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ABSTRACT

In this paper, we apply Himmelberg’s fixed point theorem to establish existence the-
orems of two families of vector generalized quasi-optimization problems. We apply our
results to establish existence theorems of systems of generalized vector-quasi-equilibrium

problems. Systems of weak loose quasi-saddle point problem.

1 Introduction

Recently, Lin (7] considered simultaneous vector quasi-equilibrium problem and proved
existence results for its solution. By using these results, he derived existence results for a
solution of vector quasi-saddle point problem.

In the recent past, systems of scalar ( vector ) equilibrium problems, systems of scalar
( vector ) generalized equilibrium problems, systems of scalar (vector) quasi-equilibrium
problems, and systems of scalar ( vector ) generalized quasi-equilibrium vproblems are used
as tools to solve Nash equilibrium problem ( for vector-valued functions ) and Debreu type
equilibrium problem(for vector-valued functions), respectively, see for example [1, 2, 3, 4,

5] and references therein.
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Very recently, Ansari et al. [6] considered systems of simultaneous generalized vector
quasi-equilibrium problem and proved existence results for its solution by scalarization
method. By using these results, they derived existence existence results of a solution of
system of vector quasi-saddle point problem.

Let I be any index set. For each i € I, let E,-; V; and Z; be real locally convex
topological vector spaces (in short, t.v.s.). For each ¢ € I, let X; C E; be a nonempty
convex set and Y; C V; a nonempty convex set. Let X = [[..;X; and Y = [].., Vi
" Foreach i € I,let S; : X xY —o X; be a multivalued map with nonempty values and
T:. : X xY — Y, be a multivalued map with nonempty values. Let C; : X xY —o
Z; be a multivalued map such that for each (z,y) € X x Y, Ci(z,y) is a cone and
intCi(z,y) # 0. Let F;: X xY x X; —o Z; be a multivalued map with nonempty values
and G;: X XY x Y; — Z; be a multivalued map with nonempty values.

Throughout this paper, we use these notation unless otherwise specified.

We first consider two families of vector generalized quasi-optimization problems :
Find a (Z,7) € X x Y such that for each i € I, &; € Si(z,9), % € Ti(z,9), Fi(%,7,%;) N
wMine,z 4 Fi(Z,9, Si(Z,7)) # 0 and Gi(Z,7,%) N WMin(h(:E,ﬁ)Gi(f’g’ Ti(z,7)) # 0.

For the special case of above problems is systems of simultaneous generalized vector
quasi-equilibrium problem for multivalued maps.
Find a (Z,5) € X x Y such that for each i € I, &; € Si(Z, ), % € Ty(z, 9), Fi(3,7,:) N
(—intCi(Z, 7)) = 0 for all z; € Si(Z,y) and Gi(Z,F, %) N(—intCy(T,5)) = 0 for all y; €
Ti(%, 5)-
If F; and G; are single-valued maps. will be reduced to find a (Z,%) € X X Y such that
for each i € I, &; € Si(%,7), #: € Ti(Z,9), fi(Z,7,z:) ¢ (—intCi(Z, 7)) for all z; € Si(Z,7)
and gi(Z, ¥, v) ¢ (—intCi(Z,§)) for all y; € Ty(Z, 7).
This problem is a generalization of in Ansari et al. 5].

In section 4, we consider the following systems of weak loose quasi-saddle point prob-

lem.

Find Z = (Z:)ier € X and § = (%i)ier € Y such that for each i € I, ; € Si(Z,9), % €
T‘,(i’, g)7 Lt’(z—i’ gi)ana'xci(!,ﬂ)Li(Si(i: !7)’ y-t) # 0 and Li(fi, gi)aninCdt,ﬂ)Ll'(ii’ ’I’S(E) g)) 3&
@, where L,' : X,' X K —o Zi.
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In this paper, we prove existence theorems of two families of vector generalized quasi-
optimization problems by Himmelberg's fixed point theorem. Then we apply our results to
study existence theorem of systems of weak loose quasi-saddle point problem and systems
of generalized vector quasi-equilibrium problems. These results improved and generalized

some main results in [5].

