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Abstract
The set of homotopy classes of self maps of a compact, connected Lie group G is a

group by the pointwise multiplication which we denote by H(G), and it is known to be
nilpotent. Ōshima [9] conjectured if G is simple, then H(G) is nilpotent of class ≥ rankG.
We show this is true for PU(p) which is the first high rank example.

1 Introduction and statement of the result

We will denote the class of a nilpotent group K by nilK and normalize it so that K is abelian

if and only if nilK = 1.

For based spaces X,Y , let [X,Y ] denote the set of based homotopy classes of based maps

from X to Y . When Y is group-like, [X,Y ] has the natural group structure given by the

pointwise multiplication. It is classical that if Y is connected and catX < ∞, then the group

[X,Y ] is nilpotent of class ≤ catX [10], where catX stands for the Lusternik-Schnirelmann

category of X normalized as cat(∗) = 0.

For a group-like space X, we denote the group [X,X] by H(X) and call it the self homotopy

group of X. Let G be a compact, connected Lie group. Then, as noted above, the group H(G)

is nilpotent of class ≤ catG and thus we have an invariant nilH(G) for H(G). Ōshima and

the second author [7] showed that, for most of compact, connected Lie groups G, H(G) is not

abelian, that is, nilH(G) ≥ 2. Then we address here the problem how far from being abelian

H(G) is, that is, how big nilH(G) is. In [9], Ōshima conjectured:

Conjecture 1. If G is a compact, connected, simple Lie group, then nilH(G) ≥ rankG.

This conjecture is false if we do not assume G is simple [9]. In some cases of rank ≤ 3, the

above conjecture is known to be true (see [1]). However, if the rank of G is greater than 3,

there have not been any example of G making this conjecture true. In fact, as is shown in [4]

the projective unitary group PU(n) is the only one example of G having nilH(G) ≥ 6 so far.

More precisely, it is shown in [4] that

nilH(PU(p)) ≥ p − 2 = rankPU(p) − 1

for any odd prime p. The aim of this note is to improve this inequality by one to satisfy

Ōshima’s conjecture as:
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Theorem 1.1. For any prime p, nilH(PU(p)) ≥ rankPU(p).

2 Proof of Theorem 1.1

When p = 2, Theorem 1.1 is trivial and then we will assume the prime p is odd. We will

implicitly use the naturality

[X,Y ](p)
∼= [X,Y(p)] ∼= [X(p), Y(p)]

for a finite dimensional suspension X, where −(p) denotes the p-localization in the sense of

Bousfield and Kan [3]. We will identify continuous maps with their homotopy classes. Since

PU(p) ∼= PSU(p), we will also identify PU(p) with PSU(p).

We first collect facts on SU(p) which we will use. Let εk denote a generator of π2k−1(SU(p)) ∼=
Z for 2 ≤ k ≤ p. Define a map µ :

∏p
k=2 S2k−1 → SU(p) by µ(x2, . . . , xp) = ε2(x2) · · · εp(xp)

for (x2, . . . , xp) ∈
∏p

k=2 S2k−1. Then the classical result of Serre [11] shows that we have a

homotopy equivalence:

µ(p) :

p∏
k=2

S2k−1
(p)

'→ SU(p)(p)

We will denote the composition of µ−1
(p) and the i-th projection

∏p
k=2 S2k−1

(p) → S2i−1
(p) by λi. It is

shown by Bott [2] that the order of the Samelson product 〈εi, εj〉 is divisible by (i+j−1)!
(i−1)!(j−1)!

. In

particular, 〈εp, εi〉(p) is nontrivial for 2 ≤ i ≤ p. Recall that we have, for i ≥ 2,

π2i−1+k(S
2i−1
(p) ) ∼=

{
Z/p k = 2p − 3

0 0 < k < 4p − 6 and k 6= 2p − 3
(2.1)

in which π2i+2p−4(S
2i−1
(p) ) is generated by Σ2i−4α1 for a generator α1 of π2p(S

3
(p)). Then it follows

that, for 2 ≤ i ≤ p,

λ2i+1 ◦ 〈εp, εi〉(p) 6= 0. (2.2)

Now we construct a map from a lens space to PU(p). Let L be the lens space S2p−1/(Z/p)

and let π : SU(p) → PU(p) and ρ : S2p−1 → L be the projections.

