<table>
<thead>
<tr>
<th>Title</th>
<th>On blow-analytic equivalence (Singularities and o-minimal category)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>FUKUI, Toshizumi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1540: 123-138</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/80653</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On blow-analytic equivalence

Toshizumi FUKUI

This is a resume for the talk, with the title above, at 29 November 2007 at RIMS workshop. This is a joint work with Laurentiu Paunescu.

Motivated by the classification problem of analytic function germs, T.-C. Kuo ([31]) introduced the notions of blow-analytic maps and blow-analytic equivalence. We start the article explaining this motivation to define blow-analytic equivalence.

He discovered a finite classification theorem for analytic function germs with isolated singularities and also shows some important triviality theorems. We are going to report several facts known now about the blow-analytic triviality and invariants.

We then discuss Lipschitz property of blow-analytic maps and show blow-analytic homeomorphism can be far from Lipschitz map. We also discuss exotic pathologies on a blow-analytic homeomorphism: this is illustrated by the examples in §7. We then introduce a strengthened notion, called blow-analytic isomorphism, and discuss the behavior of their jacobians.

In §8, we present a version of the Inverse Mapping Theorem for blow-analytic isomorphisms.

1. Motivations

The notion of blow-analytic equivalence arises from attempts to classify analytic function germs. One is tempted to use the following equivalence relation.

Definition 1.1. Let $k = 0, 1, 2, \ldots, \infty, \omega$. We say that two analytic function-germs $f, g : \mathbb{R}^n, 0 \to \mathbb{R}, 0$ are C^k- equivalent if there is a C^k-diffeomorphism-germ $h : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ so that $f = g \circ h$.

However, the following example, due to H. Whitney, shows that the C^1-equivalence is already too fine for the classification purpose.

Example 1.2 ([41]). Consider the functions $f_t : \mathbb{R}^2, 0 \to \mathbb{R}, 0 < t < 1$, defined by $f_t(x, y) = xy(y - x)(y - tx)$. Then f_t is C^1-equivalent to $f_{t'}$, if and only if $t = t'$.

As for the C^0-equivalence, the functions $(x, y) \mapsto x^2 + y^{2k+1}$, $k \geq 1$, for instance, are C^0-equivalent to the regular function $(x, y) \mapsto y$. Hence it seems hopeless to expect a decent classification theory.

Now we consider the blowing-up $\pi : M \to \mathbb{R}^2$ at 0. This map is illustrated by the following picture.
The anti-podal points of the inner circle of the annulus in the middle figure are identified to obtain the Möbius strip in the left figure. Collapsing the inner circle to a point, yields a mapping from the Möbius strip to the disk at the right. This is called the blowing-up of the disk at its centre point. One can introduce local coordinates on the Möbius strip and then the above mapping can be expressed as a real analytic map, as follows. Let \(M = \{(x,y) \times [\xi : \eta] \in D^2 \times P^1 : x\eta = y\xi \} \), where \(D^2 \) is a 2-dimensional disk and \(P^1 \) is the real projective line. The restriction of the projection \((x,y) \times [\xi : \eta] \rightarrow (x,y) \) to \(M \) is the desired \(\pi \). For the functions \(f_i \) in Example 1.2, all \(f_i \circ \pi \) are \(C^\omega \)-equivalent to each other ([31]).

2. Definition of blow-analytic map

2.1. A naive introduction.

Definition 2.1 (Blowing-up). Let \(U \) be a disk in \(\mathbb{R}^n \) with analytic coordinates \(x_1, \ldots, x_n \), and let \(C \subset U \) be the locus \(x_1 = \cdots = x_k = 0 \). Let \([\xi_1 : \cdots : \xi_k] \) be homogeneous coordinates of the real projective space \(P^{k-1} \) and let \(\tilde{U} \subset U \times P^{k-1} \) be the nonsingular manifold defined by

\[
\tilde{U} = \{(x_1, \ldots, x_n) \times [\xi_1, \ldots, \xi_k] : x_i\xi_j = x_j\xi_i, \ 1 \leq i, j \leq k\}.
\]

The projection \(\pi : \tilde{U} \rightarrow U \) on the first factor is clearly an isomorphism away from \(C \). The manifold \(\tilde{U} \), together with the map \(\pi : \tilde{U} \rightarrow U \) is called the blowing-up with nonsingular center \(C \). It is well-known that the blowing-up \(\pi : \tilde{U} \rightarrow U \) is independent of the coordinates chosen in \(U \). This allows us to globalize the definition. Let \(M \) be a real analytic manifold of dimension \(n \) and \(C \) a submanifold of codimension \(k \). Let \(\{U_\alpha\} \) be a collection of disks in \(M \) covering \(C \) such that in each disc \(U_\alpha \) the submanifold \(C \cap U_\alpha \) may be given as the locus \((x_1 = \cdots = x_k = 0) \), and let \(\pi_\alpha : \tilde{U}_\alpha \rightarrow U_\alpha \) be the blowing-up with center \(C \cap U_\alpha \). We then have isomorphisms

\[
\pi_{\alpha\beta} : \pi_\alpha^{-1}(U_\alpha \cap U_\beta) \rightarrow \pi_\beta^{-1}(U_\alpha \cap U_\beta),
\]

and we can patch together \(\tilde{U}_\alpha \) to form a manifold \(\tilde{U} = \bigcup_{\alpha\beta} \tilde{U}_\alpha \) with map \(\pi : \tilde{U} \rightarrow \bigcup U_\alpha \). Since \(\pi \) is an isomorphism away from \(C \), we can take \(\tilde{M} = \tilde{U} \cup_\pi (M - C); \tilde{M} \), together with the map \(\pi : \tilde{M} \rightarrow M \) extending \(\pi \) on \(\tilde{U} \) and the identity on \(M - C \), is called the blowing-up of \(M \) with center \(C \). We call \(E = \pi^{-1}(C) \) the exceptional divisor of the blowing-up \(\pi \).

Let \(M \) be a real analytic manifold. Take a function \(f \) defined on \(M \) except possibly on some nowhere dense subset of \(M \). We often denote this function by \(f : M \rightarrow \mathbb{R} \) and say that \(f \) is defined almost everywhere.
Definition 2.2. Let $\pi: \widetilde{M} \to M$ be a locally finite composition of blowing-ups with nonsingular centers. We say that $f: M \to \mathbb{R}$ is blow-analytic via π if $f \circ \pi$ has an analytic extension on \widetilde{M}. We say that f is blow-analytic if there is $\pi: \widetilde{M} \to M$, a locally finite composition of blowing-ups with nonsingular centers, so that f is blow-analytic via π.

