# On a conjecture of Ōshima 

Daisuke Kishimoto and Akira Kono


#### Abstract

The set of homotopy classes of self maps of a compact, connected Lie group $G$ is a group by the pointwise multiplication which we denote by $\mathcal{H}(G)$, and it is known to be nilpotent. Ōshima [9] conjectured if $G$ is simple, then $\mathcal{H}(G)$ is nilpotent of class $\geq \operatorname{rank} G$. We show this is true for $\operatorname{PU}(p)$ which is the first high rank example.


## 1 Introduction and statement of the result

We will denote the class of a nilpotent group $K$ by nil $K$ and normalize it so that $K$ is abelian if and only if nil $K=1$.

For based spaces $X, Y$, let $[X, Y]$ denote the set of based homotopy classes of based maps from $X$ to $Y$. When $Y$ is group-like, $[X, Y]$ has the natural group structure given by the pointwise multiplication. It is classical that if $Y$ is connected and cat $X<\infty$, then the group $[X, Y]$ is nilpotent of class $\leq \operatorname{cat} X$ [10], where cat $X$ stands for the Lusternik-Schnirelmann category of $X$ normalized as $\operatorname{cat}(*)=0$.

For a group-like space $X$, we denote the group $[X, X]$ by $\mathcal{H}(X)$ and call it the self homotopy group of $X$. Let $G$ be a compact, connected Lie group. Then, as noted above, the group $\mathcal{H}(G)$ is nilpotent of class $\leq$ cat $G$ and thus we have an invariant nil $\mathcal{H}(G)$ for $\mathcal{H}(G)$. Ōshima and the second author [7] showed that, for most of compact, connected Lie groups $G, \mathcal{H}(G)$ is not abelian, that is, $\operatorname{nil} \mathcal{H}(G) \geq 2$. Then we address here the problem how far from being abelian $\mathcal{H}(G)$ is, that is, how $\operatorname{big} \operatorname{nil} \mathcal{H}(G)$ is. In [9], O$s h i m a ~ c o n j e c t u r e d: ~$

Conjecture 1. If $G$ is a compact, connected, simple Lie group, then $\operatorname{nil\mathcal {H}}(G) \geq \operatorname{rank} G$.
This conjecture is false if we do not assume $G$ is simple [9]. In some cases of rank $\leq 3$, the above conjecture is known to be true (see [1]). However, if the rank of $G$ is greater than 3, there have not been any example of $G$ making this conjecture true. In fact, as is shown in [4] the projective unitary group $\operatorname{PU}(n)$ is the only one example of $G$ having nilH$(G) \geq 6$ so far. More precisely, it is shown in [4] that

$$
\operatorname{nil} \mathcal{H}(\mathrm{PU}(p)) \geq p-2=\operatorname{rankPU}(p)-1
$$

for any odd prime $p$. The aim of this note is to improve this inequality by one to satisfy Ōshima's conjecture as:

Theorem 1.1. For any prime $p$, $\operatorname{nil} \mathcal{H}(\mathrm{PU}(p)) \geq \operatorname{rankPU}(p)$.

## 2 Proof of Theorem 1.1

When $p=2$, Theorem 1.1 is trivial and then we will assume the prime $p$ is odd. We will implicitly use the naturality

$$
[X, Y]_{(p)} \cong\left[X, Y_{(p)}\right] \cong\left[X_{(p)}, Y_{(p)}\right]
$$

for a finite dimensional suspension $X$, where $-_{(p)}$ denotes the $p$-localization in the sense of Bousfield and Kan [3]. We will identify continuous maps with their homotopy classes. Since $\operatorname{PU}(p) \cong \operatorname{PSU}(p)$, we will also identify $\operatorname{PU}(p)$ with $\operatorname{PSU}(p)$.

