CALL TMF(I IGMS.ISEC)
IF(IRES.EG.0)GO TO 212
IF(IRES.EG.0)GO TO 212
CALL OUT4O(E)
CALL OUT4O(E)
XRT(I2)=FLOAT(I 10MS)/100.0
XRT(I2)=FLOAT(I 10MS)/100.0
2RD CONTINUE
2RD CONTINUE
CALL OWARI
CALL OWARI
RETURN
RETURN
END

```
    END
```

```
SRT.C.D 13
    SUBROUTINE BLKED(ISTM,XFT)
    C DIMENSION ISTM(1DD),XRT(1EQ)
C
1001 FOPMAT(A4)
        DO 110 I 1=1,2
        CALL BUZZER
        CALL INTLTM
111 CALL TMR(I |OMS,ISEC)
        IF(ISEC.LT.2)GO TO 111
        CALL OUT4Q(128)
112 CALL INF4I(IRES)
        IF(IRES.EQ.Q)GO TO 112
        CALL OUT4O(0)
110 CONTINUE
        DO 200 I 2=1, 100
        CALL BUZZER
        CALL INTLTM
        I2I=ISTM(I2)
        ITI=100
201 IF(I21.EQ.0)GO TO 211
        ITI=IFIX(FLOAT(ITI)*1.3)
        I21=121-1
        GO TO 201
211 CALL TMR(I 10MS,ISEC)
        IF(I|OMS.LT.ITI)GO TO 211
        CALL OLT4O(128)
        CALL INTLTM
212 CALL INPA1(IRES)
        CALL TMR(I|DMS,ISEC)
        IF(IRES.EQ. Ø) GO TO 212
        CALL OUT4Q(G)
        XRT(I2)=FLOAT(I|OMS)/100.0
        CONTINUE
        CALL OWARI
        RETURN
        END
```

SRT.C.D 14

```
            SUBROUTINE BUZZER
            CALL INTLTM
300 CALL TMF(I104S,I SEC)
            CALL INPAO(IRES)
            IF(IRES.NE.0)GO TO 400
            IF(I|0.S.LT.50)GO TO 300
            CALL INTLTM
                CALL OUT41(128)
100 CALL TMF(IIOMS,ISEC)
            CALL INF4O(IRES)
            IF(IRES.NE.0)GO TO 400
                IF(I|0MS.LT. 20)GO TO 100
                CALL OUT41(0)
                CALLL INTLTM
                CALL TMP(I10MS,ISEC)
                CALL INP4O(IGES)
                IF(IRES.NE.0)GO TO 400
                IF(IICMS.LT.10)GO TO 500
                CALL INF40(IRES)
                IF(IRES.EG.\emptyset)GO TO 2DD
                    RETURN
C
400 CALL INP40(IRES)
                CALL OUT41(128)
                IF(IRES.NE.0)GO TO 40\emptyset
                CALL INTLTM
                    CALL. THR(IIOMS,I SEC)
                IF(ISEC.LT.5)GO TO 410
                GO TO 420
C
END
```

```
SRT.C.D15
```

1:		SUBROUTINE DTANL1	
2:	C	DIMENSION ISTM ($10 \theta)$, XRT (100)	
3:			
4:	C		
5:		CALL FLI	
6:		REWIND 8	
7:		READ (8) I STM, XRT	
8:		WRITE(6,1000)	
9:	1000	FORMAT (1H1,	10x, 'DATA OF BLOCK 1'///
10:		* 1X,5	5(ITI RT(SEC) ') $2 / /$)
11:		CALL DTANL	(ISTM, XRT)
12:		RETURN	.
13:		END	

SRT.C.D
 16

SFT. C.D 17

1:		SUBROUTINE DTANL 3
2:	C	
3:		DIMENSION ISTM (100), XRT(100)
4:	C	
5:		CALL FL 3
6:		REWIND 8
7:		READ (8) I STM, XRT
8:		WRITE 6,1000$)$
$9:$	1000	FORAAT ($1 \mathrm{Hl}, \mathrm{10X}, \mathrm{'DATA} \mathrm{OF} \mathrm{ELOCK} \mathrm{3'///}$
10:		* 1X,5('ITI RT(SEC) '), //)
11:		CALL DTANL D(I STM, XRT)
12:		RETURN
13:		END

```
SFT.C.D 13
```

SUBFOUTINE DTANL4
2: C
DIMENSION ISTM(1R0);XRT(1Q0)
C
5: CALL FL4
6: REWIND 8
7: \quad READ (8)ISTM,XET
3: VRITE(6,1600)
9: 1000 FORMAT (1HI.1EX, 'DATA OF BLOCK 4'///
10: *
CALL DTANLO(ISTM, XRT)
RETURN
END
SRT.C.D 19
1: . SUBROUTINE DTANL 5
C
DIMENSION ISTM (100), XRT(100)
C
CALL FL. 5
FEUIND 8
READ (8) I STM, XRT
WRITE 6,1000$)$
1000 FORMAT (1H1, 10 X, 'DATA OF BLOCK 51///
* 1X,5('ITI RT(SEC) 1), //)
CALL DTANL O(ISTM, XRT)
RETURN
END

