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Synopsis

A numerical model is developed for extended Boussinesq equations expressed in
generalized curvilinear coordinate system. The model is applied to the study of solitary
wave propagation through curved channels. The effects of channel width and incident wave
height on the transmission and reflection properties are studied to understand the general
features of solitary wave propagation. The maximum wave run-up at the outer vertical wall
of channel is also investigated in order to estimate the possibility of wave overtopping at
channel bends. Our numerical results show that the maximum run-up depends on one single
dimensionless parameter proposed by Shi et al.(1998).
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1. Introduction

It is essential to understand the dynamics of
waves propagating in shallow water channels in
order to estimate the wave-overtopping quantity and
to make effective countermeasures against it. From
this point of view, the problems of solitary wave
propagation in straight channels have been studied
theoretically, experimentally and numerically by a
lot of researchers. On the contrary, only a few
research works can be found which treat the
propagation of solitary wave in curved channels.
From engineering aspects, however, rivers, harbors
and canals have often winding turns in direction. It
is therefore important to understand the features of
solitary wave propagation in curved channels.

In this paper, a numerical model is developed
for computing the propagation of shallow water
waves through channels of arbitrary shape. The

extended Boussinesq equations transformed into
generalized curvilinear coordinate system are
adopted as governing equations and are solved by
using finite difference method. The model is applied
to the study of long wave propagation in curved
channels. The properties of transmission and
reflection of a solitary wave are examined for a
circular channel of constant width and water-depth.
The effects of channel width and incident wave
height on maximum run-up at the outer channel wall
are investigated in detail. An attempt to correlate the
maximum wave rupn-up with a dimensionless
parameter is also made.

In the next chapter, the governing equations and
the necessary boundary conditions are summarized.
In chapter three, we explain the method of numerical
calculation. The numerical results for curved
channels are shown and discussed in chapter four.
Conclusions are summarized in chapter five.
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2. Mathematical Formulation
2.1 Governing Equations

The extended Boussinesq equations derived by
Nwogu(1993) are given in dimensionless form by
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where = surface elevation, k= local water depth,
u =(u,v ) = horizontal velocity at an arbitrary depth,
z. Two dimensionless parameters, which represent

+ul

the effects of dispersion and nonlinearity,
respectively, are defined as follows:
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where hy is the representative water depth, , is

the incident wave length and &, is the incident

wave amplitude, respectively, and over-bar denotes

dimensional quantities. The definitions of the non-

dimensional quantities are shown in Appendix.
These equations can be rearranged as
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are treated as simple variables in time-stepping
procedure. The remaining terms, £, Fand G,
are functions of £, w« and v that are defines as
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The constants a,, a,, b and b, are given by
a = B2/2-1/6,0y = B+1/2,b,=~B*/2,b, = B (13)
where 8 = z/h.

2.2 Coordinate Transformation

Since the precise expression of the channel
geometry is essential to accurately calculate the
wave propagation in curved channels, the following
coordinate transformation is introduced to fit the
numerical domain to the channel boundary:

x =x(&n) y =y(&n) (14)
where (x,y ) are variables in physical plane and
(&,n) are those in transformed (i.e. computational)

plane. From Eq.(14), we can write first order partial
derivatives in the following way:
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Applying these operators again to obtain second

derivatives yields
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where b; (i=13;j=12) are given by
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2.3 Boundary Conditions

Three types of boundary conditions are
necessary for the problem treated in this study;
namely (i) impermeable, reflective vertical wall; (if)
incident wave boundary; and (iii) transmitting
boundary. For each type of these boundaries, we
impose the following conditions which are proposed
by Wei and Kirby(1995).

For a general reflective boundary with an
outward normal vector n, we require
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in which u; is the velocity component tangent to
the boundary. At incident wave boundary, we
specify the entire signal of {and u from the
analytical solution of the extended Boussinesq
equations. Finally, the radiation condition combined
with wave damping layer is used at the transmitting
boundary.

3. Numerical Implementation

Wei and Kirby(1995) developed a high-order
numerical code for extended Boussinesq equations
in Cartesian coordinate system. In this study, we
slightly modified their numerical scheme and extend
it for generalized curvilinear coordinate system.

