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Synopsis

Undetermined coefficient method is proposed to derive higher order schemes.
With this method, some famous schemes can be derived although their original
derivations are different from each other. A new scheme named as HAUCI is also
presented using this method. Stability and accuracy of the new scheme are analyzed by
comparing the computed results with exact solutions of 1-D pure convection equation
and Burgers' equation. Effectiveness of the HAUCI is also examined by comparing with
the results using other schemes. Finally, it is applied to simulate 1-D dam break flow with
different ratios of initial upstream water depth to downstream one. It shows that the
scheme has the ability to simulate both undular bore and moving hydraulic jump well.

Keywords: higher order scheme; undetermined coefficient method; dam break flow;
undular bore; moving hydraulic jump

1. Introduction

With the development of modern numerical
methods and practical needs for more efficient
simulation, higher order scheme is becoming more
and more important in solving practical problems.
Because one of the most difficult problems in the
numerical simulation of flow is the treatment of
convection terms in the momentum equations, one
dimensional convection equation is usually used as
a model equation for the assessment of accuracy.
Among numbers of the higher order schemes,
Holly-Preissmann (Holly & Preissmann, 1977)
established a third order scheme, that uses an
explicit three point interpolation polynomial with
Courant number as a parameter. In the interpolation
polynomial, terms of first order derivatives are
introduced. Yang-Cunge (Yang & Cunge, 1989)
developed a fifth order scheme, introducing both
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first and second order derivatives into the
interpolation polynomial. Komatsu and others
developed several higher order schemes (Komatsu
et al , 1992). In their latest research (Asai et al,
1998), extra terms of higher order derivatives are
introduced in the original equation to offset the
second to fourth order numerical diffusion terms
resulted from Crank-Nicolson scheme, and they
obtained an implicit scheme which has fourth order
accuracy. There are many other methods on this
subject. Most of them have their own special
technique in the derivation. But, a universal
derivation method which will simplify the
establishment of higher order accuracy scheme is
not available yet. In this paper, the undetermined
coefficient method which can be used to establish
various order schemes is presented, and accuracy of
a new scheme derived using this method is checked
and compared with some of the previous methods.



The accuracy and efficiency are also verified
through application to the rapidly varied flow in the
experimental flume.

2. Undetermined coefficient method

A vpartial differential equation in general
consists of several terms of the partial derivatives.
Common procedure to establish a numerical scheme
first selects or derives an appropriate scheme for
each term in the equation to reflect the physical
meaning of that term, then it obtains a discrete finite
difference equation by substituting the selected
scheme for each partial differential term into the
original equation. But, regardless of forms of partial
differential equations and scheme used in each term,
in most conditions, final results describing unsteady
processes can be written in a general form as
follows

z a; n+l Zb ¢1 (1)

where ¢! and ¢ are the values of variable ¢ at
points (x; ,t,) and (x; , t,+1), respectively. When the
number of terms of the left hand side of equation (1)
is more than 1, the scheme is called implicit,
otherwise it is called explicit. The a; and b; are
undetermined coefficients. Values of them change
in different schemes.

Accuracy of equation (1) is mainly
determined by: (i) concrete form of the partial
differential equation, (i) number of terms and
values of a@; and b;. When the concrete form of the
partial differential equation and the grid points
(node number) in the scheme are given, accuracy of
the difference equation (1) is determined only by a;
and b,. The undetermined coefficient method, which
is presented in this paper and hereafter called
'HAUC' method, aims to obtain the possible highest
accuracy of the difference equation through
appropriate selection.of a; and b; .

For an example, let's consider the one
dimensional convection equation;

(44 + c—aﬁ =0 )

a &
where, ¢ is a physical quantity transported by the
flow, such as the solids concentration, ¢ is the
velocity of flow to x direction which is assumed to
be a constant in the following discussion, ¢ is time.
Let assume the given difference equation is a 5
points explicit scheme as
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| Z[[(—l)"(z"zb1 +by )+b4]