2 Preliminaries

Throughout this paper, all topological spaces are assumed to be Hausdorff.

Definition 2.1. Let Z be a real t.v.s., D a convex cone in Z with intD # @, and A é,
nonempty subset of Z. Let y;, y» € A, we denote y; < v2, f o —y1 € D; 31 < ¥, if
Y2 — 1 € intD.

A point § € A is called a vector minimal point of A if for any y € A, y—5 ¢ —D\ {0}.
A point § € A is called a weakly vector minimal point of A if for any y € A, y—7 & —intD.

The set of vector minimal(resp. weakly vector minimal ) points if A is denoted by MinpA

(resp. wMinpA).

3 Existence Results for a Solution of Two Families of
Vector Generalized Quasi-Optimization Problems

Theorem 3.1. For each i € I, let S; be a continuous compact multivalued maps with
nonempty closed convex values and T; be a continuous compact multivalued maps with

nonempty closed convex values. For each i € I, assume the following conditions are |
satisfied :

(i) Ci(z,y) is a closed convex pointed cone with apex at the origin and intCi(z,y) # 0 ;
(ii) the map W;: X x Y —o Z; defined by Wi(z,y) = Z; \ intCi(z,y) is uis.c. ;

(iii) F; is a continuous multivalued map with nonempty compact values such that for
any fixed (z,y) € X x Y, Fi(z,y,u;) is properly quasiconvex in u; ; and



122

(iv) G; is a continuous multivalued map with nonempty compact values such that for

any fixed (z,y) € X x Y, G;(z,y, v;) is properly quasiconvex in v;.

Then there exists a (Z,5) € X x Y such that for each i € I, & € Si(Z,9), % € Ti(z,7),
Fi(Z,9,%:) NwMinc,@5 Fi(Z, 7, 5:(Z, 7)) # 0
and Gy(Z,7, ) N wMing,z4Gi(Z, 7, Ti(%,9)) # 0.

In particular, if for each i € I, for all z € X and y € Y, Fi(z,y,z:;) C Ci(z,y) and
Gi(z,y,¥:) C Ci(z,y). Then there exists a (Z,7) € X x Y such that for each i € I,
£; € Si(Z,5), % € T(Z ), FiZ8,2:) [ (~intCi(%,5)) = 0 for all z; € Si(z,7) and
Gi(Z,5,%) N (~intCi(z,§)) = 0 for all y; € Ti(Z, 7). |

Proof. For each i € I, since S; and T; are compact, there exist compact subsets D; C X;
and M; C Y such that S;(X x Y) C D; and Ty(X x Y) C M;. For each i € I and for all
(z,y) € X xY, define two multivalued maps ®; : X xY — D; and ¥; : X xY — M; by

®i(z,y) = {w € Si(z,y) : Fi(z,y, w:) N wMing,z4) Fi(z,y, Si(z,y)) # 0}

and

‘I’;(.’B, y) = {'Ut' € Ti(-’b‘, y) . G,'((D, Y, ’U,') n wMinCi(z,y)Gi(zay) T;(:c,y)) 3& m}

Since S; : X x Y —o X; is a compact multivalued map with nonempty closed values, S;
has nonempty compact values. Since F; : X XY x X; — Z; is u.s.c. with compact values,
Fi(z,y, Si(z,y)) is a nonempty compact set for each i € I, @ # Ming,(» ) Fi(z,y, Si(z,y)) C
wMing,q4) Fi(z,y, Si(2,v))-
Then there exists k; € wMing,(zy) Fi(z,y, Si(x,y)) such that k; € Fi(z,y,u;) for some
u; € Si(z,y). Therefore, ®;(z,y) # 0 for each i € I and for all (z,y) € X x Y. Suppose
there exist some (z,y) € X x Y and some i € I such that ®;(z,y) is not a convex subset
of Si(z,y). Then there exist v},v? € &;(z,y) and t € [0, 1] such that

to} + (1 - t)o} ¢ Bi(z, ). (1)
We have v} € Si(z,v), v? € Si(z,v), |

Fi(z,y,v}) N wMing,4) Fi(z,y, Si(z,y)) # 0.