Many functions, used as counterexamples in Calculus, are blow-analytic. Some of them are as follows.

Example 2.3. (i) $f(x, y) = \frac{xy}{x^2 + y^2}, (x, y) \neq (0, 0)$. This function f is not continuously extendable at the origin. It is clearly blow-analytic via the blowing-up at the origin.

(ii) $f(x, y) = \frac{x^2y}{x^4 + y^2}, (x, y) \neq (0, 0)$. This function is not continuously extendable at the origin, although all directional derivatives exist, if we define $f(0, 0) = 0$. This function f is also blow-analytic.

(iii) $f(x, y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}, (x, y) \neq (0, 0)$. This function is continuously extendable at the origin, but the second order derivatives depend on the order of differentiation:

$$\frac{\partial^2 f}{\partial x \partial y}(0, 0) \neq \frac{\partial^2 f}{\partial y \partial x}(0, 0).$$

This function f is also blow-analytic via the blowing-up at the origin.

Example 2.4 ([1]). Another typical example of blow-analytic function is $f(x, y) = \sqrt[3]{x^4 + y^4}$. The zero set of $z^3 + (x^2 + y^2)z + x^3$ is also the graph of a blow-analytic function $z = g(x, y)$.

The notion of blow-analytic map between real analytic manifolds is defined using local coordinates.

Definition 2.5. Let X, Y be real analytic manifolds. We say that $f: X \to Y$ is a blow-analytic homeomorphism (bah, for short) if f is a homeomorphism and that both f and f^{-1} are blow-analytic.

Definition 2.6. Let $f, g: \mathbb{R}^n, 0 \to \mathbb{R}, 0$ be analytic functions. We say that f and g are blow-analytically equivalent if there is a blow-analytic homeomorphism $h: \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ so that $f = g \circ h$.

Note that h preserves the zero sets of f and g. The equivalence relation determined by the above relation on the set of analytic function-germs $\mathbb{R}^n, 0 \to \mathbb{R}, 0$ will be called the blow-analytic equivalence.

Example 2.7. (i) Consider the map $f: \mathbb{R}^2, 0 \to \mathbb{R}^2, 0$ defined by

$$f(x, y) \mapsto \frac{1}{x^2 + y^2}(x^3, y^3).$$

The map f is continuously extendable at the origin and blow-analytic. The extension is a homeomorphism. But the inverse is not blow-analytic. In fact, f^{-1} is given by

$$(X, Y) \mapsto (X^\frac{2}{3} + Y^\frac{2}{3})(X, Y).$$
(ii) Consider the map $f : \mathbb{R}^2, 0 \to \mathbb{R}^2, 0$ defined by
\[(x, y) \mapsto (x^2 + y^2)(x, y)\].
The map f is analytic and a homeomorphism. But the inverse is not blow-analytic.
In fact, f^{-1} is given by
\[(X, Y) \mapsto (X^2 + Y^2)^{-1/3}(X, Y)\].

Problem 2.8. Classify the analytic function-germs by blow-analytic equivalence.

2.2. Real v.s. complex.

Remark 2.9. Let $h : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ be a blow-analytic homeomorphism. Let $\pi_i : M_i \to \mathbb{R}^n, i = 1, 2$, be compositions of blowing-ups with nonsingular centers so that $h \circ \pi_1$ and $h^{-1} \circ \pi_2$ are analytic. It is natural to expect that, by repeating blowing-ups of M_i at nonsingular centers, if necessary, there will be an analytic isomorphism H between \tilde{M}_1 and \tilde{M}_2 which induces h. In other words, we expect to have the following commutative diagram:

\[
\begin{array}{ccc}
\tilde{M}_1 & \xrightarrow{H} & \tilde{M}_2 \\
\downarrow \pi_1 & & \downarrow \pi_2 \\
\mathbb{R}^n & \xrightarrow{h} & \mathbb{R}^n
\end{array}
\]

Unfortunately, it is not known whether this is true or not.

Let $\mu : M \to N$ be a proper analytic map between real analytic manifolds. It is known that there are complexifications M^* and N^* of M, N, respectively, and a holomorphic map-germ $\mu^* : M^* \to N^*$, N so that $\mu^*|M = \mu$. (See [23], page 208.)

In complex analytic geometry, a holomorphic map which is bimeromorphic is often called a modification. Let M^*, N^* be complex analytic manifolds with anti-holomorphic involutions σ_M, σ_N. We denote the fixed point sets of σ_M, σ_N by M, N, respectively. Let $\pi^* : M^* \to N^*$ be a proper modification so that $\sigma_N \circ \pi^* = \pi^* \circ \sigma_M$. We take its real part (restriction to M) and denote it by $\pi : M \to N$. In this paper, we call such a modification a complex modification.

In the setup in Remark 2.9, we can take the fiber product of $h \circ \pi_1$ and π_2 (or π_1 and $h^{-1} \circ \pi_2$) and obtain the following diagram:

\[
\begin{array}{ccc}
M & \xrightarrow{\pi_1} & \mathbb{R}^n \\
\downarrow & & \downarrow h \\
M_1 & & \mathbb{R}^n \\
\downarrow \pi_2 & & \downarrow h \\
M_2 & \xrightarrow{\mu} & \mathbb{R}^n
\end{array}
\]

But we do not know whether M has a complexification so that the composed maps $M \to M_i \to \mathbb{R}^n, i = 1, 2$, are complex modifications, even though one can take proper complexifications of $\pi_i, i = 1, 2$. One can say that these compositions are real modifications in the following sense. We say $\mu : M \to N$ is a real modification, if one can take a representative of a complexification μ^* which is an isomorphism everywhere except on a nowhere dense subset of a neighbourhood of M in M^*. Clearly a complex modification is a real modification. But it is not clear whether,
or not, a real modification is a complex modification, that is, isomorphic to the real part of a complex proper modification.

Example 2.10. The following map is an analytic isomorphism, hence a real modification,

$$\mathbb{R} \to \mathbb{R}, \quad x \mapsto x + \frac{1}{2(1 + x^2)}.$$

But the homeomorphism $\mathbb{R} \to \mathbb{R}, \ x \mapsto x^3$, is not a real modification.