# =bigly +hofl A0 +udy +hsgy +beds ()
in which b; are undetermined coefficients, and

n _ [
¢x1 &

. Using Taylor expansions at (i, n),

i

equation (3) gives
Z +O(At6) =

5

B )
+b3¢+b6—+z 2B o) @

2V B
Comparing equation (4) with equation (2),
following 6 independent algebraic equations are
obtained

i=0

2by +by —by ———— 2= =C,
1 2 4 Ax Ax

by +b, +b3 +b4 =1

—C? +4by +by +by -2 bs _
Ax
b

C? -8b — b2+b4+3A; (3)

bs _

-‘Cr +l6b1 +b2 +b4 -4 —= Ax

bs
CP =328 —by +bs +5—==0
1 2 4

This sysfem of equations has unique solutions as
b= (C3-CP - +CD)
12
b, = % (9C? —24C; -3C2 +30C?)
by = 1—-115(9@5 _21C¢ -9C3 +33C2)
by = T!2-(—c,5 +4CH —5C3 +2C2) ©)
bs = le-(scf —12C* —6C3 +12C3)Ax

bs =.11é.(60,5 ~18CF +6C} +18C* -12C, )Ax

in which C, is Courant number, C, =CAyAx'
Equations (3) and (6) constitute a scheme which has
fifth order accuracy to ¢;», #i-1, ¢ and @,
fourth order to ¢,,_; and g, .It is hereafier named
as HAUCI1 scheme. This scheme is valid for the

condition of ¢>0. When ¢<0, to keep the scheme
upwind, equation (3) should be adjusted



accordingly.

In order to keep higher order accuracy of
first order derivative terms in equation (3), Holly-
Preissmann method (Holly & Preissmann, 1977)
can be used. Because c is a constant, differentiation
of equation (2) by x gives

- + cé¢—x =0 )
a &
which means that ¢, meets the convection equation,

and its difference scheme can be written as
# =+ +df + i+ +deds  (8)

in which

;= jé’:r (-i) (,' =12, ,6) 9

From equation (4), it can be found that if one
want to derive more higher order schemes, more
terms in equation (3) are needed. The available
methods to obtain them are: (i) to increase number
of nodes, or (ii) to introduce first or second order
derivatives into the scheme as done in equation (3).

By changing terms in equation (3), different
kinds of schemes can be derived using HAUC
method. When terms in equation (3) are replaced by

L =hd +ooff +bsf | o +bsfl v (10)
values of undetermined coefficients derived are the

same as the result of Yang-Cunge scheme (Yang &
Cunge, 1989). If number of terms is decreased as

T = bigl | bl +hygl ) +badr; (1m
the coefficients become the same as those given by
Holly-Preissmann scheme, which has third order
accuracy to ¢, and second to ¢5; . Similarly, if an
implicit scheme is used as

ad +af +afy =bdl o by (12)
the same coefficients are derived with Implicit
HORNET scheme (Asai et al, 1998). If terms of

%4

¢ = ) are introduced as,

ag +arg +asgy =bgl +hadi,  (13)
the results are the same as Belleudy scheme
(Belleudy & Sauvaget,1985).

3. Stability of HAUCI1 scheme

Any Fourier component of numerical
solution of equation (2) by HAUCI scheme can be
written as

¢(x, 1)=4 exp(— i a)t) exp(z‘ ox) (14)

in which i=+—1 , @ is angular velocity, o wave
number, A coefficient. Substitution of equation (14)
into (3) gives
e = B +iB, (15)
in which
B = b cos20Ax + by cosoAx +b;
+b4 cos oAx +bso sin gAx
By =—b; sin20Ax —b; sin oAx
+by sin oAx + bso cos oAx + b0 (16)
From equation (15), the corresponding amplification

B

module |G| and the relative phase error —b—,

e

respectively, can be determined as following:

(Gl=[e=|=/Bi +81 an

£=M=_LLLM-1(_B_2_) (18)
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Fig. 1 Amplification modulus for the
three schemes (C,=0.5)
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Fig. 2 Relative phase error for the
three scheme (C;=0.25)

in which L is the wave length, L = 27, iy Relations
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between |G, % and the relative wave length

I/Ax are plotted in Fig. 1 and Fig. 2. Upwind and

Holly-Preissmann schemes are also given in the
figures for comparison. It can be seen that HAUCI1

agree well with the exact solution at large L/Ax and
a little better than Holly-Preissmann scheme in the
region of small L/Ax .