and E(za Y, 'U?) n u’MinC’;(z,u)F‘i(x’ v, si(za y)) # @
Thus, there exists a} € Fi(z,y,v}) such that for each b; € Fi(z,y, Si(z,v)),
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b; — a} ¢ —intCi(z,y) (2)
and there exists a? € F;(z,y, v?) such that for each b; € Fi(z,y, Si(z,v)),

b; — a? ¢ —intCi(z, y). (3)
Since S; : X x Y —o X; is a multivalued map with nonempty convex values,

| tv} + (1 — t)v? € Si(z,y). (4)
By (1) and (4), we have
Fi(z,y,tv; + (1 - t)v}) NwMing,(zy) Fi(z, y, Siz, y)) = 0. (5)

Then for each ¢ € Fi(z,y,tv} + (1 - t)v?), there exists d. € Fy(z,y, Si(z,y)) such that
d. — c € —intCi(z, y). (6)
By (2), (3) and conditions (iii), there exists z,;,2 € Fi(z,y, tv} + (1 —t)v?) such that either
a; — Za1a2 € Ci(z,Yy) (7)
or a? — Za1a2 € Ci(z, 7). (8)

Without lost of generality, we may assume that (7) is true, then by (5), there exists
dz.}.a € Fy(z,y, Si(z,y)) such that
‘ dsy.3 — Zata? € —intCi(z,y). (9)
By (7), 2s1a2 — 0} € —C’,-(:;:,‘y) and (9), we have
d,a‘l“‘12 —al! = (dz.g..? — Zg3a3) + (Zataz — @}) € (—intCi(z,y)) + (—Ci(z,y))
C —intCi(z,y). (10)
By (2) and (10), we have a contraction. Therefore, for each i € I and for all (z,y) € X xY,
®,(z,y) is a convex subset of S.-(a:, Y)-
For each (z,y,u;) € Gr(®;), there exists (z,y%,u¢) € Grd; and (z*,y*,ud) —
(z,9,%). One has uf € S;(z*,y*) and
Fi(z®,y*,ud) N wMing,(za yo) Fi (2%, y*, Si(z®,y*)) # 0. (11)
Since u$ € Si(z*,y*) and S; is u.s.c. with closed values, u; € Si(z,y). By (11), there
exists {b¢} in Z; such that '
b € F,-(z"‘,y"',u?) NwMing,(ga yay Fi(z*, y*, Si(z*,y*)) foreach a. (12)
Let K = {(z*,y*,u®) : @ € A} U {(z,y,w)}. Then K is a compact set. By conditions
(iif), F;(K) is a compact set in Z;. By (12), there exists a subnet {67} of {62} such that
W = b; € Fy(K).
Since bY € F;(2®,4%,4%) and F; is closed, b; € Fy(z,y,u;). Since ¥ e Fi(zP,9°,uP),
b € Fi(z,y,w).
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We need to show b; € wMing, (s, Fi(x,y, Si(z,y)).

For each ¢; € Fi(z,y, Si(z,y)), we have d; € S;(z,y) such that

¢ € Fi(z,y,d;).
Since S; is 1s.c. and d; € Si(z,y), there is a net {d’} such that d° € S;(z%,y°) and
d? — d;. Since F; is Ls.c., and ¢; € Fi(x,y,d;), there is a net {c°} such that

¢! € Fy(zP,y?,d°) and # — ¢;. ' (13)
By (12) and (13), ¢ — b ¢ —intCi(2®,y?)