3. Triviality theorem

Let I be an interval in \mathbb{R}, which contains the origin 0. Let $F : (\mathbb{R}^n, 0) \times I \to \mathbb{R}, 0$ be an analytic function-germ. We consider the family $f_t : \mathbb{R}^n, 0 \to \mathbb{R}, 0, t \in I$, defined by $f_t(x) = F(x, t)$.

Definition 3.1 (Blow-analytic triviality). Let $\pi : M, E \to \mathbb{R}^n, 0$ be a proper analytic modification. We say $f_t, t \in I$, is blow-analytically trivial via π if there are a t-level preserving homeomorphism $h : (\mathbb{R}^n, 0) \times I \to (\mathbb{R}^n, 0) \times I$ and a t-level preserving analytic isomorphism $H : (M, E) \times I \to (M, E) \times I$ such that the following diagram is commutative:

$$
\begin{array}{ccc}
(M, E) \times I & \xrightarrow{\pi \times \text{id}} & (\mathbb{R}^n, 0) \times I \\
\downarrow H & & \downarrow F \\
(M, E) \times I & \xrightarrow{\pi \times \text{id}} & (\mathbb{R}^n, 0) \times I \\
\end{array}
$$

where $F_0 : (\mathbb{R}^n, 0) \times I \to \mathbb{R}, 0$ is the map defined by $(x, t) \mapsto f_0(x)$.

In all the cases we are interested in, $\pi : M \to \mathbb{R}^n$ is the real part of a complex proper modification $\pi^* : M^* \to \mathbb{C}^n$ defined over reals.

Consider the Taylor expansion of $f_t(x) = F(x, t)$ at 0 in \mathbb{R}^n:

$$f_t(x) = \sum_{\nu} c_{\nu}(t)x^\nu, \quad \text{where} \quad x^\nu = x_1^{\nu_1} \cdots x_n^{\nu_n}, \quad \nu = (\nu_1, \ldots, \nu_n).$$

We set $H_j(x, t) = \sum_{|\nu| = j} c_{\nu}(t)x^\nu$ where $|\nu| = \nu_1 + \cdots + \nu_n$, and assume that k is the smallest number so that $H_k(x, t)$ is not identically equal to 0.

Theorem 3.2 ([30]). If $H_k(x, t)$ has an isolated singularity in \mathbb{R}^n for any $t \in I$, then $f_t, t \in I$, is blow-analytically trivial via the blowing-up at the origin.

Let $w = (w_1, \ldots, w_n)$ be an n-tuple of positive integers. We set

$$H_j^{(w)} = \sum_{\nu \in \mathbb{Z}^n, |\nu| = w} c_{\nu}(t)x^\nu \quad \text{where} \quad |\nu| = w_1\nu_1 + \cdots + w_n\nu_n,$$

and assume that k is the smallest number so that $H_k^{(w)}$ is not identically equal to 0.

Theorem 3.3 ([14]). If $H_k^{(w)}(x, t)$ has an isolated singularity in \mathbb{R}^n for any $t \in I$, then $f_t, t \in I$, is blow-analytically trivial via a toric modification.

See §1.5 in [36], §5 in [6], [16]. about toric modifications. See [37] for a generalization of this theorem.
Example 3.4 ([4]). Consider the family $f_t(x, y, z) = z^5 + tzy^6 + y^7x + x^{15}$, $t > -15^{1/7}(7/2)^{4/5}/3$. This function is a weighted homogeneous polynomial with weight $(1, 2, 3)$ and weighted degree 15. This family satisfies the assumption of Theorem 3.3 and hence f_t is blow-analytically trivial. An important fact is that this family is not bilipschitz trivial near $t = 0$. See S. Koike ([28]) for a proof.

It is expected that the blow-analytic equivalence should not have moduli. Indeed T.-C. Kuo proved the following: If an analytic function $f : \mathbb{R}^n, 0 \to \mathbb{R}, 0$ defines an isolated singularity, then the number of blow-analytic equivalence classes nearby f is finite. A more precise statement is the following.

Theorem 3.5 ([31]). Let P be a subanalytic set and let $F : (\mathbb{R}^n, 0) \times P \to \mathbb{R}, 0$ be an analytic function. If the functions $f_t : \mathbb{R}^n, 0 \to \mathbb{R}, 0$ defined by $x \mapsto F(x, t)$ have an isolated singularity for all $t \in P$, then there is a subanalytic filtration

$$P = P_0 \supset P_1 \supset \cdots \supset P_n \supset P_{n+1} = \emptyset, \quad \dim P_i > \dim P_{i+1},$$

such that f_t and $f_{t'}$ are blow-analytically equivalent for t, t' belonging to the same connected component of $P_i - P_{i+1}$.

K. Kurdyka ([32]) introduced the notion of arc-analytic map. We recall some fundamental facts here.

Definition 3.6 (Arc-analytic map). Let X and Y be real analytic manifolds. We say that a map $f : X \to Y$ is arc-analytic (a.a. for short) if $f \circ \alpha$ is analytic for any analytic map $\alpha : \mathbb{R}, 0 \to X$.

Theorem 3.7 ([1]). Let $f : U \to \mathbb{R}$ be an arc-analytic function and U be an open subset of \mathbb{R}^n. If there are analytic functions $G_i(x), i = 0, \ldots, p, \text{ so that }\]

$$G_0(x)f(x)^n + G_1(x)f(x)^{p-1} + \cdots + G_{p-1}(x)f(x) + G_p(x) \equiv 0,$$

then f is blow-analytic.

Corollary 3.8. An arc-analytic function with semi-algebraic graph is blow-analytic.

Example 3.9 ([1]). The function $f(x, y) = x^3e^{x^3/(x^4+y^4)}$ is blow-analytic. But there are no non-zero analytic functions vanishing on its graph.

Definition 3.10. Let X and Y be real analytic manifolds. We say that a map $f : X \to Y$ is locally blow-analytic if there is a locally finite family of analytic maps $\{\psi_i : M_i \to X\}$ with the following properties:

- ψ_i are compositions of finitely many local blowing-ups with nonsingular centers,
- there are compact subsets K_i of M_i with $\bigcup_i \psi_i(K_i) = X$, and
- $f \circ \psi_i$ are analytic.