Proposition 2.1. There is a map ε : L(p) → PU(p)(p) satisfying the homotopy commutative

diagram:

S2p−1
(p)

εp(p) //

ρ(p)

²²

SU(p)(p)

π(p)

²²
L(p)

ε // PU(p)(p)
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Proof. We denote the projections SU(p) → SU(p)/SU(p−1) = S2p−1 and PU(p) → PU(p)/SU(p−
1) = L by κ and κ̄ respectively. Then we have κ̄ ◦ π = ρ ◦ κ. Recall that the cohomology of

SU(p) and PU(p) are given by

H∗(SU(p)) = Λ(x3, x5, . . . , x2p−1), |xj| = j.

and

H∗(PU(p)) = Z/p[y2]/(y
p
2) ⊗ Λ(y1, y3, . . . , y2p−3), |yj| = j

so that π∗(y2i−1) = x2i−1 for 2 ≤ i ≤ p − 1. Consider maps

θ = κ(p) ×
p−1∏
k=2

x2k−1 : SU(p)(p) → S2p−1
(p) ×

p−1∏
k=2

K(Z(p), 2k − 1)

and

θ̄ = κ̄(p) ×
p−1∏
k=2

y2k−1 : PU(p)(p) → L(p) ×
p−1∏
k=2

K(Z(p), 2k − 1).

Then we have (ρ× 1)(p) ◦ θ = θ̄ ◦π(p) and thus since θ is a 2p-equivalence and κ̄∗ : π1(PU(p)) →
π1(L) is an isomorphism, θ̄ is a 2p-equivalence. Note that L is of dimension 2p − 1. Then by

the Whitehead theorem there is a map ε : L(p) → PU(p)(p), unique up to homotopy, so that

κ̄(p) ◦ ε = 1L(p)
. Thus we have θ̄ ◦ ε ◦ ρ(p) = θ̄ ◦ π(p) ◦ εp(p) which implies ε ◦ ρ(p) = π(p) ◦ ε(p) , and

therefore we have established the proposition.

Remark 2.1. It should be mentioned here that Hamanaka and the authors [4] have obtained

the above map ε by decomposing PU(p)(p). Harper [5] also constructed a map L(p) → PU(p)

and one can verify that Harper’s map satisfies the above homotopy commutative diagram by

examining the homotopy groups. Both of the above works are generalized in [6].

Note that there is a map γ̂ : PU(p) ∧ SU(p) → SU(p) such that γ̂ ◦ (π ∧ 1) = γ for the

reduced commutator map γ : SU(p)∧ SU(p) → SU(p). Let Lk be the Moore space S2k−1 ∪p e2k

for 1 ≤ k ≤ p − 1 and S2p−1 for k = p. Then in particular L1 is the 2-skeleton of L.

Lemma 2.1. Let qk : Lk → S2k be the pinch map. Then, for 2 ≤ i ≤ p − 1, we have

λi+1 ◦ γ̂(p) ◦ (ε|L1 ∧ εi)(p) = ai(q1 ∧ 1S2i−1)(p), ai ∈ Z×
(p).

Proof. Recall from [8] there is a homotopy equivalence

ΣL(p) ' ∨p
k=1ΣLk(p).

Then there are maps fk : S2p+2i−2
(p) → (Lk ∧ S2i−1)(p) for 1 ≤ k ≤ p such that

(ρ ∧ 1S2i−1)(p) = ∨p
k=2fk. (2.3)
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Since ρ is a p-fold covering, we have fp = p.