SRT.C.D $2 \emptyset$


```
SRT.C.D 21
    1: SUBROUTINE DTANL7
    2: C
    DIME:NSION ISTM(1Q日), XRT(100)
C
        CALL FL7
        REWIND 8
        READ(8)ISTM,XRT
        WRITE(6, 1000)
        10G0 FOFMAT(1H1,10X,'DATA OF BLOCK 7'///
        * 1X,5('ITI FT(SEC) '),//)
        CALL DTANL Q(I STM,XRT)
        RETUFN
        END
```

 SFT.C.D 22
 2: C
 C
 5:
 6:
 7:
 8:
 9:
 \(10:\)
 11:
 12:
 13:
 SUBROUTINE DTANL8
 DIMENSION ISTM(10日), XRT(100)
 - CALL FL8
 REWIND 8
 READ (8) ISTM, XRT
 WRITE(6, 1000\()\)
 1000 FORMAT (H1, $10 X$, DATA OF BLOCK 8'///
* 1 X •5('ITI $\operatorname{RT}(S E C) \quad$) $2 / 1)$
CALL DTANL O(ISTM, XRT)
RETURN
END
SRT•C•D 23
C
SUBROUTINE DTANL9
DIMENSION ISTM(100), XRT(100)
CALL FL9
FEKIND 8
PEAD (8) I STM, XRT.
WRITE $6,100 \mathrm{C})$
1000 FORMAT (1H1,1日X, DATA OF BLOCK 9'///
10: * \quad 1X,5('ITI RT(SEC) 1),//)
11: CALL DTANLD(ISTM, XRT)
12:
RETURN
END

SRT.C.D 24

1:		SUBROUTINE DTANLA
2:	C	
3:		DIMENSION ISTM (100), XRT(100$)$
4:	C	- ${ }^{\text {d }}$
5:		CALL FLA
6:		REWIND 8
7:		READ (8)ISTM, XRT
8:		WRITE 6, 1000)
9:	1000	FORMAT (1H1, 10X, 'DATA OF BLOCK 10'///
10:		* 1X,5('ITI RT(SEC) '), /1)
11:		CALL DTANL O(I STM, XRT)
12:		RETURN
13:		END

```
SET.C.D25
```

```
C
*
C
        DO 100 11=1,20
        DO 110 I 11=1,5
        J l=(I 1-1)*5+I 11
        XXRT(I11)=XRT(J1)
        KSTM=100
        KSTP=I STM(J1)
112 IF(KSTP.EO.0)GO TO 111
        KSTM=IFIX(FLOAT(KSTM)*1.3)
        KSTP=KSTP-1
        GO TO 112
111 XSTM(I|1)=FLOAT(KSTM)/100.0
110 CONTINUE
        WRITE(6,1100)(XSTM(J1),XXRT(J1),J I= 1,5)
1100 FORMAT(1X,5(F5.2,F6.2,3X))
100 CONTINUE
C
C
    DO 200 1 2=1,5
    DO 201 121=1,5
    D0 202 I 22=1,10
    XTEL(I2,I21,I22)=99999.9
202 CONTINUE
        JTBL(I 2,I21)=\emptyset
        CONTINUE
        CONTINUE
        K2=ISTM(1)+1
        DO 210 I2=2,100
        K1=K2
        K2=ISTM(I2)+1
        JTEL (K1,K2)=JTBL (K1,K2) +1
        K 3=JTEL(K1,K2)
        XTBL(K1,K2,K3)=XRT(I 2)
210 CONTINUE
        KITI= 100
        DO 3Q0 I 3=1.5
        XITI(I3)=FLOAT(KITI)/100.0
        KITI=IFIX(FLOAT(KITI)*1.3)
300 CONTINUE
        WEITE(6, 200E)
        FOFMAT(1H1,5X, 'CONTINGENCY TABLES')
        DO 4eE I 4= 1,5
        WRITE(6,2100)XITI(I4),(XITI(J4), J4=1,5)
2100 FORMAT(///15X,'RT''S FOR',F5.2, 1X,'SEC. FF'//
        * 12x,'CONTINGENT ON FREUILOS FF''S.'//
        * 1ex,5(F5.2,' SEC.')/1)
            WFITE(6,2200)((XTEL(JK1,I4,JK2),JK1=1,5),JK2=1,10)
2200 FORMAT(10(10X,5(F5.2,5X),1))
400 CONTINUE
```


SRT.C.D 25

54: C
55: C 56: 57:

RETURN
END

The program for the discrete(in session 1)-then-continuous(in session 2) condition.