Theorem 3.11 ([1]). An arc-analytic function $f : U \to \mathbb{R}$ with subanalytic graph is locally blow-analytic.

See also [40] for another proof of this theorem.

Question 3.12. Is a locally blow-analytic function $f : U \to \mathbb{R}$ blow-analytic?

When $\dim U = 2$, the answer is "yes", since local blowing-ups can be glued together to yield blowing-ups.
4. Arc lifting property

A remarkable property of blowing-up is the arc lifting property.

Definition 4.1 (Arc lifting property). Let I be an open interval in \mathbb{R}. Let X and Y be real analytic manifolds. We say that a map $f : X \rightarrow Y$ has the arc lifting property (alp. for short) if for any analytic map $\alpha : I \rightarrow Y$ there is an analytic map $\tilde{\alpha} : I \rightarrow X$ so that $f \circ \tilde{\alpha} = \alpha$.

```
\begin{array}{ccc}
  & X & \\
  \alpha & \downarrow f & \tilde{\alpha} \\
  I & \downarrow \alpha & Y
\end{array}
```

The blowing-up $\pi : \overline{M} \rightarrow M$ with a nonsingular center has the alp.

The blowing-up with an ideal center has the alp. because it is dominated by a composition of blowing-ups with nonsingular centers.

Example 4.2. Let $f : \mathbb{R}^2, 0 \rightarrow \mathbb{R}^2, 0$ be the map-germ defined by

$$(x, y) \mapsto \left(x, \frac{y(y^2 - x^2)}{x^2 + y^2} \right)$$

This map can be extended continuously at 0. Let $\pi : M \rightarrow \mathbb{R}^2$ be the blowing-up at the origin. Consider the map

$$F : M \rightarrow M, \quad (x, y) \times [\xi : \eta] \mapsto f(x, y) \times [\xi(\xi^2 + \eta^2) : \eta(\eta^2 - \xi^2)].$$

Here we use the same notation as that at the end of §1. It is easy to see that $\pi \circ F = f \circ \pi$. Since the image of the set of regular points of F by F is M, f has the arc lifting property. Since the jacobian of f is $\frac{-x^4 + 4x^2y^2 + y^4}{(x^2 + y^2)^2}$, which is zero along $x^2 - (2 + \sqrt{5})y^2 = 0, (x, y) \neq 0$, the lifting is not global.

5. Blow-analytic invariants

5.1. Singular set.

Theorem 5.1 ([39]). Let $f, g : \mathbb{R}^n, 0 \rightarrow \mathbb{R}, 0$ be two analytic function germs, and let Σ_f and Σ_g denote their singular sets. If there is a blow-analytic homeomorphism $h : \mathbb{R}^n, 0 \rightarrow \mathbb{R}^n, 0$ with $f = g \circ h$, then $h(\Sigma_f) = \Sigma_g$. (That is h preserves the singular set.)

However, a blow-analytic equivalence of analytic functions does not, in general, preserve their singular loci, as the following example shows.

Example 5.2. Let $f_t(x, y) = x^4 + 2t^2x^2y^2 + y^4 + x^5, t \in \mathbb{R}$. By Theorem 3.2, this family is blow-analytically trivial. Nevertheless, the dimension $\dim_{\mathbb{R}} R\{x, y\}/(\frac{\partial f_t}{\partial x}, \frac{\partial f_t}{\partial y})$ changes at $t = 1$.
5.2. **Numerical invariant.** Let \(f : \mathbb{R}^n, 0 \to \mathbb{R}, 0 \) be an analytic function and let \(\alpha : \mathbb{R}, 0 \to \mathbb{R}^n, 0 \) be an analytic map. If \(f \circ \alpha \) is not identically zero, then there is a positive integer \(k \) so that

\[
f \circ \alpha(t) = ct^k + \text{higher order terms}, \quad c \neq 0.
\]

We call \(k \) the order of \(f \) along \(\alpha \) and denote it by \(\text{ord}_\alpha(f) \). Define \(\text{ord}_\alpha(f) = \infty \) when \(f \circ \alpha \) is identically zero. We define \(A(f) \) by

\[
A(f) := \{ \text{ord}_\alpha(f) : \alpha : \mathbb{R}, 0 \to \mathbb{R}^n, 0 \text{ analytic} \}.
\]

Theorem 5.3. If two analytic function germs \(f, g : \mathbb{R}^n, 0 \to \mathbb{R}, 0 \) are blow-analytically equivalent, then \(A(f) = A(g) \).

Remark 5.4. Let \(\text{mult}_0(f) \) denote the multiplicity of \(f \) at 0, i.e., the degree of the initial polynomial of \(f \). It is easy to show that \(\text{mult}_0(f) = \min A(f) \). As a consequence, the multiplicity is a blow-analytic invariant of analytic function germs. So, this theorem should be compared with Zariski’s multiplicity conjecture: If two holomorphic functions \(f, g : \mathbb{C}^n, 0 \to \mathbb{C}, 0 \) are topologically equivalent (\(C^0 \)-equivalent or \(C^0 \)-\(V \)-equivalent), then \(\text{mult}_0(f) = \text{mult}_0(g) \). This is still open. It is clear that the definition of \(A(f) \) makes sense for a holomorphic function \(f \) and it is interesting to ask the following question: Is \(A(f) \) a topological invariant for holomorphic functions \(f \)?

Example 5.5. Let \(K = \mathbb{R} \) or \(\mathbb{C} \). Let \(f : \mathbb{K}^n, 0 \to \mathbb{K}, 0 \) be the analytic function defined by \(f(x_1, \ldots, x_n) = x_1^{m_1} \cdots x_n^{m_n} \). Then

\[
A(f) = \left(\sum_{i \in I} m_i \mathbb{N} \right) \cup \{ \infty \}.
\]

Let \(f : \mathbb{K}^n, 0 \to \mathbb{K}, 0 \) be an analytic function. Let \(\pi : M, E \to \mathbb{K}^n, 0, E = \pi^{-1}(0) \), denote a real modification. e.g., a composition of finitely many blowing-ups with nonsingular centers. We assume that \(f \circ \pi \) is normal crossing, that is, \(f \circ \pi \) can be locally expressed as a product of powers of a number of local coordinates. Let \((f \circ \pi)_0 = \sum_{j \in J} m_j E_j \) denote the irreducible decomposition of the zero locus of \(f \circ \pi \) and \(C \) denote the set of subsets \(I \) of \(J \) with \(E^*_I \subset E \) where \(E^*_I = E^*_I \cap E, \ E^*_I = \bigcap_{i \in I} E_i - \bigcup_{j \in J \not\in I} E_j \).