We first collect facts on $\operatorname{SU}(p)$ which we will use. Let $\epsilon_{k}$ denote a generator of $\pi_{2 k-1}(\mathrm{SU}(p)) \cong$ $\mathbf{Z}$ for $2 \leq k \leq p$. Define a map $\mu: \prod_{k=2}^{p} S^{2 k-1} \rightarrow \operatorname{SU}(p)$ by $\mu\left(x_{2}, \ldots, x_{p}\right)=\epsilon_{2}\left(x_{2}\right) \cdots \epsilon_{p}\left(x_{p}\right)$ for $\left(x_{2}, \ldots, x_{p}\right) \in \prod_{k=2}^{p} S^{2 k-1}$. Then the classical result of Serre [11] shows that we have a homotopy equivalence:

$$
\mu_{(p)}: \prod_{k=2}^{p} S_{(p)}^{2 k-1} \xrightarrow{\cong} \mathrm{SU}(p)_{(p)}
$$

We will denote the composition of $\mu_{(p)}^{-1}$ and the $i$-th projection $\prod_{k=2}^{p} S_{(p)}^{2 k-1} \rightarrow S_{(p)}^{2 i-1}$ by $\lambda_{i}$. It is shown by Bott [2] that the order of the Samelson product $\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle$ is divisible by $\frac{(i+j-1)!}{(i-1)!(j-1)!}$. In particular, $\left\langle\epsilon_{p}, \epsilon_{i}\right\rangle_{(p)}$ is nontrivial for $2 \leq i \leq p$. Recall that we have, for $i \geq 2$,

$$
\pi_{2 i-1+k}\left(S_{(p)}^{2 i-1}\right) \cong \begin{cases}\mathbf{Z} / p & k=2 p-3  \tag{2.1}\\ 0 & 0<k<4 p-6 \text { and } k \neq 2 p-3\end{cases}
$$

in which $\pi_{2 i+2 p-4}\left(S_{(p)}^{2 i-1}\right)$ is generated by $\Sigma^{2 i-4} \alpha_{1}$ for a generator $\alpha_{1}$ of $\pi_{2 p}\left(S_{(p)}^{3}\right)$. Then it follows that, for $2 \leq i \leq p$,

$$
\begin{equation*}
\lambda_{2 i+1} \circ\left\langle\epsilon_{p}, \epsilon_{i}\right\rangle_{(p)} \neq 0 \tag{2.2}
\end{equation*}
$$

Now we construct a map from a lens space to $\operatorname{PU}(p)$. Let $L$ be the lens space $S^{2 p-1} /(\mathbf{Z} / p)$ and let $\pi: \mathrm{SU}(p) \rightarrow \mathrm{PU}(p)$ and $\rho: S^{2 p-1} \rightarrow L$ be the projections.

Proposition 2.1. There is a map $\epsilon: L_{(p)} \rightarrow \mathrm{PU}(p)_{(p)}$ satisfying the homotopy commutative diagram:


Proof. We denote the projections $\mathrm{SU}(p) \rightarrow \mathrm{SU}(p) / \mathrm{SU}(p-1)=S^{2 p-1}$ and $\mathrm{PU}(p) \rightarrow \mathrm{PU}(p) / \mathrm{SU}(p-$ $1)=L$ by $\kappa$ and $\bar{\kappa}$ respectively. Then we have $\bar{\kappa} \circ \pi=\rho \circ \kappa$. Recall that the cohomology of $\mathrm{SU}(p)$ and $\mathrm{PU}(p)$ are given by

$$
H^{*}(\mathrm{SU}(p))=\Lambda\left(x_{3}, x_{5}, \ldots, x_{2 p-1}\right),\left|x_{j}\right|=j .
$$

and

$$
H^{*}(\mathrm{PU}(p))=\mathbf{Z} / p\left[y_{2}\right] /\left(y_{2}^{p}\right) \otimes \Lambda\left(y_{1}, y_{3}, \ldots, y_{2 p-3}\right),\left|y_{j}\right|=j
$$

so that $\pi^{*}\left(y_{2 i-1}\right)=x_{2 i-1}$ for $2 \leq i \leq p-1$. Consider maps

$$
\theta=\kappa_{(p)} \times \prod_{k=2}^{p-1} x_{2 k-1}: \mathrm{SU}(p)_{(p)} \rightarrow S_{(p)}^{2 p-1} \times \prod_{k=2}^{p-1} K\left(\mathbf{Z}_{(p)}, 2 k-1\right)
$$

and

$$
\bar{\theta}=\bar{\kappa}_{(p)} \times \prod_{k=2}^{p-1} y_{2 k-1}: \operatorname{PU}(p)_{(p)} \rightarrow L_{(p)} \times \prod_{k=2}^{p-1} K\left(\mathbf{Z}_{(p)}, 2 k-1\right)
$$