3.1 Time stepping procedure

A fourth-order predictor-corrector scheme is
adopted for time-stepping procedure. The predictor
step is the third-order explicit Adams-Bashforth
scheme (Press et al., 1989) given by
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where all information on the right hand side is
known from previous calculations. Although the
evaluation of & is straightforward, the evaluation
of uand v requires solutions of Eqs.(8) and (9),
that are described in generalized coordinates as
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These equations are finite-differenced and solved
numerically by using successive over relaxation
(S.0.R.) method. After obtained the predicted values
of surface elevation and horizontal velocities, the
corresponding derivatives in Eqs.(10) to (12) are
calculated from Eqs.(15) to (23).

The corrector scheme is the fourth-order
implicit Adams-Moulton method, which is given by
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The corrector step is iterated until the error between

two successive iterations reaches a required criterion.

The error is defined as
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in which f denotes each of the three dependent
variables, £, u, v ,and ()* denotes the previous
estimate. The corrector step is iterated if any of the
value of Af exceeds 0.0001. Then the same
procedure is applied to the next time step.

3.2 Spatial discretization
For first-order spatial derivatives, we adopt the
fourth-order central difference given by
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On the other hand, second-order spatial derivatives
are approximated by second-order central
differences that are described as
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All the equations are discretized on an unstaggered
grid.

3.3 Verification of the numerical scheme

In order to examine the accuracy of the
numerical scheme adopted in this study, we
investigate the propagation of a solitary wave in a
straight channel of constant depth and width. The
total length of the channel is set to be 100h and the
channel width is set to be 5h. A solitary wave is
generated at the left boundary according to the
analytical solitary wave solution derived by Wei and
Kirby(1995). The wave is transmitted at the right
boundary. The corresponding values of ¢ and g

are 0.3 and 0.071, respectively. For solitary waves,
we define the effective wave length A _ as the wave
length within which the wave elevation everywhere
is larger than 1% of its amplitude.

The spatial profiles of the solitary wave are
described in Fig.1 for various time instants. The
results shows that initial waveform undergo small
evolution, which results in a slightly (about 3%)
larger wave height. This is partially because the
analytical solution used at the incident boundary is
only asymptotically equivalent to the numerical
model. In fig.2, solitary wave profiles are compared
at two widely separated instances in time. The two
waveforms are translated by an amount predicted by
the analytical phase speed. The results show that the
wave propagates for a long distance (at least 50
water depths) without any distortion except for the
initial small evolution. The error in phase celerity
was found to be less than 0.6%. These results thus
validate the reasonably high accuracy of the
numerical scheme.
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Fig.l Spatial profiles of solitary wave at the
centerline of the channel for various time
steps
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Fig.2 Comparison of solitary wave shapes
at t=2.0 and t=5.0



4. Results and Discussions

The geometry of the curved channel model is
shown in Fig.3 schematically. In the numerical
simulations, all the channels have a circular corner
of constant inner radius of 10 water depths with the
upstream and downstream legs of 50 water depths in
length. The water depth and the channel width are
uniform throughout the channel. In the following,
the effects of relative channel width, W /h, , and the

incident wave nolinearity, &, on solitary wave
propagation are investigated in detail. The test
conditions are summarized in Table 1.

4.1 General Features of Transmission and

Reflection of Solitary Waves

The numerical results for a solitary wave of
small incident wave amplitude through a narrow
channel (Case A-1) are shown in Fig.4 (a)-(¢). These
figures show the evolution of the solitary wave at
various time instants through the circular bend.
When the incident wave arrives at the curved section,
the wave is nearly one-dimensional and the initial
wave profile is almost completely preserved. During
its passage through the bend, however, the wave tilts
higher outward against the outer wall. The difference
of wave height in radial direction keeps balance with
the centrifugal force. In such a case, the wave
propagates faster in outer region, because the phase
speed of the solitary wave increases with the
increase of its wave height. The increased phase
speed compensates for the increase of the
propagation length along the wall in outer region,
which result in radially straight crest line. After
passing through the bend, the wave recovers its
initial shape quickly to make the wave crest uniform