The following formula is stated in [25], Theorem I.

Theorem 5.6. \(A(f) = \bigcup_{I \in C} A_I(f) \) where \(A_I(f) = (\sum_{i \in I} m_i \mathbb{N}) \cup \{ \infty \} \).

Let \(f : \mathbb{R}^n, 0 \to \mathbb{R}, 0 \) be a real analytic function. We set

\[
A^\pm(f) = \{ \text{ord}_\alpha(f) : \alpha : \mathbb{R}, 0 \to \mathbb{R}^n, 0 \text{ analytic and } \pm f \circ \alpha(t) \geq 0 \text{ near 0} \}
\]

The proof of Theorem 5.3 shows \(A^\pm(f) = A^\pm(g) \) if \(f \) and \(g \) are blow-analytically equivalent. In a way similar to the proof of Theorem 5.6, we obtain the following

Theorem 5.7. \(A^\pm(f) = \bigcup_{I \in C^\pm} A_I(f) \) where \(C^\pm \) denotes the set of \(I \in C \) so that \(E_I^* \) intersects with the closure of \(\{ y \in M : \pm f \circ \pi(y) > 0 \} \).
5.3. Zeta functions. Recently S. Koike and A. Parusiński ([27]) have introduced
zeta functions for the blow-analytic equivalence. In their paper ([27]), they call their
zeta functions the 'motivic type invariants', since their zeta functions can be derived
from zeta functions whose coefficients are motives. G. Fichou ([10]) generalizes their
invariants using the virtual Poincaré polynomial. Since these are very interesting
invariants, we review their results in this section. See also [35] for the virtual Betti
numbers.

Let C be a category whose objects are a class of subsets of the Euclidean spaces
with some good properties. We consider an invariant $\beta : C \to R$, where R is a
commutative ring, with the following properties.

- $\beta(X) = \beta(X - Y) + \beta(Y)$ if Y is a closed subset in X.
- $\beta(X \times Y) = \beta(X)\beta(Y)$.

When C is the category of subanalytic subsets in Euclidean spaces which have fi-
nite homologies, the $Z/2Z$-Euler characteristic β with compact supports has these
properties.

We say a semi-algebraic set A in a compact nonsingular real algebraic manifold
M is a AS-subset if for any analytic map $\alpha : (-\epsilon, \epsilon) \to M$, $\epsilon > 0$, with $\alpha(0, \epsilon) \subset A$,
there is a positive number ϵ' so that $\alpha(-\epsilon', 0) \subset A$. See [33] for more information
about AS-subsets.

Theorem 5.8 ([10]). Let AS denote the set of all semi-algebraic AS-subsets in compact
compact nonsingular real algebraic manifolds. There is an invariant $\beta : \text{AS} \to \mathbb{Z}[u, u^{-1}]
with the above properties which satisfies the following:

$$\beta(X) = \sum_k (\dim H_k(X, \mathbb{Z}/2\mathbb{Z})) u^k$$

when X is compact and nonsingular. Moreover, if two AS-sets X, Y are Nash
(i.e., semi-algebraically and analytically) equivalent, then $\beta(X) = \beta(Y)$.

Notice the following: $\beta(\emptyset) = 0$, $\beta(P^n) = 1 + u + u^2 + \cdots + u^n$, $\beta(R^n) = u^n$.

Example 5.9. It is not true that $\beta(X) = k\beta(Y)$ when there is an unbranched
k-fold covering $X \to Y$. Consider the double covering $S^1 \to P^1$ and observe that
$\beta(S^1) = \beta(P^1) = u + 1$.

We consider the space of polynomial arcs of order k:

$$L_k := \{\alpha : \mathbb{R}, 0 \to \mathbb{R}^n, 0 : \text{polynomial of degree } k\} = \mathbb{R}^n_k.$$

Let $f : \mathbb{R}^n, 0 \to \mathbb{R}, 0$ be an analytic function. The following spaces are algebraically
constructible

$$A_k(f) := \{\alpha \in L_k : \text{ord}(f \circ \alpha) = k\} \quad A^\pm_k(f) := \{\alpha \in L_k : f \circ \alpha = \pm t^k + \cdots\}.$$

Notice that if f and g are analytically equivalent, then $A_k(f)$ (resp. $A^\pm_k(f)$) and
$A_k(g)$ (resp. $A^\pm_k(g)$) are actually isomorphic as algebraic constructible sets. Define
Zeta functions by the following formulas.

$$Z_f(t) := \sum_{k \geq 1} \beta(A_k(f)) \left(\frac{t}{u^n}\right)^k \quad Z^\pm_f(t) := \sum_{k \geq 1} \beta(A^\pm_k(f)) \left(\frac{t}{u^n}\right)^k$$

where $u = -1$ when β is the $\mathbb{Z}/2\mathbb{Z}$-Euler characteristic with compact supports ([27]),
or u is an indeterminate when β is the virtual Poincaré polynomial ([10]).
Let $\pi : M, E \rightarrow \mathbb{R}^n, 0, E = \pi^{-1}(0)$, be a proper analytic modification so that $f \circ \pi$, det$(d\pi)$ are in normal crossing and that π is an isomorphism over $\mathbb{R}^n - f^{-1}(0)$. We assume that $\pi^{-1}(0)$ is a normal crossing divisor. We use the notation defined in the paragraph after Example 5.5. We consider the irreducible decompositions of the zero loci of $f \circ \pi$ and det$(d\pi)$, the jacobian determinant of π:

$$(f \circ \pi)_0 = \sum_{j \in J} m_j E_j, \quad (\det(d\pi))_0 = \sum_{j \in J} (\nu_j - 1) E_j.$$

The following formula is often called the Denef-Loeser formula.

Theorem 5.10 ([27], [10]). Setting $\phi(\lambda) = \lambda/(1 - \lambda) = \lambda + \lambda^2 + \lambda^3 + \cdots$, we have

$$Z_f(t) = \sum_{l \neq 0} \beta(E^*_l)(u - 1)^{|I|} \prod_{i \in I} \phi\left(\frac{t_m}{u^m}\right).$$

Remark 5.11. When β is the virtual Poincaré polynomial we need to assume that f is a polynomial and that π is algebraic (since we do not know that E^*_l is semi-algebraic).