& W - & € Z;\ intCi(aP, yP) = Wi(aP, yP)
By condition (ii), W; is a closed map and then b — ¢; € Wi(z,y). Therefore, c; — b; ¢
(—intCi(z,y)) for all ¢; € Fy(s,y, Si(z,y)) and
b € wMing,(z ) Fi(z,y, Si(z,y)). (14)

By (14) and b € Fi(z,y,w), b; € Fi(z,y,u) N wMinc,(z ) Fi(z,y, Si(z,y)). Since u; €
Si(z,y), u; € ®;(z,y) and (z,y,u;) € Gr®;. Therefore, ; : X x Y —o D; is a closed map
for each i € I, it follows that ®; is u.s.c..

Since ®; is closed, ®;(z,y) is a closed set for each (z,y) € X x Y and each i € I.
Similarly, for each ¢ € I, ¥; is u.s.c. and ¥(z,y) is a closed set for each (z,y) € X x Y
and each i € I.

For each i € I, define the multivalued map A; : X xY — D; x M; by

Ai(z,y) = (Pi(z,y), Vi(z,y)) for all (z,y) € X x Y.

Then for each i € I, A, is u.s.c. with nonempty compact convex values. Let D = [Lic: Ds
and M = [];c; Mi. The multivalued map A : X xY — D x M defined by A(z,y) =
[Lic; Ai(z,y) is u.s.c. with nonempty compact convex values. By Himmelberg fixed point
theorem [6], there exists a point (Z,3) € D x M such that (Z,7) € A(Z,7). This means
- for each i € I, Z; € Si(Z,9), Ui € Ti(Z,9), Fi(Z,7,%:) N wMing,z4Fi(Z,7,S:(z,9)) # 0
and Gy(Z, §, %) N wMing,245Gi(%, 7, Ti(Z, 7)) # 0.
Then there exists b € Fi(&, §, %;) such that for each ¢ € Fi(%, 7, Si(Z,7)),

c—b ¢ —intCi(%,9) ‘ |
If Fi(z,y,z;) C Ci(z,y), it is easy to see that Therefore, Fi(Z, 7, z:) () (—intCi(Z,7)) =0
for all z; € S;(%,7) and Gi(Z,7,%:) ) (—intCi(Z,5)) = 0 for all y; € T(Z, 7).

Remark 3.1. Theorem 3.1 is still true if condition (iii) is replaced by
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(iii)’ F; is a continuous multivalued map with compact values and for any fixed (z,y) €
X xY, Fi(z,y,w) is C(z,y) quasiconvex in u;.

With the same arguments as Theorem 3.1, we have the following theorem.

Theorem 3.2. In theorem 3.1, if the condition (iii) of Theorem 3.1 is replaced by

(iii') Fi: X x Y x X; —o Z; is a continuous multivalued map with nonempty compact
values such that for any fixed (z,y) € X x Y, F(z,y,u;) is properly quasiconcave
in u;.

Then there exists a (Z,7) € X x Y such that for each i € I, & € Si(Z,7), % € Ti(%,7),
'Fi(i’ Y, Ei)anazC%(:E,ﬂ)F;(E’ y, Si(i"y g)) :Ié Q and Gi(j’ga gi)aninQ(i,ﬁ)Gi(f’ 'g’ T’S(E’ g)) '7'£
0.

Corollary 3.1. If conditions (iii) and (iv) of Theorem 3.1 is replaced by (iii)’ and (iv)’

respecetiy, where

(i) fi: X xY x X; — Z; is a continuous function such that for all £ = (z;)icr € X
and y € Y, fi(z,y,%;) € Ci(z,y) and for any fixed (z,y) € X x Y, the map

u; = fi(z,y,u;) is properly quasiconvex.

(iv)" gi : XxY xY; = Z; is a continuous function such that for all z € X and y = (¢ )ier €
Y, gi(z,y, %) € Ci(z,y) and for any fixed (z,y) € X x Y, the map v; = gi(z,y, %)

is properly quasiconvex.