4. Numerical results and comparison with other
schemes

4.1 Computation of convection equation (2)
Stability analysis shows that HAUC]1 has the
merits of small dissipation and dispersion error, But,
there are derivative terms in the scheme. Sensitivity
of initial error of these derivative terms to numerical
result should be tested. To do it, Gauss distribution,
in which the peak is 1( located at x =50 m) and the
standard deviation is 1.5, is used as initial condition
of the calculation. Initial conditions of ¢, are given

in two cases. In case one, it is given according to
the theoretical derivative function of Gauss
distribution. In case two, all the initial values of &,

in every nodes are assigned to be 0. The calculated
results of these two cases with Ar=02sec,
Ax=1m, c¢=05m/sec and time interval of
calculation 7= 100sec, and the exact solution are
plotted in Fig. 3. Results of both two cases agree
well with the exact solution. Error in initial
condition of ¢, attenuates automatically in the
calculation and has no obvious effects to the result.
In order to check adaptability of HAUCI to
discontinuous distribution and different shapes of
distribution curve, and to compare with calculated

1.2

130 140 150 160 170 180 190 200 210 220
X(m)

results by many other schemes under the same
condition(Asai, et al, 1998), a rectangular pulse and
a half ellipse cases are added to the Gaussian
distribution case. The height of the rectangular pulse
is 1 with 10m in top width .Center of the ellipse is at
x=125m , the peak is 1 and radius along the flow
direction is 10 m . Initial values of ¢, in the three
cases are assigned with 0. Calculated results are
shown in Fig. 4. Parameters in the calculation are
At=02sec, Ax=1m, c¢=05m/sec and time
interval of calculation 7 =100sec . From Fig. 4, it
can be found that numerical dissipation of HAUCI1
is less than that of Holly-Preissmann scheme, and
its numerical oscillation is less than that of Implicit
HORNET (Asai, et al, 1998) and 6-point
schemes(Komatsu, ef a/, 1985). HAUCI can
simulate both peak and discontinuity conditions
well.

Fig. 3 Calculated results under different initial
values of ¢,

(A x=1.0m, A t=0.2sec, c=0.5m/s, T=100sec)
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P
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X(m)

» Fig. 4 Comparison of HAUC1 with other schemes
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Fig. 4 Comparison of HAUC1 with other schemes (continued)
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Fig. 5 Calgulated result by scheme (19)
It should be noted, however, that not all high

order schemes can work successfully. For example,
the following scheme

& =bd’ +bff +ird +voud b +hed,,  (19)
b =l(—3c,5 -2G7 +5C2 +4C})
" ,
by =C} -2CF +1
by = l(g.cf -2C7 =567 +4C})
4 v

by =%(—c,5 ~CH 4G+ CE)A 20)

bs = —(c,5 ~2C3 +C, )Ax

b =%(—cf +CH+C3 -CH)a

has a fifth order to ¢/, fourth to ¢%; . The results of

simulation by this scheme are shown in Fig. 5. As is
evident in the figure, this scheme can not well
reproduce the exact solutions. Selection of terms
and nodes in a scheme is very important to
simultaneously keep both numerical dissipation and
dispersion small.

4.2 Calculation of Burgers' equation
Burgers' equation
5 +u = 0 1
is a nonlinear convection equation which may be
viewed as a simple analog of the Euler equation for
the flow of a non viscous fluid. One of the method
to calculate this nonlinear equation is to replace the
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convection velocity # with local freezing constant
¢ . Thus, equation (21) can be approximated by
—4c—=0 22
=+, 22)
Although theoretical relation between ¢ and velocity
u at nodes is difficult to obtain. If we assume

of At
C, == 23
- 23)
in which
=ou, +(1-6)f, 0<0<1, (eZ)]

HAUCI can be used to simulate equation (21).
Numerical result and the exact solution of
equation (21) under the initial condition,

,x<10
u(x,0) = 05> 10 (25)

is plotted in Fig. 6. The numerical computation
agrees well with the exact solution. Thus, HAUCI1
can be used to compute such a non linear equation.