It is also possible to obtain a formula for $Z^\pm(t)$ similar to Theorem 5.10. To do this, we introduce somenotation. We define $A^\pm_k(f, E^*_l)$ by

$$A^\pm_k(f, E^*_l) := p_k(\pi_*^{-1}(A^\pm_k(f)) \cap \mathcal{L}(M, E^*_l)) = \bigcup_{j: (m_j, j) = k} p_k(A^\pm_{k,j}(f; E^*_l)),$$

where $A^\pm_{k,j}(f, E^*_l) := \{\gamma \in \pi_*^{-1}(A^\pm_k(f)) \cap \mathcal{L}(M, E^*_l) : \text{ord}_i E_i = j_i\}$. Let $p \in E^*_l$ and let U be a coordinate neighbourhood at p. Using the local coordinates $y = (y_1, \ldots, y_n) : U \rightarrow \mathbb{R}^n$ with $E^*_l = \{y_i = 0, i \in I, y_i \neq 0, i \notin I\}$, we can express $f \circ \pi$ as follows:

$$f \circ \pi(y) = u(y) \prod_{i \in I} y_i^{m_i}, \quad \text{where } u(y) \text{ is a unit.}$$

We set $y = (y_i)_{i \in I}$ and define

$$\tilde{E}^\pm_U(t) = \{ (p, y) \in (E^*_l \cap U) \times \mathbb{R}^{|I|} : u(p) \prod_{i \in I} y_i^{m_i} = \pm 1 \}.$$

The sets \tilde{E}^\pm_U can be patched together and we obtain a set \tilde{E}^\pm. We denote by m_I the greatest common divisor of m_i, $i \in I$, and define

$$\tilde{E}^\pm_U = \{ (p, w) \in (E^*_l \cap U) \times \mathbb{R} : u(p) w^m = \pm 1 \}.$$

The sets \tilde{E}^\pm_U can be patched together and we obtain a set \tilde{E}^\pm. Setting $\tilde{\beta}^\pm_I = \beta(\tilde{E}^\pm)$, we obtain

$$Z^\pm_I(t) = \sum_{l} \tilde{\beta}^\pm_I (u - 1)^{|I| - 1} \prod_{i \in I} \phi\left(\frac{t_m}{u^m}\right).$$

Theorem 5.12 ([27]). Let $f, g : \mathbb{R}^n, 0 \rightarrow \mathbb{R}, 0$ be two analytic functions and let β be the $\mathbb{Z}/2\mathbb{Z}$-Euler characteristic with compact supports. Assume that there are real modifications $\pi_i : M_i \rightarrow \mathbb{R}^n$, $i = 1, 2$, so that π_1 (resp. π_2) is an isomorphism except possibly over the zero set of f (resp. g). If there is an analytic isomorphism $(M_1, \pi_1^{-1}(0)) \rightarrow (M_2, \pi_2^{-1}(0))$ which induces a blow-analytic homeomorphism $h : \mathbb{R}^n, 0 \rightarrow \mathbb{R}^n, 0$ with $f = g \circ h$, then $Z_f(l) = Z_g(l)$. $Z^\pm_I(t) = Z^\pm_g(t)$.
Similarly we obtain the following

Theorem 5.13 ([10]). Let \(f, g : \mathbb{R}^n, 0 \rightarrow \mathbb{R}, 0 \) be two polynomial functions and let \(\beta \) be the virtual Poincaré polynomial. Assume that there are algebraic modifications \(\pi_i : M_i \rightarrow \mathbb{R}^n \), \(i = 1, 2 \), whose critical loci are normal crossings. We assume that \(\pi_1 \) (resp. \(\pi_2 \)) is an isomorphism except over the zero set of \(f \) (resp. \(g \)). If there is an analytic isomorphism \((M_1, \pi_1^{-1}(0)) \rightarrow (M_2, \pi_2^{-1}(0)) \) which induces a blow-analytic isomorphism \(h : \mathbb{R}^n, 0 \rightarrow \mathbb{R}^n, 0 \) with \(f = g \circ h \), then \(Z_f(t) = Z_g(t) \), \(Z_f^+ = Z_g^+ \).

See Definition 7.2 below for the notion of blow-analytic isomorphism.

6. Lipschitz maps

An interesting class of maps which are not differentiable is the class of Lipschitz maps. We start with some basics.

Let \(U \) be a convex open subset of \(\mathbb{R}^n \). A map \(f : U \rightarrow \mathbb{R}^p \) is said to be **Lipschitz** if there is a positive constant \(K \) so that

\[
|f(x) - f(x')| \leq K|x - x'| \quad \forall x, x' \in U.
\]

Recall that Rademacher's theorem ([15, Theorem 4.1.1]), states that a function which is Lipschitz on an open subset of \(\mathbb{R}^n \) is differentiable almost everywhere (in the sense of Lebesgue measure) on that set. This allows us to introduce the following definition.

Definition 6.1 (Generalized Jacobian). The generalized Jacobian \(\partial f(0) \) of \(f \) at 0 is the convex hull of all matrices obtained as limits of sequences of the Jacobi matrices of \(f \) at \(x_i \) where \(x_i \rightarrow 0, x_i \notin Z \). Here \(Z \) denotes the set of points at which \(f \) fails to be differentiable.

Theorem 6.2 ([5]). Let \(f : \mathbb{R}^n, 0 \rightarrow \mathbb{R}^n, 0 \) be a Lipschitz map-germ. If \(\partial f(0) \) does not contain singular matrices, then \(f \) has a Lipschitz inverse.

In this section, we are interested in blow-analytic maps satisfying the Lipschitz condition.

Let \(U \) be a convex open subset of \(\mathbb{R}^n \) and let \(f : U \rightarrow \mathbb{R} \) be a continuous function with subanalytic graph. Then there is an nowhere dense closed subanalytic subset \(Z \) so that \(f \) is analytic on \(U - Z \).

Lemma 6.3. The function \(f \) is Lipschitz if and only if all partial derivatives of \(f \) are bounded on \(U - Z \).