SRT.D.C 1

SST. D.C 1	
54:	CALL DTANL 2
55:	CALL DTANL 3
56 :	CALL DTANL 4
57:	CALL DTANL 5
58:	CALL DTANL6
59 :	CALL ETANL 7
60:	CALL DTANL 8
61:	CALL DTANL9
62:	CALL DTANLA
63:	WFITE(6,3000)
64: 3000	FOEMAT (1H1, 10(/))
65:	STOP
66:	END

```
    SRT.D.C 2
        1:
        2:
        3:
        4:
        5:
        6:
        7:
        8:
        9:1
        18:
        11:
        12:
        13:
        14:
        15:
        10C0 FOFMAT('BLOCK 1...FEADY ?')
        *
        SUBROUTINE ELKID
        DIMEISSION ISTM(100),XRT (10日), 3,3,3,4,2,4,1,0,4,1,3,
        DATA IST:A/3,0,3,4,0,0,0,2,2,3,3,3,4,3,1,0,3,2,2,4,0,
        * 0,3,3,0,2,1,2,3,4,1,4,0,3, , , , , , 4, 4, , 4,4,0,
        * 1,3,2, , 1,2,4,0,4,4,3,4,3, , , , , , , 3,3,3,4,
        * 1,4,3,2,0,1,1,1,4,0,1, 3, , 1,0,0,2,3,1,11
        WFITE(2,1000)
        CALL FLI
        FEWIND 8
        WFITE(8)ISTM,XRT
        RETURN
        END.
        SRT.D.C 3
```


SRT。D.C 4

```
                                    SL:BROLTINE BLK3D
                                    DIMENSION ISTM(10G),XFT(100)
```



```
            * 3,4,2,2,2,4,2,0,0,1,2,3,0,3,3,1,0,2,0,1,
                    * 4,4, , 1,4,2,0,2,4,0,2,0,0,3,1,2,4,3,4,3,
                                    * 3,2,3,3,0,2,3,1,1,4,2,0,0,1,3,2,3,3,0,1,
                                    * 3,1,2, , 4,0,2,3,4,3,3,4,2,1,4,0,3,2,1,1/
                                    WRITE(2,10Q0)
10CD FOFMAT('ELOCK 3...READY ?')
                                    CALL BLKOD(ISTM,XFT)
                                    CALL FL3
                                    FEWIND g
                                    WEITE(8)ISTH,XRT
                                    RETURN
                            END
```

 SRT. D. C 5
 2: DIMENSION ISTM (1民O), XET(1QQ)
 3:
 DATA ISTA/Q, R, Q, 3, 4, 3, 4, 0, 2, 4, 1, Q, 1, 4, 4, 4, 0, 1, 1, 2,
 * \(\quad 2,1,0,1,3,2,0,4,4,4,4,0,1,1,3,0,1,3,3,0\),
 * \(3,1,2,4,3,2,2,3,4,0,1,3,2,3,4,2,2,2,3,1\),
 * \(2,0,1,3,2,0,1,4,2,2,4,3,1, R, 3,0,4,2,3, R\),
 * \(2,2,4,1,3,4,4,1,2,4,1,1,1,3,2,2,3,2,3\), e/
 WEITE(2, 10Ø0)
 1DCD FORIAT('ELOCK 4...FEADY ?')
 10: CALL ELKOD(ISTM,XRT)
 11: CALL FL4
 12: FENLHD 8
 13: WEITE(8)ISTM, XIT
 14: RETURN
 15: END
 SRT.D.C 6

SRT. D. C 7


```
SRT.D.C 9
```

```
    SUBROUTINE BLKOC
    DIMENSION I STM(1CO), XRT(100)
    DATA ISTM/2,4,2,4,2,1,1,2,4,4,2,2,1,0,2,0,1,3,3,0,
    * 4, , , 3,2,4,2,2,3,4,1,4,1,1, ,, 1,3,1,3,0,1,
    * 2,3,2,1,4,0,2,1,3,3,1,2,4,4,1,2,4, , , , 1,
    * 0, 4, 4, 1,3,4,0,1,3,0,0,3,0,0,3,0,2,4,3,1,
    * 2,3,0,2,1, , 2,2,0,3,4,3,1,4,3,4, (, a,3,3/
        WRITE(2,1000)
1020 FOPMAT('ELOCK B...FEADY ?')
    CALL ELKCC(I STM,XFT)
    CALL FL8
    REWIND 8
    WRITE(8)ISTM, XRT
    RETUFN
    END
```

SFT.D.C 10

2:
3:
4:
5:
6:
7:
8:
9 :
10:
11:
12:
13:
14:
15:

SUBFOUTINE BLK9C
DIMENSION ISTM (100), XRT(100)
DATA $I S T M / 1,3,2,1,4,3,4,4,1,4,4,3,4,0,8,1,3,4,2,2$, * $\quad 3, \pi, 2,4, \pi, 0,1,1,3,3,4,4, \pi, 3,1, \pi, \pi, 4,0, \pi$, $2,3,2,3,0,2,4,4,2,2,4,0,2,1,2,3,2,0,1,1$,
$1,3,1,1,1,2,2, C, 4, Q, \mathbb{Q}, 1,1,4,4,1,8,3,2,2$,
$2,3,2,3,1,3,3,1,4,1,0,8,2,3,2,3,4,3,4,21$
*
WRITE(2, 1000)
1000 FOFYAT('ELOCK 9...FEADY ?')
CALL ELKEC(ISTM, XRT)
CALL FL9
REUIND 8
WRITE(B)ISTM,XRT
FETUFN
END

SRT•D.C 1!

SRT. D.C 12

1:		SUBROUTINE ELKEC(ISTM, XRT)
2:	C	
3:		DIMENSION ISTM (100), XRT (100)
4:	C	
5:		FEAD (1, 1001)A
6:	1001	FOPMAT (A4)
7:	100	CALL INP4O(IRES)
3:		IF(IFES.EQ-0)GO TO 100
9:		CALL INTLTM
10:	101	CALL TMACI 1 GMS, ISEC)
11:		IF(I10i1S.LT. 50) GO TO 101
12:		CPLL OUT40(128)
13:	102	CALL INF4I(IRES)
14:		IF(IfES.EQ.E) GO TO 102
15:		CALL OUT4C(0)
16:		DO $11011=1,2$
17:		CALL INTLTM
18:	111	
19 :		IF(ISEC.LT.2)GO TO 111
26:		CALL OUT40(128)
21:	112	CALL INP41(IRES)
22:		IF(IFES.ER.0) GO TO 112
23:		CALL OLT $40(8)$
24:	110	CONTINUE
25:		D0 $20012=1,100$
26:		CALL INTLTM
27:		I2I=ISTM (I2)
28:		ITI=100
29:	201	IF(I21.EQ.E)G0 TO 211
30:		ITI=IFIX(FLOAT(ITI)*1.3)
31:		I $21=121-1$
32:		G0 TO 201
33:	211	CALL TMP(I 1 SMS,ISEC)
34:		IF(IIEMS.LT.ITI)GO TO 211
35:		CALL OUT40(128)
36:		CALL INTLTM
37:	212	CPLL INP41(IFES)
38:		CALL TMP(IIGMSIISEC)
39 :		IF(IRES.EG.e) GO TO 212
46:		Cfill OUT4E(e)
41:		XFT(I2) = FLOAT(I IDMS)/1QQ.Q
42:	200	CONTINUE
43:		CALL OWARI
44:		EETUFN
45:		END

SFT.D.C 13

```
BLKED(ISTM,XRT)
C DIMENSION ISTM(1QQ),XRT(10Q)
C
IOEl FORMAT(AS)
        LO 110 I 1= 1,2
        CALL ELZZZER
        CALL INTLTM
11! CALL TMF(I|MMS,ISEC)
        IF(ISEC.LT.2)GO TO 111
        CALL OLTT40(128)
112 CALL INFAI(IRES)
        IF(IFES.EQ.e)GO TO 112
        CALL OLIT4E(E)
110 CONTINUE
        DO 200 I 2=1,100
        CALL EUZZER
        CELL INTLTM
        I21=ISTM(I2)
        ITI=1Q |
201 IF(I21.EQ.Q)GO TO 211
        ITI=IFIX(FLO&T(ITI)*1.3)
        I 2 1=I 21-1
        GO TO 2&!
211 CALL TMF(IIRMS.ISEC)
        IF(I|MMS.LT.ITI)GO TO 211
        CALL OUTAE(128)
        CALL INTLTM
212 CALL INP4I(IRES)
        CALL TMR(I|OMS,ISEC)
        IF(IRES.EQ.Q)GO TO 212
        CALL OUT40(0)
        XRT(I2)=FLOAT(I1GMS)/10日.\emptyset
200 CONTINLE
        CALL OWARI
        FETCFN
        END
```

```
SRT.D.C 14
```