Then we have $(\rho \times 1)_{(p)} \circ \theta=\bar{\theta} \circ \pi_{(p)}$ and thus since $\theta$ is a $2 p$-equivalence and $\bar{\kappa}_{*}: \pi_{1}(\mathrm{PU}(p)) \rightarrow$ $\pi_{1}(L)$ is an isomorphism, $\bar{\theta}$ is a $2 p$-equivalence. Note that $L$ is of dimension $2 p-1$. Then by the Whitehead theorem there is a map $\epsilon: L_{(p)} \rightarrow \mathrm{PU}(p)_{(p)}$, unique up to homotopy, so that $\bar{\kappa}_{(p)} \circ \epsilon=1_{L_{(p)}}$. Thus we have $\bar{\theta} \circ \epsilon \circ \rho_{(p)}=\bar{\theta} \circ \pi_{(p)} \circ \epsilon_{p(p)}$ which implies $\epsilon \circ \rho_{(p)}=\pi_{(p)} \circ \epsilon_{(p)}$, and therefore we have established the proposition.

Remark 2.1. It should be mentioned here that Hamanaka and the authors [4] have obtained the above map $\epsilon$ by decomposing $\operatorname{PU}(p)_{(p)}$. Harper [5] also constructed a map $L_{(p)} \rightarrow \mathrm{PU}(p)$ and one can verify that Harper's map satisfies the above homotopy commutative diagram by examining the homotopy groups. Both of the above works are generalized in [6].

Note that there is a map $\hat{\gamma}: \operatorname{PU}(p) \wedge \mathrm{SU}(p) \rightarrow \mathrm{SU}(p)$ such that $\hat{\gamma} \circ(\pi \wedge 1)=\gamma$ for the reduced commutator map $\gamma: \mathrm{SU}(p) \wedge \mathrm{SU}(p) \rightarrow \mathrm{SU}(p)$. Let $L_{k}$ be the Moore space $S^{2 k-1} \cup_{p} e^{2 k}$ for $1 \leq k \leq p-1$ and $S^{2 p-1}$ for $k=p$. Then in particular $L_{1}$ is the 2 -skeleton of $L$.

Lemma 2.1. Let $q_{k}: L_{k} \rightarrow S^{2 k}$ be the pinch map. Then, for $2 \leq i \leq p-1$, we have

$$
\lambda_{i+1} \circ \hat{\gamma}_{(p)} \circ\left(\left.\epsilon\right|_{L_{1}} \wedge \epsilon_{i}\right)_{(p)}=a_{i}\left(q_{1} \wedge 1_{S^{2 i-1}}\right)_{(p)}, a_{i} \in \mathbf{Z}_{(p)}^{\times} .
$$

Proof. Recall from [8] there is a homotopy equivalence

$$
\Sigma L_{(p)} \simeq \vee_{k=1}^{p} \Sigma L_{k(p)}
$$

Then there are maps $f_{k}: S_{(p)}^{2 p+2 i-2} \rightarrow\left(L_{k} \wedge S^{2 i-1}\right)_{(p)}$ for $1 \leq k \leq p$ such that

$$
\begin{equation*}
\left(\rho \wedge 1_{S^{2 i-1}}\right)_{(p)}=\vee_{k=2}^{p} f_{k} \tag{2.3}
\end{equation*}
$$

Since $\rho$ is a $p$-fold covering, we have $f_{p}=p$.
Consider the exact sequence

$$
\begin{aligned}
\pi_{2 i+2 k-1}\left(S^{2 i+1}\right) & \xrightarrow{\times p} \pi_{2 i+2 k-1}\left(S^{2 i+1}\right) \\
& \xrightarrow{q_{k}^{*}}\left[L_{k} \wedge S^{2 i-1}, S^{2 i+1}\right] \rightarrow \pi_{2 i+2 k-2}\left(S^{2 i+1}\right) \xrightarrow{\times p} \pi_{2 i+2 k-2}\left(S^{2 i+1}\right)
\end{aligned}
$$