Theorem 6.4 ([13]). Let \(f : \mathbb{R}^n, 0 \rightarrow \mathbb{R}^n, 0 \) be an arc-analytic map with subanalytic graph. If \(f \) is bilipschitz, i.e., there are positive constants \(c_1, c_2 \) so that

\[
c_1|y - y'| \leq |f(y) - f(y')| \leq c_2|y - y'|;
\]

then \(f^{-1} \) is arc-analytic.

Let \(f : \mathbb{R}^n, 0 \rightarrow \mathbb{R}^n, 0 \) be a homeomorphism which is blow-analytic and Lipschitz. The theorem asserts that the inverse \(f^{-1} \) is blow-analytic, if \(f^{-1} \) is Lipschitz.

Corollary 6.5. Let \(f : \mathbb{R}^n, 0 \rightarrow \mathbb{R}^n, 0 \) be an arc-analytic map with semi-algebraic graph. If \(f \) is bilipschitz, then \(f^{-1} \) is blow-analytic.
Theorem 6.6 ([13]). Let $F : \mathbb{R}^m \times \mathbb{R}^n, 0 \to \mathbb{R}^n, (x, y) \mapsto F(x, y)$, be an arc-analytic map with subanalytic graph. If there are positive constants c_1, c_2 so that
\begin{equation}
(1) \quad c_1 |y - y'| \leq |F(x, y) - F(x, y')| \leq c_2 |y - y'|,
\end{equation}
then there is an arc-analytic and subanalytic map $\tau : \mathbb{R}^m, 0 \to \mathbb{R}^n, 0$ such that
\begin{equation}
(2) \quad \{ F(x, y) = 0 \} = \{ y = \tau(x) \}.
\end{equation}

Remark 6.7. Let $\alpha = (\alpha_1, \ldots, \alpha_n) : \mathbb{R}, 0 \to \mathbb{R}^n, 0$ be an analytic map. Let $\text{ord}(\alpha)$ denote $\min \{ \text{ord}(\alpha_1), \ldots, \text{ord}(\alpha_n) \}$. If an arc-analytic map $f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ is Lipschitz, then $\text{ord}(f \circ \alpha) \geq \text{ord}(\alpha)$. If the map $f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ is bilipschitz, then $\text{ord}(f \circ \alpha) = \text{ord}(\alpha)$. In particular, the image of a nonsingular curve by an arc-analytic bilipschitz map $\mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ is a nonsingular curve.

Question 6.8. Does there exist a blow-analytic map (or an arc-analytic map with subanalytic graph) $f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ with the following properties?

- there is a positive constant c so that $c |y - y'| \leq |f(y) - f(y')| \quad \forall y, y' \in \mathbb{R}^n, 0$;
- f is not Lipschitz.

7. Blow-analytic isomorphism and analytic arcs

A blow-analytic homeomorphism can be quite far from a bilipschitz homeomorphism.

Theorem 7.1 ([26]). For any unbranched curve $C \subset \mathbb{R}^2, 0$, there is a blow-analytic homeomorphism $h : \mathbb{R}^2, 0 \to \mathbb{R}^2, 0$ such that $h(C)$ is nonsingular.

Theorem 7.1 motivates us to strengthen the conditions imposed to the definition of blow-analytic homeomorphisms.

Definition 7.2. We say that a map $f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0$ is a blow-analytic isomorphism (bai for short) if there are two neighbourhoods U, U' of 0 in \mathbb{R}^n so that the following conditions are satisfied.

- there are complex modifications $\pi : M \to U, \pi' : M' \to U'$, and an analytic isomorphism $F : (M, E) \to (M', E')$ of analytic spaces, where E and E' denote the critical loci of π and π' respectively.
- f is a homeomorphism and $\pi'_0 F = f_0 \pi$.

A blow-analytic isomorphism is clearly a blow-analytic homeomorphism. But the converse is not true. For example, the blow-analytic homeomorphism in Example 7.1 is not a bai. In fact, the critical locus of the composites of horizontal arrows are normal crossing, and we have a correspondence between their irreducible components, but they have different multiplicities.

Let $\pi : M \to \mathbb{R}^n$ be a complex modification whose critical locus is a normal crossing divisor. We consider an analytic vector ξ on M which is tangent to each irreducible component of the critical locus. By integrating ξ, we obtain an analytic isomorphism of M. If it induces a homeomorphism of \mathbb{R}^n near 0, this is a blow-analytic isomorphism. Thus, in all triviality theorems stated before, we can replace bah by bai.
Definition 7.3. Let \(\pi : M \to U \) be a composition of blowing-ups with nonsingular centers. A blow-analytic function \(P : U \to \mathbb{R} \) is said to be a **blow-analytic unit** (bau for short) via \(\pi \) if \(P \circ \pi \) extends to an analytic unit (i.e., an analytic function which is nowhere vanishing). \(P \) is said to be a blow-analytic unit (bau for short) if there is \(\pi : M \to U \) such that \(P \) is a bau via \(\pi \).

Theorem 7.4. If \(f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) is a blow-analytic isomorphism, then the Jacobian determinant \(\text{det}(df) \) is a blow-analytic unit.

Let \(w_1, \ldots, w_n \) be real numbers. We consider the map

\[
(3) \quad f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0, \quad x = (x_1, \ldots, x_n) \mapsto (x_1 P(x)^{w_1}, \ldots, x_n P(x)^{w_n}),
\]

where \(P : \mathbb{R}^n, 0 \to \mathbb{R} \) is a bounded blow-analytic function.

Theorem 7.5. Let \(P \) be a non-negative blow-analytic function via some toric modification \(\pi : M \to \mathbb{R}^n \). If \(P + \sum_{i=1}^{n} w_i x_i \frac{\partial P}{\partial x_i} \) is a blow-analytic unit via the modification \(\pi \), and if \(P \) and \(\sum_{i=1}^{n} w_i x_i \frac{\partial P}{\partial x_i} \) are continuously extendable on \(\mathbb{R}^n - 0, 0 \), then the map \(f \) defined by (3) is a blow-analytic isomorphism.

Example 7.6. The map

\[
f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0), \quad (x, y) \mapsto (x P^3, y P^2), \quad P = \frac{x^4 + 2y^6}{x^4 + y^6},
\]
is a blow-analytic isomorphism.