	SLBEROUTINE BUZZER CALL INTLTM
3C0	CALL TMF(IIGMS, ISEC)
	CALL INP4O(IRES)
	IF(IRES.NE. 2) GO TO 400
	IF(I10MS.LT. 50) GO TO 300
	CALL INTLTM
	CALL OUT41 (128)
100	CALL TMF(I 10.15 , I SEC)
	CALL INF4B(IRES)
	IF(IRES.NE. ©) GO TO 400
	IF(IIOMS.LT. 20)GO TO 100
420	CALL OLTA1(θ)
	CALL INTLTM
500	CALL TMR(I 1 QMS, ISEC)
	CALL INP40(IRES)
	IF(IRES.NE. 0) GO TO 400
	IF(I10MS.LT•10) GO TO 500
200	CALL INP40(IRES)
	IF(IAES.EQ. ©) GO TO 200
	RETUFN
C	
400	CALL INP4O(IRES)
	CALL OLT41 (128)
	IF(IRES.NE.0) GO TO 400
	CALL INTLTM
410	CALL. TMF(I 10 MS , ISEC)
	IF(ISEC.LT.5)GO TO 410
	GO TO 420
C	
	END

```
SRT.D.C
15
    1:
    2: C
2: C DIAENSION ISTM(1QO),XRT(1Q|)
4: C
5:
6:
7:
3:
9:
10:
11:
12:
13:
SUBROUTINE DTANL!
CALL FLI
FEVIND 8
READ(8)ISTM, XPT
WRITE(6,1808)
1QCD FOFMAT(1H1, 1QX, 'DATA OF BLOCK 1'///
* 1X,5('ITI FT(SEC) '),//)
CALL DTANLQ(ISTM,XRT)
RETURN
END
```

SRT. D.C 16

1:		SUBFOUTINE DTANLE
2:	C	
3:		DIMENSION ISTM (10®), XRT(100)
4:	C	
5:		CALL FL2
6:		PEWIND 8
7:		READ (8) I STM, XRT
8:		WRITE $6 ; 1000)$
9:	1000	FORMAT (1H1, 10X, DATA OF ELOCK 2'///
10:		* 1X,5('ITI RT(SEC) ') , /1)
11:		CALL DTANLG(ISTM, XRT)
12:		FETURN
13:		END.

SET.D.C 17

```
SUBFOLTINE DTANL. }
C
C
```

5:
6:
7:
8:
9:
10:
11:
12:
13:

SRT.D.C 18
SUEROUTINE DTANL 4
C DIAENSION ISTM(10日), XRT(100)
C
CALL FL4
RENIND 3 READ (8) ISTM, XRT WRITE $6,1 \mathrm{CE}$)
10CC FOFMAT(1H1,1EX, 'DATA OF ELOCK 4'/// * $\quad 1 X, 5(1 \mathrm{TI} \operatorname{ET}(S E C) \quad 1), 1 /)$

CALL DTANLE(ISTM, XET)
FETURN
END

SRT.D.C 19
SUBROLTINE ETANL 5
C
C
DIMENSION ISTA(1QD), XRT(1QQ)
CALL FLS
FEWIND 8
PEAD (8)ISTM,XFT
URITE(6,100C)
1000 FOEHAT(1H1, 10X, 'DATA OF BLOCK 5'///

* $1 \times, 5(1 \mathrm{ITI} \operatorname{ET}(S E C) \quad 1), / /)$

CALL DTANLO(I STM, XRT)
FETURN
END

SRT. D.C 20

C
DIMENSION ISTM(10Q), XFT(10Q)
C
CALL FL 6
REVIND 8
READ (8) ISTH, XRT
WEITE 6,1000)
10Q日 FOFIAT (1H1, 10X, 'DATA OF ELOCK 6'///

* 1K,5('ITI FT(SEC) '),//)

CALL DTANLE(ISTA, XET)
RETEFAN
END

SRT.D.C 21

1:	C	SUBROLTINE DTANL 7
2;		
3:		DIMENSION ISTM(10日), XFT(10Q)
4:	C	
5:		CALL FL 7
6:		REWIND 8
7:		READ (8)I STM. XFT
8:		WFITE $6,100 \mathrm{C})$
9:	1000	FORMAT (1H1, ICX, ${ }^{\text {' DATA }}$ OF BLOCK $71 / /$
1C:		* 1X,5('ITI RT(SEC) '), /1)
11:		CALL DTANL G(I STM, XET)
12:		FETUFN
13:		END

SRT. D. C 22
: $1:$ SUBROUTINE DTANL8
C DIAENSION ISTM(1EQ), XRT(1QE)
C
CALL FLB
REWIND 8
FEAD (8) I STM, XFT
VRITE 6,1000$)$
1000 FOFMAT(1H1, 10X, DATA OF ELOCK 8'///

11: CALL DTANLE(ISTM, XFT)
12: FETURN
13: END

SRT.D.C 23
.
$1:$
$2:$
C
SUBROUTINE DTANL9
DIMENSION I STM(100), XRT(100)
C
CALL FL9
FEWIND 8
FEAD (B)I STM, XRT
WRITE(6, 1000)
1000 FORMAT (1H1, 10X, 'DATA OF BLOCK 9'///

* 1Y,5('ITI RT(SEC) '), //)

