D-closedness of paratangent space

近畿大学大学院総合理工学研究科 伊藤 洋忠 (Hirotada Ito)

Interdisciplinary Graduate School
for Comprehensive Science and Engineering, Kinki University

We consider a kind of higher order tangent space of a closed subset $X \subset \mathbb{R}^n$. There is an easy algebraic definition of the higher order tangent bundle T of X following the construction of the Zariski tangent space in algebraic geometry, which is called the Zariski paratangent bundle by Bierstone, Milman and Pawłucki [BMP1]. In 1934, Whitney posed the extension problem of finding the condition for a function on X of to be extendable to a C^d function on \mathbb{R}^n. As an approach to this problem, Bierstone, Milman and Pawłucki [BMP1] have introduced the higher order paratangent bundle τ of a subset X of a Euclidean space, generalising Glaeser’s idea. (We often omit the term “higer order”.) The paratangents of order d of X form a fibred space over X. They [BMP1] and Izumi [I] used this notion to solve Whitney’s problem in some restricted cases [BMP1]. We are interested in characterising the paratangent bundle as a subset of the higher order tangent bundle of the ambient Euclidean space.

A general higher order tangent of \mathbb{R}^n at a can be expressed as a linear combination of higher order derivatives of the Dirac delta function δ_a. Hence we express it by the total symbol of the linear combination, a polynomial in the dual coordinates ξ_a. The purpose of this note is to show that the paratangent space of a set X is D-closed which implies that the space is invariant with respect to partial differentiations by the components of ξ_a. We consider that this is an important property which characterises the paratangent bundle.

Recently Fefferman has given answer to the Whitney problem above and given its refinement. According to Bierstone, Milman, Pawluki [BMP1], Fefferman’s result is a solution to a variant of their conjecture [BMP2]. In this variant they use the third paratangent bundle T. It is known that $\tau \subset T \subset T$. Their results implies that $\tau = T = T$ ([BMP2]). It is easy to see that Zariski paratangent space is D-closed. Hence the result $\tau = T = T$ implies that they are D-closed. Since this argument requires the difficult theory of Fefferman [F], we show a direct simple proof.
1 Zariski paratangent bundle

We use the following notations

$$\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n), \quad (\alpha_i \in \mathbb{N} \cup \{0\})$$

$$e_i := (0, \ldots, 0, 1, 0, \ldots, 0).$$

$$|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n, \quad \alpha! = \alpha_1! \alpha_2! \cdots \alpha_n!,$$

$$x = (x_1, x_2, \ldots, x_n), \quad x^\alpha = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

for multi exponent and multi indeces. Let X be a subset of a Euclidean space \mathbb{R}^n. Let \mathcal{P}_d be the \mathbb{R} vector space of polynomials on \mathbb{R}^n of degree equal to or less than d and let \mathcal{P}_d^* be its dual vector space. We define functional $\xi_{ai} \in \mathcal{P}_d^*$ by

$$\xi_{ai} f := \frac{\partial f}{\partial x_i} (a).$$

We put

$$\xi_a := (\xi_{a1}, \ldots, \xi_{an}).$$

Let $f \in \mathcal{P}_d$ and $\xi_a^{(p)} : \mathcal{P}_d \rightarrow \mathbb{R}$ denote the assignment

$$f \mapsto \frac{\partial^{i \alpha} f}{\partial x^\alpha} (a) = \frac{\partial^{i \alpha} f}{\partial x_1^{\alpha_1} \cdots x_n^{\alpha_n}} (a).$$

This is an element of \mathcal{P}_d^*. For example,

$$1_a (f) = \xi_a^{(0)} (f) := f(a), \quad \xi_a^{(e_1)} (f) = \xi_{a1} := \frac{\partial f}{\partial x_1} (a),$$

$$\xi_a^{(e_1 + e_2)} (f) := \xi_{a1} \xi_{a2} (f) := \frac{\partial^2 f}{\partial x_1 \partial x_2} (a).$$

The functional 1_a is nothing but the Dirac delta function supported at a.

In the dual space \mathcal{P}_d^*, any higher partial derivatives of ξ_b can be expressed as a linear combination of those of ξ_a. This is an immediate consequence of Taylor's formula.

Lemma 1.1

$$\xi_b^\alpha = \sum_{|\alpha| + |\beta| \leq d} \frac{1}{\beta!} (b - a)^\beta \xi_a^{\alpha + \beta}.$$
Definition 1.2 Let V be a real vector space of dimension $d (< \infty)$. A bundle (of linear subspaces of V) over X is a subset E of $X \times V$ such that, for all $a \in X$, the fibre $E_a := \{v \in V : (a, v) \in E\}$ is a linear subspace of V. We don't require local triviality.