induced from the cofibre sequence $S^{2 k-1} \xrightarrow{p} S^{2 k-1} \rightarrow L_{k} \xrightarrow{q_{k}} S^{2 k} \xrightarrow{p} S^{2 k}$. Then by (2.1) we have:

$$
\left[L_{k} \wedge S^{2 i-1}, S^{2 i+1}\right]_{(p)} \cong \begin{cases}\mathbf{Z}_{(p)} & k=1 \\ 0 & 2 \leq k \leq p-1 \\ \mathbf{Z} / p & k=p\end{cases}
$$

in which $\left[L_{1} \wedge S^{2 i-1}, S^{2 i+1}\right]_{(p)}$ is generated by $\left(q_{1} \wedge 1_{S^{2 i-1}}\right)_{(p)}$. Hence it follows that

$$
\lambda_{i+1} \circ \hat{\gamma}_{(p)} \circ\left(\epsilon \wedge \epsilon_{i(p)}\right)=a_{i}\left(q_{1} \wedge 1_{S^{2 i-1}}\right)_{(p)} \vee a_{i}^{\prime} \Sigma^{2 i-4} \alpha_{1}
$$

for $a_{i}, a_{i}^{\prime} \in \mathbf{Z}_{(p)}$ and $2 \leq i \leq p-1$. Thus by (2.2), Proposition 2.1 and (2.3) we obtain

$$
\begin{aligned}
0 \neq \lambda_{i+1} \circ\left\langle\epsilon_{p}, \epsilon_{i}\right\rangle_{(p)} & =\lambda_{i+1} \circ \hat{\gamma}_{(p)} \circ\left(\epsilon \wedge \epsilon_{i(p)}\right) \circ\left(\rho \wedge 1_{S^{2 i-1}}\right)_{(p)} \\
& =a_{i}\left(q_{1} \wedge 1_{S^{2 i-1}}\right)_{(p)} \circ f_{1} \vee p a_{i}^{\prime} \Sigma^{2 i-4} \alpha_{1} \\
& =a_{i}\left(q_{1} \wedge 1_{S^{2 i-1}}\right)_{(p)} \circ f_{1} .
\end{aligned}
$$

It follows from (2.1) that $\left(q_{1} \wedge 1_{S^{2 i-1}}\right)_{(p)} \circ f_{1}=a \Sigma^{2 i-4} \alpha_{1}$ for $a \in \mathbf{Z} / p$ and thus $a_{i} \in \mathbf{Z}_{(p)}^{\times}$. Therefore the proof is completed.

We will use the same notation for the cohomology of $\operatorname{SU}(p)$ and $\operatorname{PU}(p)$ as in Proposition 2.1. Then by Lemma 2.1 and the Whitehead theorem we obtain:

Corollary 2.1. Let $I$ be the ideal $\bar{H}^{*}(\mathrm{PU}(p))^{2} \otimes \bar{H}^{*}(\mathrm{SU}(p))+\bar{H}^{*}(\mathrm{PU}(p)) \otimes \bar{H}^{*}(\mathrm{SU}(p))^{2}$ in $H^{*}(\mathrm{PU}(p) \wedge \mathrm{SU}(p))$. Then we have

$$
\hat{\gamma}^{*}\left(x_{2 i+1}\right) \equiv b_{i} y_{2} \otimes x_{2 i-1} \quad \bmod I
$$

for $b_{i} \in(\mathbf{Z} / p)^{\times}$.
Proof of Theorem 1.1. Put $\hat{\gamma}_{p-2}=\hat{\gamma} \circ(1 \wedge \hat{\gamma}) \circ \cdots \circ(\underbrace{1}_{p-3} \wedge \cdots \wedge 1 \wedge \hat{\gamma})$. It follows from Corollary 2.1 that

$$
\begin{equation*}
\hat{\gamma}_{p-2}^{*}\left(x_{2 p-1}\right)=\underbrace{y_{2} \otimes \cdots \otimes y_{2}}_{p-2} \otimes x_{3} . \tag{2.4}
\end{equation*}
$$