CALL DTANLO(ISTM, YRT)
FETURN
END

1:		Stbrolitine dtanla	
2:	C		
3:		DIAENSION	$\operatorname{ISTM}(100), \mathrm{XRT}(100)$
4:	C		
5:		CALL FLA	
6:		FEWIND 8	
7:		$\operatorname{READ}(8)$ I STM	XFT
8:		WFITE(6, 10¢	
9:	10c0	FOPMAT (1H1,	10X, 'Data of ELOCK
10:		* 1X, 5	('ITI RT(SEC) ')
11:		Call dtanlb	(ISTM, XRT)
12:		RETUPN	
13:	.	End	

```
SRT.D.C
    2 5
```

```
C
        DIUENSION ISTM(10Q),XFIT(100),XITI(5),XTBL(5,5,10),
        *
        D0 100 I 1=1,20
        D0 110 I 11=1,5
        Jl=(I1-1)*5+I 11
        XXRT(I11)=XRT(J1)
        KSTM=100
        KSTP=1STM(J1)
112 IF(KSTP.EG.Q)GO TO 111
        KSTM=IFIX(FLOAT(KSTM)*1.3)
        KSTP=KSTP-1
        GO TO 112
111 XSTM(I|I)=FLOAT(KSTM)/10Q.Q
110 CONTINEE
        NRITE(6,11Q()(XSTM(J1),XXFT(J1),U1=1,5)
1100 FOFMAT(1X,5(F5.2,F6.2,3X))
100 CONTINLE
C
C
            D0 200 I 2=1,5
            D0 2e1 I 21=1,5
            D0 2e2 I 22=1,10
            XTEL(I2,I21,I 22)=99999.9
202 CONTINLE
            UTBL(I2,I21)=\varnothing
20』 CONTINUE
200 CONTINUE
            K2=1STM(1)+1
            DO 210 I 2=2,100
            KI=K2
            K2=ISTM(I2)+1
            JTBL (K1,K2)=JTEL(K1,K2)+1
            K3=\TBL(K1,K2)
            XTBL(K1,K2,K3)=XRT(I2)
210 CONTINUE
            KITI=1QO
            DO 300 I 3=1.5
            XITI(I 3)=FLOAT(KITI)/100.0
            KITI=IFIX(FLOAT(KITI)*1.3)
300 CONTINUE
            WRITE(6,2@00)
            2CEQ FOFMAT(IHI, SX, 'CONTINGENCY TAELES')
            LO 400 I 4=1,5
            NFITE(6, 2100)XITI(I4),(XITI (J4),J4=1,5)
2100 FORMAT(///15X, 'RT''S FOR',F5.2,1X,'SEC. FP'//
                            12X,'CONTINGENT ON PFEYILOS FP''S.'//
            * llaX, CONTINGENT ONT PFE
            WPITE(6, 2200)((XTEL (JK1,I 4,JK2),JK 1= 1, 5), JK2=1, 1C)
2200 FORMAT(1D(10Y,5(F5.2,5X),/))
40Q CONTINUE
```

```
SRT.D.C 25
    54: C
    55: C
    56:
57:
FETURN
END
```