Consider the map

\[
f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0, \quad x = (x_1, \ldots, x_n) \mapsto (x_1 + Q(x_2, \ldots, x_n), x_2, \ldots, x_n),
\]

where \(Q : \mathbb{R}^{n-1}, 0 \to \mathbb{R} \) is a blow-analytic function. Since the map \((x_1, \ldots, x_n) \mapsto (x_1 - Q(x_2, \ldots, x_n), x_2, \ldots, x_n) \) is the inverse of \(f \), \(f \) is a homeomorphism.

Theorem 7.7. If \(Q \) is blow-analytic, then \(f \) is a blow-analytic isomorphism.

Example 7.8 ([38]). Consider a blow-analytic map \(f : \mathbb{R}^3, 0 \to \mathbb{R}^3, 0 \) defined by

\[
(x, y, z) \mapsto \left(x, y, z + \frac{2x^5 y}{x^6 + y^4} \right).
\]

This is a blow-analytic isomorphism by Theorem 7.7. Let \(\alpha : \mathbb{R}, 0 \to \mathbb{R}^3, 0 \) be the map defined by \(t \to (t^2, t^3, 0) \). Observe that \(f \circ \alpha(t) = (t^2, t^3, t) \). This means that the blow-analytic isomorphism \(f \) sends a singular curve, the image of \(\alpha \), to a regular curve.

We say that an analytic map \(\alpha : \mathbb{R}, 0 \to \mathbb{R}^n, 0 \) is irreducible if \(\alpha \) cannot be written as \(\alpha = \beta \circ \psi \), where \(\beta : \mathbb{R}, 0 \to \mathbb{R}^n, 0 \) and \(\psi : \mathbb{R}, 0 \to \mathbb{R}, 0 \), are analytic and \(\psi'(0) = 0 \).

Theorem 7.9. Let \(\alpha : \mathbb{R}, 0 \to \mathbb{R}^n, 0, n \geq 3, \) be an irreducible analytic map. Then there is a blow-analytic isomorphism \(f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) such that \(f \circ \alpha \) is a regular map.
8. Jacobian of blow-analytic map

Let \(f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) be a blow-analytic map. It is interesting to investigate what we can conclude when we assume that \(\det(df) \) is a blow-analytic unit. For example, is such a \(f \) a blow-analytic isomorphism?

Example 8.1. We identify \(\mathbb{R}^2 \) with \(C \) by the map \((x, y) \mapsto z = x + \sqrt{-1}y \). Let \(k \) be a positive integer. Consider the continuous blow-analytic map

\[
f : C, 0 \to C, 0, \quad z \mapsto z^{k+1}/z^k = z^{2k+1}/|z|^{2k}.
\]

Looking at the restriction to a small circle \(|z| = \varepsilon\), the mapping degree of \(f \) is \(2k+1 \). In particular, \(f \) is not a homeomorphism. Since

\[
\det(df) = \left| \begin{array}{cc}
(k+1)z^k/z^k & -kz^{k+1}/z^{k+1} \\
-kz^{k+1}/z^{k+1} & (k+1)z^k/z^k
\end{array} \right| = (k+1)^2 - k^2 = 2k+1, \quad z \neq 0,
\]

det(\(df \)) is a blow-analytic unit. We also have that \(f \) is Lipschitz, by Lemma 6.3.

Let \(M \to C \) denote the blowing-up at the origin. Since the map \(f \) is induced by an unbranched covering \(M \to M \) of degree \(2k+1 \), \(f \) has the arc lifting property.

Example 8.1 shows that a blow-analytic map \(f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) may not be a homeomorphism, even though \(\det(df) \) is a blow-analytic unit. However, this kind of phenomenon is not possible in higher codimensional cases.

Proposition 8.2. Let \(f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) be a blow-analytic map so that \(\det(df) \) is a blow-analytic unit. If there is a subset \(C \) of \(\mathbb{R}^n, 0 \), of codimension \(\geq 3 \), so that \(f|_{\mathbb{R}^n-C} \) is analytic, then \(f \) is a homeomorphism.

It is an open question whether \(f \) is a bai or not.

We have a version of the inverse mapping theorem via toric modification, which is the following.

Theorem 8.3. Let \(h = (h_1, \ldots, h_n) : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) be a continuous blow-analytic map via a toric modification. If \(\frac{\partial h_1}{\partial x_1} \), \(\frac{\partial (h_1, h_2)}{\partial (x_1, x_2)}, \ldots, \frac{\partial (h_1, \ldots, h_n)}{\partial (x_1, \ldots, x_n)} \) are blow-analytic units and they are continuously extendable on \(\mathbb{R}^n - 0, 0 \), then \(h \) is a blow-analytic isomorphism.

If the map \(h = (h_1, \ldots, h_n) : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) satisfies the assumption of Theorem 8.3 after permutations of \(x_1, \ldots, x_n \) and \(h_1, \ldots, h_n \), then \(h \) is a blow-analytic isomorphism, by Theorem 8.3.

This is the corrected version of Theorem 6.1 in [12].

Lastly, we have three more theorems.

Theorem 8.4. Let \(f : \mathbb{R}^n, 0 \to \mathbb{R}^n, 0 \) be a blow-analytic map so that \(\det(df) \) is a blow-analytic unit. If there are nonsingular subanalytic subsets \(C, C' \) so that \(f \) is blow-analytic via the blowing up with center \(C \) and that \(f(C) = C' \), then codim \(C = \text{codim} \, C' \) and \(f \) has the arc lifting property. Moreover, there is an analytic map \(\tilde{f} : M \to M' \) such that \(\tilde{f} \) is locally an isomorphism and that \(\pi' \circ \tilde{f} = f \circ \pi \). Where \(\pi : M \to \mathbb{R}^n \) is the blowing-up at \(C \) and \(\pi' : M' \to \mathbb{R}^n \) is the blowing-up at \(C' \).

Theorem 8.5. Let \(f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \) be a blow-analytic map. If \(\det(df) \) is a blow-analytic unit, then \(f \) is finite.
Theorem 8.6. Consider a blow-analytic map \(f : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0) \) defined by
\[
(x_1, \ldots, x_n) \mapsto (x_1 p_1(x), \ldots, x_n p_n(x)),
\]
where \(p_i \) are blow-analytic units.
If \(f \) is blow-analytic via a toric modification and \(\text{det}(df) \) is a blow-analytic unit, then \(f \) is a blow-analytic isomorphism.

References