Let $\bar{\gamma}: \mathrm{PU}(p) \wedge \mathrm{PU}(p) \rightarrow \mathrm{PU}(p)$ be the reduced commutator map. Then there is a map $\tilde{\gamma}: \operatorname{PU}(p) \wedge \mathrm{PU}(p) \rightarrow \mathrm{SU}(p)$ such that $\pi \circ \tilde{\gamma}=\gamma$ and $\hat{\gamma}=\tilde{\gamma} \circ(1 \wedge \pi)$. Thus in particular we have

$$
\begin{equation*}
\tilde{\gamma}_{p-2} \circ(1 \wedge \cdots \wedge 1 \wedge \pi)=\hat{\gamma}_{p-2} \tag{2.5}
\end{equation*}
$$

Define a map $\phi: \operatorname{PU}(p) \rightarrow \mathrm{SU}(p)$ by $\phi([A])=A \bar{A}$ for $A \in \mathrm{SU}(p)$. Then we have $\phi^{*}\left(x_{3}\right)=2 y_{3}$ and hence by (2.4) and (2.5)

$$
\begin{aligned}
\left(\tilde{\gamma}_{p-2} \circ(1 \wedge \cdots \wedge 1 \wedge \pi \circ \phi) \circ \Delta\right)^{*}\left(x_{2 p-1}\right) & =\left(\hat{\gamma}_{p-2} \circ(1 \wedge \cdots \wedge 1 \wedge \phi) \circ \Delta\right)^{*}\left(x_{2 p-1}\right) \\
& =2 y_{2}^{p-2} y_{3} \neq 0
\end{aligned}
$$

This implies that $\tilde{\gamma}_{p-2} \circ(1 \wedge \cdots \wedge 1 \wedge \pi \circ \phi) \circ \Delta$ is essential.
Consider the exact sequence

$$
[\mathrm{PU}(p), \mathbf{Z} / p] \rightarrow[\mathrm{PU}(p), \mathrm{SU}(p)] \xrightarrow{\pi_{*}} \mathcal{H}(\mathrm{PU}(n))
$$

induced from the covering $\mathbf{Z} / p \rightarrow \mathrm{SU}(p) \xrightarrow{\pi} \mathrm{PU}(p)$. Then for $[\mathrm{PU}(p), \mathbf{Z} / p]=*$ we obtain $\pi_{*}$ is injective and thus $\pi \circ \bar{\gamma}_{p-2} \circ(1 \wedge \cdots \wedge 1 \wedge \pi \circ \phi) \circ \Delta$ is essential. This is equivalent to that the commutator $[\underbrace{1,[1 \cdots[1}_{p-2}, \pi \circ \phi] \cdots]]$ in $\mathcal{H}(\mathrm{PU}(p))$ is nontrivial and therefore the proof of Theorem 1.1 is completed.

## References

[1] M. Arkowitz, H. Ōshima and J. Strom, Noncommutativity of the group of self homotopy classes of Lie groups, Topology Appl. 125 (2002), no. 1, 87-96.
[2] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960) 249-256.
[3] A.K. Bousfield and D.M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer-Verlag, Berlin-New York, 1972.
[4] H. Hamanaka, D. Kishimoto and A. Kono, Self homotopy groups with large nilpotency classes, Topology Appl. 153 (2006), no. 14, 2425-2429.
[5] J.R. Harper, Regularity of finite H-spaces, Illinois J. Math. 23 (1979), no. 2, 330-333.
[6] D. Kishimoto and A. Kono, Mod p decompositions of non-simply connected Lie groups, J. Math. Kyoto Univ. 48 (2008), no. 1, 1-5.
[7] A. Kono and H. Ōshima, Commutativity of the group of self-homotopy classes of Lie groups, Bull. London Math Soc. 36 (2004), no. 1, 37-52.
[8] M. Mimura, G. Nishida, Goro and H. Toda, Localization of CW-complexes and its applications, J. Math. Soc. Japan 23 (1971), 593-624.
[9] H. Ōshima, Self homotopy group of the exceptional Lie group $G_{2}$, J. Math. Kyoto Univ. 40 (2000), no. 1, 177-184.
[10] G.W. Whitehead, On mapping into group-like spaces, Comment. Math. Helv. 28 (1954), 320-328.
[11] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294.