APPENDIX E

The program for calculating the values in

Figures 6 and 7.


```
0606
Deste
0068021
00690
0 EPCO
907101
E4T20
69750100
607492620
04750
QUTE
E07TE
E0TB6
60790
06860
00819
9 eg 2 g
606se
00949
65E50 301
E060
60870
90608
048001
0690640
60310
66920
beso
Qetad E
06950
00969
( 3 E0G?
6906
60990
01060
61019 C
01020100
01EcS
61946
21056 20
(0) 0166
Q1076
01EES
0169 E
0116 C
G1110
() 91120
011.39
01140
() 01150
01160
01176
() E11E0
0115100
01204
0612150
0122020
01250
() 91249 C
01250
EHO
- KEDGOESEI EHO DF DATH SET
C \(E\)
- 179 -

REFERENCES

A11an,L.G.,Kristofferson,A.B. and Wiens,E.W. Duration discrimination of brief light flashes. Perception \& Psychophysics,1971,9,327-334.

Baumeister,A.A. and Joubert,C.E. Interactive effects on reation time of preparatory interval length and preparatory interval frequency. Journal of Experimental Psychology, 1969, 82, 393-395。

Björkman, M. and Holmkvist, 0 . The time-order error in the construction of a subjective time scale. Scandinavian Journal of Psychology,1960,1,7-13.

Blankenship,D.A. and Anderson,N.H. Subjective duration:

A functional measurement analysis. Perception \& Psychophysics,1976,20,168-172.

Cahoon, D. and Edmonds,E.M. The watched pot still won't boil: Expectancy as a variable in estimating the passage of time, Bulletin of the Psychonomic Society, 1980,16,115-116.

Christie,L.S. and Luce,R.D. Decision structure and time relations in simple choice behavior. Bulletin of Mathematical Biophysics,1956,18,89-112. ; Cited in Laming,
D.R.J. A new interpretation of the relation between choice-reaction time and the number of equiprobable alternatives. The British Journal of Mathematical and Statistical Psychology,1966,19,139-149.

Creelman, C.D. Human discrimination of auditory duration. The Journal of the Acoustical Society of America,1962,34,582-593. Curtis,D.W. and Rule,S.J. Judgment of duration relations: Simultaneous and sequential presentation. Perception \& Psychophysics,1977,22,578-584.

Eisler,H. Subjective duration and psychophysics. Psychological Review,1975,82,429-450.

Eisler, H. Experiments on subjective duration 1868-1975:

A collection of power function exponents. Psychological Bulletin,1976,83,1154-1171.

Ekman, G. Two generalized ratio scaling methods. The Journal of Psychology,1958,45,287-295.

Falmagne,J.C. Stochastic models for choice reaction time with applications to experimental results. Journal of Mathematical Psychology,1965,2,77-124.

Falmagne,J.C. Note on a simple fixed-point property of binary mixtures. British Journal of Mathematical \& Statistical Psychology,1968,21,131-132.

Falmagne,J.C. and Theios,J. On attention and memory in reaction time experiments. In W.G.Koster(Ed.) Attention and performance II, North-Holland Publishing Company,1969.

Falmagne,J.C., Cohen, S.P. and Dwivedi,A. Two-choice reactions as ordered memory scanning process. In P.M.A.Rabbitt and S.Dornič(Eds.) Attention and performance V, Academic Press,1975。

Getty,D.J. Discrimination of short temporal intervals: A comparison of two models. Perception \& Psychophysics, 1975,18,1-8.

Getty,D.J. Counting processes in human timing. Perception \& Psychophysics,1976,20,191-197.

Green,D.M. and Luce,R.D. Counting and timing mechanisms in auditory discrimination and reaction time. In D.H.Hrantz, R.D.Luce, R.C.Atkinson and P.Suppes(Eds.) Contemporary developments in mathematical psychology II. W.H.Freeman
and Company,1974.

Grice,G.R. Stimulus intensity and response evocation. Psychological Review,1968,75,359-373.

Grice,G.R. Conditioning and a decision theory of response evocation. In G.H.Bower(Ed.) The psychology of learning and motivation V. Academic Press,1972.

Grice,G.R. Information-processing dynamics of human eyelid conditioning, Journal of Experimental Psychology: General,1977,106,71-93

Grice,G.R., Nullmeyer,R. and Spiker,V.A. Application of variable criterion theory to choice reaction time. Perception \& Psychophysics,1977,22,431-449.

Grice,G.R. and Spiker,V.A. Speed-accuracy tradeoff in choice reaction time: Within conditions, between conditions, and between subjects. Perception \& Psychophysics,1979,26, 118-126.

Grice,G.R., Spiker,V.A. and Nullmeyer,R. Variable criterion analysis of individual differences and stimulus similarity in choice reaction time. Perception \& Psychophysics,1979, 25,353-370。

Hich,W.E. On the rate of gain of information. Quarterly Journal of Experimental Psychology,1952,4,11-26.; Cited in A.T.Welford Coice reaction time: Basic concepts; in A.T. Welford(Ed.) Reaction times. Academic Press,1980.

Hildreth,J.D. Bloch's law and a temporal integration model for simple reaction time to light. Perception \& Psychophysics, 1973,14,421-432.

Hildreth,J.D. Bloch's law and a Poisson counting model for simple reaction time to light. Perception \& Psychophysics, 1979,26,153-162.

Hornstein, A.D. and Rotter,G.S. Research methodology in temporal perception. Journal of Experimental Psychology,1969,79, 561-564.

Hyman, R. Stimulus information as a determinant of reaction time. Journal of Experimental Psychology,1953,45,188-196. Ida, M. The application of the Weibull distribution to the analysis of the reaction time data. Japanese Psychological Research,1980,22,207-212.

Kinchla, J. Duration discrimination of acoustically defined intervals in the 1 - to \(8-s e c\) range. Perception \(\&\) Psychophysics, 1972,12,318-320。

Kintsch, W. A response time model for choice behavior. Psychometrika,1963,28,27-32.