Definition 1.3 If $V \subset P$, let

$$V^\perp := \{\eta \in P_d : \eta(f) = 0 \ (f \in V)\}$$

denote the subspace of annihilators of V in the dual space P_d^*. Let $I^d(X) \subset C^d(\mathbb{R}^n)$ denote the ideal of C^d functions that vanish on X and $T^d_a I^d(X)$ denote the set of the Taylor series of degrees d of $I^d(X)$ at $a \in X \subset \mathbb{R}^n$. Then the Zariski paratangent bundle of order d, $\mathcal{T}'^d(X)$, is the subbundle of $X \times P_d^*$ with fibre $\mathcal{T}'^d_a = (T^d_a I^d(X))^\perp$, for each $a \in X$.

2 D-closedness of Zariski paratangent bundle

Definition 2.1 We call a subspace E_a of a fibre of a bundle $E \subset X \times V$ at a D-closed if it is invariant with respect to partial differentiations with respect to the components ξ_{ai} of ξ_a.

In view of 1.1, the property D-closedness is independent of the choice of the point a.

Theorem 2.2 $\mathcal{T}'^d(X)$ is D-closed.

We put $\eta := \sum_a c_a \xi_a^\alpha \in \mathcal{T}'^d(X)$ ($c_a \in \mathbb{R}$) and $g := T^d_a f$. Here g is the Taylor series of degree d of C^d function f at $a \in X \subset \mathbb{R}^n$.

We have

$$g := \sum_{|\beta| \leq d} \frac{1}{\beta!}(x-a)^\beta f^{(\beta)}(a) = \sum_{|\beta| \leq d} c_\beta'(x-a)^\beta \left(c_\beta' = \frac{1}{\beta!} f^{(\beta)}(a) \right),$$

$$\frac{\partial \eta}{\partial \xi_{a1}} \left(g \right) = \left(\frac{\partial}{\partial \xi_{a1}} \sum_a c_a \xi_a^\alpha \right) \sum_{|\beta| \leq d} c_\beta'(x-a)^\beta = \sum_a c_a \sum_{|\beta| \leq d} c_\beta' \frac{\partial \xi_a^\alpha}{\partial \xi_{a1}} (x-a)^\beta,$$
\[
\frac{\partial \xi_{a}^{\alpha}}{\partial \xi_{a1}}(x-a)^{\beta} = \alpha_{1} \xi_{a1}^{\alpha_{1}-1} \xi_{a2}^{\alpha_{2}} \cdots \xi_{an}^{\alpha_{n}}(x_{1}-a_{1})^{\beta_{1}}(x_{2}-a_{2})^{\beta_{2}} \cdots (x_{n}-a_{n})^{\beta_{n}}
\]

\[
= \alpha_{1}(\alpha_{1}-1)!\alpha_{2}! \cdots \alpha_{n}! = \begin{cases}
\alpha! & (\alpha_{1} = \beta_{1} + 1, \ \alpha_{2} = \beta_{2}, \ldots, \ \alpha_{n} = \beta_{n}) \\
0 & \text{(otherwise)}.
\end{cases}
\]

Since
\[
\xi_{a}^{\alpha}(x_{1}-a_{1})(x-a)^{\beta} = \xi_{a}^{\alpha}(x_{1}-a_{1})^{\beta_{1}+1}(x_{2}-a_{2})^{\beta_{2}} \cdots (x_{n}-a_{n})^{\beta_{n}}
\]

\[
= \begin{cases}
\alpha! & (\alpha_{1} = \beta_{1} + 1, \ \alpha_{2} = \beta_{2}, \ldots, \ \alpha_{n} = \beta_{n}) \\
0 & \text{(otherwise)}.
\end{cases}
\]

We have
\[
\frac{\partial \xi_{a}^{\alpha}}{\partial \xi_{a1}}(x-a)^{\beta} = \xi_{a}^{\alpha}(x_{1}-a_{1})(x-a)^{\beta}.
\]

Therefore we have
\[
\frac{\partial \eta}{\partial \xi_{a1}}(g) = \sum_{\alpha} c_{\alpha} \sum_{|\beta| \leq d} c_{\beta}' \frac{\partial \xi_{a}^{\alpha}}{\partial \xi_{a1}}(x-a)^{\beta}
\]

\[
= \sum_{\alpha} c_{\alpha} \xi_{a}^{\alpha} \sum_{|\beta| \leq d} c_{\beta}'(x_{1}-a_{1})(x-a)^{\beta}
\]

\[
= \eta((x_{1}-a_{1})g).
\]

If \(g \in I^{d}(X) \), we have \((x_{1}-a_{1})g \in I^{d}(X)\).
This implies
\[
\frac{\partial \eta}{\partial \xi_{a1}}(g) = 0.
\]