12
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lnitial
= = ® " Exact
—O— HAUCGI

A R LR U )

0 5 10 15 20 25 30 35 40 45
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Fig.6 Comparison of the numerical results with the
exact solution for Burgers' equation ( 6 =0.4)

5. Application to dam break flow

Equations of one dimensional open channel
flow are

a2 )
a &
Q
2,02, ,%%
g-l-—/-{dc +g4(——S0+Sf) 0 (27)

where A4 is area of cross section, O discharge, g
acceleration of gravity, # water depth, Sy bed slope,
Sy friction slope. Using the HAUC1 scheme and
staggered grid, computation procedure in each two
time steps(2A¢ ) can be divided into three phases.
The first phase is to calculate the first two
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terms of equation (27). The difference scheme is
Ql"l =b1Q,-n_2 +b2Q,-n_1 +b3an +b4Q,:.1 +b5Q,:'_1 +b6Q;'
(28)

1
b =—(C} -C} -C} +C})
12
by =%(9c,5 _24C} -3C3 +30C2)
by = 1—%(9@5 _21C* —9C3 +33C7)
by =%(—C,5 +4CH =5C3 +2CH)
bs = liz(csc,5 —12C} -6C? +12C2)Ax
be =l(6c,-” -18CH +6C? +18C} —12C, )Ax

_3etora), +(-oos)ja

Ax

in which C

6=04.

The second phase is, using the result O
calculated in the first phase, to calculate Q"> from
equation (27) with the scheme

20 -7 2ul +3u] —6u | +ull,
2As 6Ax
A.'l”/ Aary (ea)l - (),

2 Ax

o+ ok
_J i% Q” +J M '+/Vz ) BT
2
z+}é z—}é
in which, the convection term of equation (27) is not
included. In equation (29), z; is bed elevation, » is

roughness, R is hydraulic radius, uis average
velocity,

n__ 200
Ui hn+1 +hn+1 (30)

S A A

The third phase is to calculate A from
continuity equation (26). The scheme is

n n 2 n n

A1++} = Ai++12 _%(Q":lz B i'-'iz) B1)

At each phase, used schemes are explicit ones.

With the above schemes, a one-dimensional
dam break flow is simulated. Computed result is
compared with flume test data. This experiment was
made by the third author in 1989. The flume is 5 m
long with 0.5 m in width and 0.2 m in depth.. The
gate is installed at 1.2 m from the exit. Water depth




is 6.7 cm at the upstream with a dry tailwater. The
bed is horizontal. Initially, the water is still and the
gate is removed suddenly.

Fig. 7 is the comparison between computed
(n=0.01, At=0001sec, Ax=0.05m) and flume test

results. Ritter's analytical result which is obtained
from omitting friction term is also plotted. It shows
that simulated result agrees well with both
experimental and analytical results.

0.08 r
______ Eas. (28)(29)(31)
0.06 \ .- o- -- gitter’s solution
\ xperiment
him) 0.04 1 . — — — -Initial (0.4sec)
002 -
0 1||1|||||4|||||||||A1(44J_1_|‘:P~4~|.<|||.|||1
-1 -05 0 05 1
X(m)
008 Eas. (28)(20)(31)
R o L D Ritter's solution
h(m) 008 1 O  Experiment
m 004 L ~ ~= — :|nitial (0.6sec)
002 -
o L 1 1 L 1, 1 1 ] ! I L i 1 I} 1 1 1 L L
-1 -0.5 0 05 1
X(m)
008 -
| _ Egs. (28)(29)(31)
0.06 -- -o- -- Eitter‘s solution
xperiment
h(m) 004 | | —— *Initial (0.8530)
002 -
0 Ll I T I N S | | T S IO N S [ N S | | SN N PR T R I T Y R | R I |
-1 -0.5 0 05 1
X(m)

Fig. 7 Numerical result of one dimensional dam break flow
(Initial water depth at the upper stream is 0.067m)

When the tailwater is not dry, according to
Nakagawa's experimental results, surface profile of
the dam break flow changes with the ratio of initial

upstream water depth to downstream one and can
be classified into: (1) 0<A /hy <045, moving
hydraulic jump; (2) 045<#h;/hy <077, unstable
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state of undular bore; (3) 0.77 <A /hy <1, stable
state of undular bore, where Ay, hy are initial water
depth at downstream and upstream, respectively
(Nakagawa, H. et al. 1969).