Then there exists a (Z,7) € X x Y such that for each i € I, %; € Si(Z,7), % € Ti(Z,7),
fi(Z,9,2:) ¢ (—intCy(Z,5)) for all z; € Si(%,7) and gi(Z, 5, ) ¢ (—intCi(z,§)) for all
Yi € Tlt(f’ g)

Corollary 3.2. In Theorem 3.1, if we assume that (i), (ii) and

(iii) F; : X x Y x X; —o Z; is a continuous multivalued map with nonempty compact
values such that for all z € X and y € Y, Fi(z,y, ;) C Ci(z,y), and for any fixed

(z,y) € X XY, Fi(z,y,u;) is properly quasiconvex in u;.
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Then there exists a (Z,7) € X X Y such that for each i € I, ; € Si(%,9), % € Ti(%,7)
and Fi(Z,§,x:) () (—intCi(z,y)) = 0 for all z; € Si(z,y).

Corollary 3.3. In Theorem 3.1, if we assume (i) (ii) and

(iii) Gi : X xY xY; — Z; is a continuous multivalued map with nonempty compact
values such that for any fixed (z,y) € X x Y, Gi(z, y, ) is properly quasiconvex in

V.

Then there exists a (Z,7) € X x Y such that for each i € I, &; € Si(Z,9), % € Ti(Z, ),
and Gi("Es g’ gl) N WMz'nCY(:B,ﬁ)Gi(jv Y, T't(f:; g)) 75 0

4 Applications to Systems of Loose Quasi-Saddle Point
Problem and Constrained Competitive Nash-Type
- Equilibrium Problems

Theorem 4.1. Let I, F;, V;, Z;, X;, Y;, X, Y, S; and T; be the same as in Theorem 3.1.

Suppose that conditions (i), (ii) of theorem 3.1 are true. Suppose that
(iil) L; : X; x Yi —o Z; is a continuous multivalued map with nonempty compact values ;

(a) for any fixed y; € Y;, L;(xs, y:) is properly quasiconcave in z; ; and

(b) for any fixed z; € X;, L;(z;, ;) is properly quasiconvex in y;.

Then there exists a  — (£:)ier € X and § = (Z)ies € Y such that for each i € I,
T; € Si(z,9), % € Ti(Z,9), L&, %) N wMazc,(z,5)Li(S:(Z,9), %) # 0 and Li(zi, %) N
wMing,(s,g) Li(%:, Ti(Z, §)) # 0.

Proof. For each i € I, let Fi(x,y,u;) = Li(u;, %) and Gi(z,y, ;) = Li(z;, v;).
Then Theorem 4.1 follows from Theorem 3.2.
If L; is a single valued map, we have the following systems of vector quasi-saddle point

problem.
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Corollary 4.1. For eachi € I, let S; : X — X, be a continuous compact multivalued
map with nonempty closed convex values and T} : Y — Y; be a continuous compact mul-

tivalued map with nonempty closed convex values. For each i € I, assume the following

conditions are satisfied.

(i) C;: X —o Z; is a multivalued map such that for each ¢ € X, Ci(z) is a closed

convex pointed cone with apex at the origin and intCi(z) # 0 ;
(ii) the map W; : X —o Z; defined by Wi(z) = Z; \ intC;(z) is us.c. ;
(iil) L; : X; x Y; = Z; is a continuous map such that

(a) for any fixed y; € Y;, Li(x:,y;) is properly quasiconcave in z; ; and

(b) for any fixed z; € X;, Li(z;,y:) is properly quasiconvex in ;.

Then there exists a Z = (£i)ic;s € X and § = (#)icz € Y such that for each i € I,
I; € S;(f), Y € fn(ﬂ), L.-(a?.-,;tj,-) - L,'(Z,‘,y_,') ¢ (—-intC;(z‘:)) for all z; € S.'(f). and
L,'(f, y.) - L,‘(fi, g,) ¢ (—’th.(a‘;)) for all Y € :n(ﬂ)
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