Thus \(T^{d}(X) \) is \(D \)-closed with respect to \(\frac{\partial}{\partial \xi_{a1}} \).
3 Paratangent space [BMP1]

Let us put

$$E_0 := \{(a, \lambda \xi_a) : a \in X, \lambda \in \mathbb{R}, \xi_a \in \mathcal{P}_d^*\},$$

Let us fix a natural number $N \in \mathbb{N} \cup \{0\}$. We define E_k inductively as follows. If E_k is defined, we put

$$\Delta E_k := \left\{(a_0^k, a_1^k, \ldots, a_N^k, \eta_0^k + \cdots + \eta_N^k) : a_v^k \in X, \eta_v^k \in E_{k, a_v},
ight\}$$

$$|a_v^k - a_0^k|^{d-|\alpha|}|\eta_v^k(x - a_v^k)^{\alpha}| \leq 1, \; (|\alpha| \leq d, \; 0 \leq v \leq N\} \subset X^{N+1} \times \mathcal{P}_d^*.$$

and

$$E'_k := \pi(\Delta E_k \cap \{(a, \ldots, a, \eta) : a \in X, \eta \in \mathcal{P}_d^*\}),$$

where $\pi : X \times X \times \cdots \times X \times \mathcal{P}_d^* \to X \times \mathcal{P}_d^*$ denotes the canonical projection onto the first factor times \mathcal{P}_d^*.

We put

$$E_{k+1} := \bigcup_{a \in X} (\{a\} \times \text{Span}E'_{k, a}) \subset X \times \mathcal{P}_d^*$$

where $\text{Span}E'_{k}$ denotes the linear span of E'_k in the fibre. The sequence $E_0 \subset E_1 \subset E_2 \subset \cdots$ stabilizes and we have

$$E_k = E_{2 \dim \mathcal{P}_d^*} \quad (k \geq 2 \dim \mathcal{P}_d^*)$$

as a general property of Glaeser operation [G], [BMP1]. The saturation $\tau_d^N(X) := E_{2 \dim \mathcal{P}_d^*}$ is called the paratangent bundle of order d of X and the fibre $\tau_d^N(X)$ is called the paratangent space of order d of X at a.

Remark 3.1 We can replace the control condition

$$|a_v^k - a_0^k|^{d-|\alpha|}|\eta_v^k(x - a_v^k)^{\alpha}| \leq 1$$

by

$$|a_v^k - a_0^k|^{d-|\alpha|}|\eta_v^k(x - a_v^k)^{\alpha}| \leq c$$

with any $c > 0$ independent of k.
4 D-closedness of τ_N^d

We have defined that a liner subspace $A \subset P_d^\ast = \mathbb{R}[\xi_a]$ is called D-closed if it is closed with respect to all the derivations $\frac{\partial}{\partial \xi_{ai}}$ $(1 \leq i \leq n)$. Our main result is the assertion that τ_N^d is D-closed.

Theorem 4.1 The fibre $(\tau_N^d f)_a$ over a is D-closed.

This theorem follows from the following lemmas.

Lemma 4.2 Since an element of ΔE_k can be expressed as a linear combination of $\xi_{a_i}^\alpha$, we have

$$\eta_k^a := \sum_{\alpha} A_{\alpha} \xi_{a_i}^\alpha \in \tau_N^d(X) \quad (A_\alpha \in \mathbb{R}).$$

If the control condition

$$|a_k^a - a_0^k|^{d-|\alpha|} |\eta_k^a(x - a_k^a)| \leq 1$$

is satisfied, we have

$$|a_k^a - a_0^k|^{d-|\alpha|} \left| \frac{\partial \eta_k^a}{\partial \xi_{a_i}^\alpha} (x - a_k^a) \right| \leq c$$

for a_k^a in a sufficiently small neighborhood of a_0^k and for constant $c > 0$ dependent only on n and d.

We have only to prove that in the case $i = 1$ without losing generality. We have

$$\frac{\partial \eta_k^a}{\partial \xi_{a_1}^1} = \frac{\partial}{\partial \xi_{a_1}^1} \sum_{\alpha} A_{\alpha} \xi_{a_1}^\alpha = \sum_{\alpha} A_{\alpha} \sum_{|\alpha| + |\beta| \leq d} \sum_{\alpha + \beta - \epsilon_i \geq 0} \frac{1}{\beta!} (a_k^a - a_0^k)^{\beta}(\alpha_1 + \beta_1) \xi_{a_0}^{\alpha+\beta-\epsilon_1}$$

by Lemma 1.1. Here $\alpha \geq \beta$ means $\alpha_i \geq \beta_i$ $(1 \leq i \leq n)$ for $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n)$. Accordingly we have