St. Venant equations (26), (27) are derived
with the assumption that vertical pressure
distribution is hydrostatic. While treating undular
bore, vertical acceleration terms should be added to
the right-hand side of equation (27) as follows
(Twasa, Y., 1955; Hosoda, T., et al. 1994):

-ﬁ(lhluz PA 240,04 1 52—’4] (32)
a&\3 &t 3 &a 3 &
For the rectangular cross section with constant
width, the above terms can be rewritten and
discriminated to (in unit width)
1,20M 18 FM 2k *M

30 aal 3 & ak 3 & &2
3 2 2 3

+2apdM YA Sk 1, 2 0h
3 & 3 & A 3 &°

2
L[
6At 2

MR -2M™ + MY MY -2M MY
X
sz sz

2Ax 2Ax

) ) (M"*—M"* M"M"*]
6N 2Ax

+1 +2 2 1{ g n+2 n+2
o M (g )= M (7 + )

+—=
3

n+l n+l n+l
MU -2M + M7

i+1

X e
hn+2 + hn+2 Mn+1 +1 +1 MVH‘I
+2 i+y2 i—% MH.] i+l _3M1ﬂ +3A4xn—l OS]
3 2 ' A
n+1)? 1\2 ,ne2 2 2
o ~{o) g o
3 2Ax Ax?
n+2 n+2 n+2 n+2
_l(M_’H-I)Z hi"'% _2hi+y2 +2hi"32 —hi_% (33)
3v 2Ax3

where M=0/B, B is the width of the channel.
Substitution of equation (33) multiplied by B into
(29) gives an implicit scheme which can be
computed using tridiagonal matrix algorithm
(TDMA) method.

Computed results using thus modified Saint
Venant equation with different initial ratios of water
depth are shown in Fig. 8. The flow is simulated in
the tank with 10 m long and 0.5 m wide. Manning
roughness is 0.01. The bed is horizontal. There is no
inflow and outflow at the ends. Initially, the gate is
installed at the middle of the flume and removed
suddenly. For the sake of comparison, results of
Saint Venant equation with no modification are also
plotted. It shows that the model using modified
equations can simulate moving hydraulic jump and
undular bore at least qualitatively. But the
unmodified one can not simulate undular bore. In
near future, experiments will be made to examine
the numerical results of the modified equation.

h(m) X
Modified | H
------ St.Venant R —
01 = — — - nitial
0 1 1 1 1 1 1 1 i 1 I 1 i 1 1 1 1 L 1 1 ]
0 1 2 8 9 10

5
X(m)
(h=0.125m, hy=0.4m, h;/hy=0.313, 2 sec after removing of gate)

Fig.8 Simulations of moving hydraulic jump and undular bore
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h{m) Modified
02 | """ St.Venant
— == — - |nitial
0.1 1 1 i 1 1 1
0 1 2 3

X(m)

(h;=0.25m, hy=0.4m, h;/hy=0.625, 2 sec after removing of gate)

04
0.35
h(m) 03 | Modified
------ St.Venant
025 | = = -Initial
0.2 1 It 1 1 1 1 1 1

X(m)

(hy=0.33m, hy=0.4m, h,/hy=0.825, 2 sec after removing of gate)

Fig.8 Simulations of moving hydraulic jump and undular bore (continued)

6. Conclusion

Effectiveness of the undetermined coefficient
method, and accuracy of HAUCI1 scheme can be
concluded as follows:

(1) Undetermined coefficient method is a practical
and applicable method to establish various finite
difference schemes, especially, higher order
schemes.

(2) Stability of HAUC1 scheme is analyzed and
compared with other schemes. It has the merits of
both less dissipation and less dispersion errors.

(3) Computational results using HAUC1 agree well
with the exact solutions of one dimensional pure
convection equation and Burgers' equation. HAUC1
can simulate discontinuous and fast-changing
phenomena well.

(4) HAUC1 can be used to simulate one

dimensional dam break flow and the result agrees
well with the experimental data.

(5) Computation using a modified Saint Venant
equation, that is added the vertical acceleration
terms shows the scheme can simulate both undular
bores and moving hydraulic jump. But, further
experimental research is needed to verify the
equation as well as the computation scheme.
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