Outer Wall

Transmitting
Boundary

50h,

\Inner Wall

ﬁ,=l[ﬁ1—0

Incident
Boundary

Fig.3 Geometry of the curved channel

Table 1 Test conditions

CaseNo| & Wyih, u W/,

A-1 0.05 50 0032 016
A-2 0.10 50 0044 022
A3 0.15 50 0053 0.26
A4 0.20 50 0.060 0.30
A-5 0.25 50 0066 033
B-1 005 100 0.032 032
B-2 010 100 0.044 044
B-3 0.15 100 0.053 053
B4 020 100 0.060 0.60
B-5 025 100 0.062 0.66
C-1 005 200 0032 0.63
C-2 0.10 200 0.044 0.88
C3 0.15 200 0.053 1.06
C4 0.20 200 0.060 1.20
C-5 025 200 0.066 1.32

across the channel. It is seen from these results that
the solitary wave is almost completely transmitted
with little reflection in narrow circular channels.
These results are consistent with the works by Shi et
al.(1995) .

The numerical results for solitary wave of

incident wave amplitude =0.15 through the

channel with moderate width (Case B-3) are shown
in Fig.5(a)-(e). Just after the solitary wave enters
into the circular part, the wave tilts higher outward
against the outer wall. This shape is similar to the
one recognized in the narrow channel results. During
its passage through the bend, however, the
transmission and reflection of the solitary wave in
wider channel are different from those in narrow
channel. As the wave propagates through the
circular bend, the wave tends to diffract near inner
wall although the wave tends to travel straight near
outer wall. Consequently, the solitary wave becomes
no longer radially straight and the transmitted wave
loses its initial shape. The wave height of diffracted
wave decreases gradually as it travels. At the outer
wall, the wave height increases as the solitary wave
travels through the channel. The maximum wave
height is attained at the middle of the outer wall and
then the wave is reflected into inner region. After the
wave passed through the bend, the reflected wave
propagates toward the inner wall, As a result, the
wave height at the inner wall becomes higher, in turn.
The maximum wave height at the inner wall is,
however, much smaller than that attained at the outer
wall. Since the reflected wave propagates much
faster along the wall than the diffracted wave, the
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former catches up with the latter to merge into one
wave in the final stage of wave transformation. From
the comparison between the narrow channel results
and the results with moderate channel width, it is
found that the amplitude of the transmitted wave
decreases as the channel width increases.

Numerical results for the solitary wave of a
large wave height through wide channel (Case C-5)
are shown in Fig.6(a)-(h). These results are quite
different from those in narrow channels. The main
features seen in the moderate width case are
enhanced, namely we observe that the wave
transformation and the reflection at the outer channel
wall becomes much stronger in wide channel. The
maximum wave height at the outer wall reaches
almost 200% of the incident wave height in this
case.

When waves incident to a straight wall with
small incident angle, the regular type of reflection
gives way to another type of reflection, which is
called ‘Mach reflection’ (e.g. Tanaka;1993). In
Mach reflection, three kinds of waves are present
near the wall: the incident wave, the reflected wave
and a wave propagating along the wall called the
stem wave, The wave height of stem wave can grow
significantly along the wall. In the winding part of
curved channel, waves incident to the outer wall
with small angle, and therefore we may expect that
the same situation happens as mentioned above. The
situation for curved channel is, however, more
complicated because the geometry of the wall is not
straight and the incident angle increases gradually as
the wave propagates. According to the previous
works concerning the Mach reflection on a straight
wall, the development of Mach stem is limited in the
case of small incident angle. Hence, the gradual
increase of the incident angle to the wall may
prevent the Mach stem development. In addition,
Mach stem development is quite a slow phenomena
and therefore it takes very long time for Mach
reflection to be attained. For these reasons, it is
probable that the Mach reflection can be seen only in
very wide channels. The wave patterns shown in
Fig.6(d)-(f) are similar to the ones in Mach
reflection at the straight wall, but it cannot be
decided, at present, whether this may be called a
Mach reflection or not. Further investigations and
improvement of the numerical model to account for
the strong nonlinearity (e.g. extension to the fully
nonlinear Boussinesq equations (Wei et al.;1997)),
are necessary for precise discussion.