Consider the exact sequence

π2i+2k−1(S
2i+1)

×p−→ π2i+2k−1(S
2i+1)

q∗k→ [Lk ∧ S2i−1, S2i+1] → π2i+2k−2(S
2i+1)

×p−→ π2i+2k−2(S
2i+1)

induced from the cofibre sequence S2k−1 p→ S2k−1 → Lk
qk→ S2k p→ S2k. Then by (2.1) we have:

[Lk ∧ S2i−1, S2i+1](p)
∼=


Z(p) k = 1

0 2 ≤ k ≤ p − 1

Z/p k = p

in which [L1 ∧ S2i−1, S2i+1](p) is generated by (q1 ∧ 1S2i−1)(p). Hence it follows that

λi+1 ◦ γ̂(p) ◦ (ε ∧ εi(p)) = ai(q1 ∧ 1S2i−1)(p) ∨ a′
iΣ

2i−4α1

for ai, a
′
i ∈ Z(p) and 2 ≤ i ≤ p − 1. Thus by (2.2), Proposition 2.1 and (2.3) we obtain

0 6= λi+1 ◦ 〈εp, εi〉(p) = λi+1 ◦ γ̂(p) ◦ (ε ∧ εi(p)) ◦ (ρ ∧ 1S2i−1)(p)

= ai(q1 ∧ 1S2i−1)(p) ◦ f1 ∨ pa′
iΣ

2i−4α1

= ai(q1 ∧ 1S2i−1)(p) ◦ f1.

It follows from (2.1) that (q1 ∧ 1S2i−1)(p) ◦ f1 = aΣ2i−4α1 for a ∈ Z/p and thus ai ∈ Z×
(p).

Therefore the proof is completed.

We will use the same notation for the cohomology of SU(p) and PU(p) as in Proposition

2.1. Then by Lemma 2.1 and the Whitehead theorem we obtain:

Corollary 2.1. Let I be the ideal H̄∗(PU(p))2 ⊗ H̄∗(SU(p)) + H̄∗(PU(p)) ⊗ H̄∗(SU(p))2 in

H∗(PU(p) ∧ SU(p)). Then we have

γ̂∗(x2i+1) ≡ biy2 ⊗ x2i−1 mod I

for bi ∈ (Z/p)×.

Proof of Theorem 1.1. Put γ̂p−2 = γ̂ ◦ (1 ∧ γ̂) ◦ · · · ◦ (1 ∧ · · · ∧ 1︸ ︷︷ ︸
p−3

∧γ̂). It follows from Corollary

2.1 that

γ̂∗
p−2(x2p−1) = y2 ⊗ · · · ⊗ y2︸ ︷︷ ︸

p−2

⊗x3. (2.4)

Let γ̄ : PU(p) ∧ PU(p) → PU(p) be the reduced commutator map. Then there is a map

γ̃ : PU(p)∧PU(p) → SU(p) such that π ◦ γ̃ = γ and γ̂ = γ̃ ◦ (1∧π). Thus in particular we have

γ̃p−2 ◦ (1 ∧ · · · ∧ 1 ∧ π) = γ̂p−2. (2.5)
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Define a map φ : PU(p) → SU(p) by φ([A]) = AA for A ∈ SU(p). Then we have φ∗(x3) = 2y3

and hence by (2.4) and (2.5)

(γ̃p−2 ◦ (1 ∧ · · · ∧ 1 ∧ π ◦ φ) ◦ ∆)∗(x2p−1) = (γ̂p−2 ◦ (1 ∧ · · · ∧ 1 ∧ φ) ◦ ∆)∗(x2p−1)

= 2yp−2
2 y3 6= 0.

This implies that γ̃p−2 ◦ (1 ∧ · · · ∧ 1 ∧ π ◦ φ) ◦ ∆ is essential.

Consider the exact sequence

[PU(p),Z/p] → [PU(p), SU(p)]
π∗→ H(PU(n))

induced from the covering Z/p → SU(p)
π→ PU(p). Then for [PU(p),Z/p] = ∗ we obtain π∗ is

injective and thus π ◦ γ̄p−2 ◦ (1 ∧ · · · ∧ 1 ∧ π ◦ φ) ◦ ∆ is essential. This is equivalent to that the

commutator [1, [1 · · · [1︸ ︷︷ ︸
p−2

, π◦φ] · · · ]] in H(PU(p)) is nontrivial and therefore the proof of Theorem

1.1 is completed.
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