$$\left| \frac{\partial \eta_k^a}{\partial \xi_{a_1}^1} (x - a_k^a) \right| = \left| \sum_{\alpha} A_{\alpha} \sum_{|\alpha| + |\beta| \leq d} \sum_{\alpha + \beta - \epsilon_i \geq 0} \frac{1}{\beta!} (a_k^a - a_0^k)^{\beta}(\alpha_1 + \beta_1) \xi_{a_0}^{\alpha+\beta-\epsilon_1} (x - a_k^a)^\alpha \right|$$
\[
\leq \sum_{\alpha} |A_{\alpha}^{k}| \sum_{|\alpha| + |\beta| \leq d} \frac{\alpha_{1} + \beta_{1}}{\beta!} |a_{\alpha}^{k} - a_{0}^{k}\alpha! (1 + |a_{01}^{k} - a_{\alpha1}^{k}|)\].
\]

Since
\[
|a_{\nu}^{k} - a_{0}^{k}|^{d - |\alpha|} |\eta_{\nu}^{k}(x - a_{\nu})^{\alpha}| = |a_{\nu}^{k} - a_{0}^{k}|^{d - |\alpha|} |A_{\alpha}^{k}\alpha!| \leq 1,
\]
we have
\[
|a_{\nu}^{k} - a_{0}^{k}|^{d - |\alpha|} \left| \frac{\partial \eta_{\nu}^{k}}{\partial \xi_{a1}^{k}} (x - a_{\nu})^{\alpha} \right| \leq \sum_{\alpha} \sum_{\beta} \frac{\alpha_{1} + \beta_{1}}{\beta!} |(a_{\nu}^{k} - a_{0}^{k})^{\beta}| |\alpha! (1 + |a_{01}^{k} - a_{\alpha1}^{k}|)|.
\]

When we consider that \(a_{\nu}^{k}\) is sufficiently close to \(a_{0}^{k}\), we can assume
\[
|a_{\nu}^{k} - a_{0}^{k}| \leq \frac{1}{d} \left(\frac{(n! d!)^{2}}{(n + d)!} \right).
\]

Hence we have
\[
|a_{\nu}^{k} - a_{0}^{k}|^{d - |\alpha|} \left| \frac{\partial \eta_{\nu}^{k}}{\partial \xi_{b1}^{k}} (x - a_{\nu})^{\alpha} \right| \leq \left(\frac{(n + d)!}{(n! d!)^{2}} \right)^{d} \left\{ 1 + \frac{1}{d} \left(\frac{(n! d!)^{2}}{(n + d)!} \right)^{d} \right\}.
\]

Let \(c\) denotes the right constant. Then we obtain the desired estimate. \(\square\)

Lemma 4.3 If \(b \to a\) and \(\eta \to \eta'\), we have \(\frac{\partial \eta}{\partial \xi_{bi}} \to \frac{\partial \eta'}{\partial \xi_{ai}}\).

Proof. We have only to prove that in the case \(i = 1\) without losing generality. We know that
\[
\frac{\partial \eta}{\partial \xi_{b1}} = \sum_{j} \frac{\partial \xi_{aj}}{\partial \xi_{b1}} \frac{\partial \eta}{\partial \xi_{aj}} = \sum_{j} \sum_{|\beta + e_{j}| \leq d} \frac{1}{\beta!} (a - b)^{\beta} (\beta_{1} + \delta_{j1}) \xi_{b}^{\beta+e_{j}-e_{1}} \frac{\partial \eta}{\partial \xi_{aj}}
\]
because of
\[
\xi_{aj} = \sum_{|\beta + e_{j}| \leq d} \frac{1}{\beta!} (a - b)^{\beta} \xi_{b}^{\beta+e_{j}}.
\]
We have \(\sum_{j} \delta_{j1} \xi_{a}^{e_{j}-e_{1}} = 1\). Here \(\delta_{ij}\) denotes the Kronecker delta \((\delta_{ii} = 1, \delta_{ij} = 0 (i \neq j))\). Therefore we have \(\frac{\partial \eta}{\partial \xi_{b1}} \to \frac{\partial \eta}{\partial \xi_{a1}} (b \to a)\). Since the linear map
$\frac{\partial}{\partial \xi_{a1}} : \mathcal{P}_d^* \rightarrow \mathcal{P}_d^*$ is continuous as a linear map for the vector space of the finite dimension, we have $\frac{\partial \eta}{\partial \xi_{a1}} \rightarrow \frac{\partial \eta'}{\partial \xi_{a1}}$ ($\eta \rightarrow \eta'$) is satisfied. Thus, if $b \rightarrow a$ and $\eta \rightarrow \eta'$ are satisfied, we have $\frac{\partial \eta}{\partial \xi_{b1}} \rightarrow \frac{\partial \eta'}{\partial \xi_{a1}}$.

\[\text{References}\]