4.2 Maximum Wave Run-up at outer wall

It is very important to predict the maximum
wave height at channel walls in order to prevent the
wave overtopping from channels. In Fig.7, the
maximum wave height normalized by the incident
wave height is plotted as a function of ¢ for various
values of relative channel width. As ¢ increases,
the wave run-up gradually increases and asymptotes
to a constant value for each case. It is also seen that
the maximum wave height is an increasing function
of the channel width., We also investigated the
location at which the maximum wave height is
attained. The results are shown in Fig.8. In the case
of a narrow channel, the position gradually moves
downstream as ¢ increases. For wider channels,
however, the location is independent of ¢ and takes
almost the constant value of 48 degree and 53 degree,
respectively. In general, the location moves to the
downstream direction as the channel width
increases.

Shi et al.(1998) proposed a dimensionless
parameter,

a=W/2, (38)
which characterizes the solitary wave propagation in
straight channel with sharp-cornered bend. They
found that the transmission and reflection properties
of solitary waves in such channels depend on this
dimensionless parameter. It deserves consideration
whether this parameter is also effective for smoothly
curved channels or not. The maximum wave height
at outer wall is plotted against this parameter in
Fig.9. The result is correlated fairy well in this figure.
Based on the numerical results presented in Fig.9,
empirical formulas for predicting the maximum
wave height at the outer wall are obtained as
follows:
& pax = 0.79+1.56a - 0.48a> (39)

5. Conclusions

A high order numerical scheme was developed
for extended Boussinesq equations expressed in
generalized curvilinear coordinate system. By
applying it to the problem of solitary wave
propagation through curved channel, the following
results were obtained.

When a solitary shallow water wave propagates
through a narrow circular channel, the wave is
transmitted almost completely with little reflection.
The shape of the transmitted wave is almost the same
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(a) t=1.0 | (@) =33

(b)t=1.2 | - (b} =3.6

(c)t=1.4 o (¢} t=3.9

(=135 | (d) =42

(e)t=1.8 (e) t=4.5
Fig4 Wave elevation at different time instants Fig.5 Wave elevalion al different time instants
(Case A-1, £=0.05, W/k, =50) (Case B-3, £=0.15, W/h,=100)
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(a) =4.0 (e} t=5.2

(b) =44 H =54

© =48 ® =56

(d) =5.0 (h)y t=6.0
Fig.6 Wave elevation at different time instants Fig.6 Wave elevation at different time instants
(Case C-5, £=0.25, W /h,=200) (Case C-5, £=025, W/hy=200)
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Fig.9 Maximum wave height at outer wall against
the dimensionless parameter proposed by
Shi et al.(1998)

as that of the incident wave. This is consistent with
the results for long wave propagation in a narrow
curved channel by Shi et al. (1998) .

For solitary wave traveling through a wide

channel, the wave transformation is significant. In
this case, the transmitted wave no longer preserves its
original shape and disintegrates into several smaller
waves. This is due to the combined effects of the
diffraction at the corner and the lateral reflection
from the outer channel wall.

The maximum wave run-up at the outer channel
wall can reach almost 200% of the incident wave
amplitude for wide channel. These values can be
predicted fairly well with one dimensionless
parameter, which was originally proposed for the
straight channel with sharp-comered 90° bend by
Shi et al. (1998).

Finally, we mention that the numerical model
developed in this study is applicable to the channels
with more generalized geometry and bottom
topography. The treatments of regular and irregular
waves can also be made straightforward. Further
numerical investigations are being planned.
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Appendix Iy Ay

U= i, V= —V 41)
In this study, the non-dimensional variables are @0 V8ho @0 V8ho
defined as follows: £ Py
= oo hm—= (42)
— - - f Zh a h
x-—.’_i-,y-—z—,z--j——,t-—iq— (40) ° 0
%o 0 0 %o where g =gravitational acceleration; and over-bars

are used to denote dimensional valuables.
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