Klemmer, E.T. Simple reaction time as a function of time uncertainty. Journal of Experimental Psychology,1957,54, 195-200.

Kornblum, S. Simple reaction time as a race between signal detection and time estimation: A paradigm and model. Perception \& Psychophysics,1973,13,108-112.

Kristofferson,A.B. A real-time criterion theory of duration discrimination. Perception \& Psychophysics,1977,21,105-117.

LaBerge,D. A recruitment theory of simple behavior. Psychometrika, 1962,375-396.

Laming,D.R.J. A statistical test of a prediction from information theory in a card-sorting situation. Quarterly Journal of Experimental Psychology,1962,14,38-48.

Laming,D.R.J. A new interpretation of the relation between choice-reaction time and the number of equiprobable
alternatives. The British Journal of Mathematical and Statistical Psychology,1966,19,139-149。

Laming,D.R.J. Information theory of choice-reaction times. Academic Press,1968.

Link,S.W. The relative judgment theory of two choice response time. Journal of Mathematical Psychology,1975,12,114-135. Link,S.W. The relative judgment theory analysis of response time deadline experiments. In N.J.Castellan, Jr. and F.Restle(Eds.), Cognitive theory. John Wiley \& Sons,1978. Link, S.W. Improvements on a new model for choice reaction time. Perception \& Psychophysics. 1979,25,443-446. Link,S.W. and Heath,R.A. A sequential theory of psychological discrimination. Psychometrika,1975,40,77-105.

Luce,R.D. and Green,D.M. A neural timing theory for response times and the psychophysics of intensity. Psychological Review, 1972,79,14-57.

Lupker,S.J. and Theios,J. Tests of two classes of models for choice reaction times. Journal of Experimental Psychology:

Human Perception and Performance,1975,104,137-146.

Lupker,S.J. and Theios,J. Further tests of a two-state model. for choice reaction times. Journal of Experimental Psychology: Human Perception and Performance, 1977,3,496-504. Massaro,D.W. Target-mask similarity in backward recognition masking of perceived tone duration. Perception \& Psychophysics,1978,24,225-236.

McGill,W.J. Stochastic latency mechanisms. In R.D.Luce, R.R.Bush and E.Galanter(Eds.), Handbook of mathematical psychology I. John Wiley and Sons,Inc., 1963.

McGi11W.J. and Gibbon,J. The general-gamma distribution and reaction times. Journal of Mathematical Psychology, 1965,2,1-18.

Näätänen, R. The diminishing time-uncertainty with the lapse of time after the warning signal in reaction-time experiments with varying fore-periods. Acta Psychologica,1970,34,399-419.

Näätänen,R. Non-aging fore-periods and simple reaction time. Acta Psychologica,1971,35,316-327.

Näätänen,R. and Merisalo,A. Expectancy and preparation in simple reaction time. In S.Dornič(Ed.) Attention and performance VI. John Wiley \& Sons,1977.

Niemi, P. and Näätänen,R. Foreperiod and simple reaction time. Psychological Bulletin,1981,89,133-162。

Ollman,R. Fast guesses in choice reaction time. Psychonomic Science,1966,6,155-156.

Ollman,R. Choice reaction time and the problem of distinguishing task effects from strategy effects. In S.Dornič(Ed.), Attention and performance VI. John Wiley \& Sons,1977. Ollman,R.T. and Billington, M.J. The deadline model for simple reaction times. Cognitive Psychology,1972,3,311-336.

Pöppel,E. Time perception. In R.Held, H.Leibiwitz and H.Teuber (Eds.), Handbook of sensory physiology VIII. Springer-Verlag, 1978.

Smith,G.A. Studies of compatibility and a new model of choice reaction time. In S.Dornič(Ed.), Attention and performance VI, John Wiley \& Sons,1977.

Smith,G.A. Models of choice reaction time. In A.T.Welford(Ed.), Reaction times. Academic Press,1980.

Stone,M. Models for choice-reaction time. Psychometrika, 1960,25,251-260.

Swensson,R.G. On the relations between random walk models for two-choice response times. Journal of Mathematical Psychology,1977,15,282-291:

Theios, J: Reaction time measurements in the study of memory processes: Theory and data. In G.H.Bower(Ed.) The psychology of learning and motivation: Academic Press,1973.

Theios,J. and Smith,P.G. Can a twomstate model account for two-choice reaction-time data? Psychological Review,1972, 79,172-177.

Thomas,E.A.C. Reaction-time studies: The anticipation and interaction of responses. The British Journal of Mathematical and Statistical Psychology,1967,20,1-29.

Thomas,E.A.C. A note on the sequential probability ratio test. Psychometrika,1975,40,107-111.

Thomas,E.A.C. and Cantor,N.E. On the duality of simultaneous time and size perception. Perception \& Psychophysics, 1975,18,44-48.

Thomas,E.A.C. and Weaver,W.B. Cognitive processing and time perception. Perception \& Psychophysics,1975,17,363-367.

Treisman, M. Temporal discrimination and the indifference interval: Implications for a model of the "internal clock". Psychological Monographs: General and Applied, 1963,77 (whole no.576).

Treisman, M, What do sensory scales measure? The Quarterly Journal of Experimental Psychology,1964,16,387-391.

Welford,A.T. The measurement of sensory-motor performance: Survey and reappraisal of twelve years' process. Ergonomics,1960,3,189-230.

Welford,A.T. Choice reaction time: Basic concepts. In A.T.Welford(Ed.) Reaction times. Academic Press,1980. Yellott, Jr.,J.I. Correction for guessing in choice reaction time. Psychonomic Science,1967,8,321-322.

Yellott,Jr.,J.I. Correction for fast guessing and the speedaccuracy tradeoff in choice reaction time. Journal of Mathematical Psychology,1971,8,159-199.```

