<table>
<thead>
<tr>
<th>Title</th>
<th>UNIQUENESS AND EXISTENCE FOR SPIRAL CRYSTAL GROWTH (Viscosity Solution Theory of Differential Equations and its Developments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>GOTO, Shun'ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2007), 1545: 136-139</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/80753</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
UNIQUENESS AND EXISTENCE FOR SPIRAL CRYSTAL GROWTH

北に道教育大学 札幌校 後藤俊一 (GOTO, Shun'ichi)
Hokkaido University of Education

In [2] Ohtsuka studied on a crystal growth of spirals and proposed us to use a level set method. Since the conventional level set method (see [1]) could not express spiral curves having the orientation, he modified the conventional method by using a sheet structure function.

Let Ω be a bounded domain of \mathbb{R}^2 with the smooth boundary and let $B_{\rho_j}(a_j)$ be N screw dislocations in Ω, which are disks small enough with $a_j \in \Omega$ and $\rho_j > 0$ so that $\overline{B_{\rho_j}(a_j)} \subset \Omega$ and $B_{\rho_j}(a_j) \cap B_{\rho_k}(a_k) = \emptyset$ if $j \neq k$. We denote

$$ W = \Omega \setminus \left(\bigcup_{j=1}^{N} \overline{B_{\rho_j}(a_j)} \right). $$

The level set equation for his spiral crystal growth on W is

$$ u_t - |\nabla(u - \theta)| \left\{ \text{div} \frac{\nabla(u - \theta)}{|\nabla(u - \theta)|} + C \right\} = 0 \quad \text{in } W, $$

with the boundary condition of Neumann type

$$ \langle \nu, \nabla(u - \theta) \rangle = 0 \quad \text{on } \partial W. $$

Here C is a constant, ν is the unit normal vector of ∂W and $\theta(x) = \sum_{j=1}^{N} m_j \arg(x - a_j)$ for $m_j \in \mathbb{Z} \setminus \{0\}$. We note that $\theta(x)$ is a multi-valued function, but $\nabla \theta$ is single-valued. When Γ_t is the spiral curve, it must be defined

$$ \Gamma_t = \{ x \in \overline{W} : u(t, x) - \theta(x) \equiv 0 \mod 2\pi m \mathbb{Z} \}. $$

Here m is the greatest common divisor of $|m_j|$. Ohtsuka proved the following results.
Comparison Theorem. Let u and v be a viscosity subsolution and a supersolution of (1) and (2), respectively. If $u^*(0,\cdot) \leq v_*(0,\cdot)$, then we have $u^*(t,x) \leq v_*(t,x)$ for any $t > 0$.

Existence Theorem. For any given $u_0 \in C(\overline{W})$ there exists a unique global-in-time viscosity solution $u \in C([0,\infty) \times \overline{W})$ of (1) and (2) with initial data $u(0,\cdot) = u_0$.

This note is a short remark for the Ohtsuka's theory, that is, we would like to consider the uniqueness of Γ_t. It means that, for a given initial spiral Γ_0, we choose u_0 an initial function satisfying

$$\Gamma_0 = \{x \in \overline{W} : u_0(x) - \theta(x) \equiv 0 \mod 2\pi m \mathbb{Z}\},$$

the Existence Theorem says that there exists a unique solution u, but we can choose v_0 an another initial function satisfying

$$\Gamma_0 = \{x \in \overline{W} : v_0(x) - \theta(x) \equiv 0 \mod 2\pi m \mathbb{Z}\}$$

and we get a unique solution v. Our question is

$$\{x \in \overline{W} : u(t,x) - \theta(x) \equiv 0 \mod 2\pi m \mathbb{Z}\}$$

and

$$\{x \in \overline{W} : v(t,x) - \theta(x) \equiv 0 \mod 2\pi m \mathbb{Z}\}$$

are tracing the same spiral curve?

The paper [1] solved this uniqueness problem for the case of closed curves. The key step is to construct the order changing function satisfying $u_0(x) \leq G(v_0(x))$, when, generally, u_0 and v_0 are not maked order each other. Since G is nondecreasing, if $v(t,x)$ is a viscosity supersolution, then $G(v(t,x))$ is also a viscosity supersolution. By using the Comparison Theorem we see that $u(t,x) \leq G(v(t,x))$, which leads us to compair the level sets of u and v.

We try to extend this key idea to the spiral case. Applying the Ohtsuka's method in [2] we first introduce the covering space of \overline{W} like

$$\mathfrak{X} = \{(x,\xi) \in \overline{W} \times \mathbb{R}^N : \xi = (\xi_1, \cdots, \xi_N), \ (\cos \xi_j, \sin \xi_j) = \frac{x - a_j}{|x - a_j|}\}$$
and assume that
\[
\left\{ (x, \xi) \in \mathcal{X} : u_0(x) - \sum_{j=1}^{N} m_j \xi_j > 0 \right\} = \left\{ (x, \xi) \in \mathcal{X} : v_0(x) - \sum_{j=1}^{N} m_j \xi_j > 0 \right\}.
\]

We construct an order changing function G with
\[
u_0(x) - \sum_{j=1}^{N} m_j \xi_j \leq G \left(v_0(x) - \sum_{j=1}^{N} m_j \xi_j \right) \text{ for } (x, \xi) \in \mathcal{X}.
\]

The important properties for G are nondecreasing and satisfying the periodical condition
\[(\#) G(s) = G(s + 2\pi m_j) - 2\pi m_j. \] Basically, G is modified from
\[
G_1(s) = \sup \left\{ (\tilde{u}_0(y, \eta))_+ : (y, \eta) \in \mathcal{X}, \tilde{v}_0(y, \eta) \leq s \right\}.
\]

Here $\tilde{u}_0(y, \eta) = u_0(y) - \sum_{j=1}^{N} m_j \eta_j$, $\tilde{v}_0(y, \eta) = v_0(y) - \sum_{j=1}^{N} m_j \eta_j$ and $(a)_+ = \max\{a, 0\}$.

Finally, we obtain

Invariance Lemma. Let ν be a viscosity supersolution with initial data $\nu(0, \cdot) = \nu_0$ and define
\[
(3) \quad w(t, x) = G(v(t, x) - \theta(x)) + \theta(x)
\]
in the sense of some meaning in the covering space (because $\theta(x)$ is multi-valued). Then we have w is a viscosity supersolution with $w(0, \cdot) = w_0$.

The meaning of the definition (3) is the following: We denote that
\[
\mathcal{L} = \bigcup_{j=1}^{N} \mathcal{L}_j, \quad \mathcal{L}_j = \left\{ x \in \overline{W} : \frac{x - a_j}{|x - a_j|} = (-1, 0) \right\}
\]
and $\Theta_j(x) = \text{Arg}(x - a_j)$ is the principal value of the argument which is a function from $\overline{W} \setminus \mathcal{L}_j$ to $(-\pi, \pi)$. Then, $\Theta(x) = \sum_{j=1}^{N} m_j \Theta_j(x)$ is a single-valued function with a jump discontinuity on \mathcal{L}. However, since G is periodic like $(\#)$, we see that
\[
g(x) = \begin{cases} G(f(x) - \Theta(x)) + \Theta(x) & \text{if } x \in \overline{W} \setminus \mathcal{L}, \\ \lim_{y \to x} \{G(f(y) - \Theta(y)) + \Theta(y)\} & \text{if } x \in \mathcal{L} \end{cases}
\]
is continuous on \mathfrak{L}.

We must discuss here about the construction of an initial function u_0 for a given Γ_0, which gives us the existence result on the growth of Γ_t. The author hopes it will be stated in a forthcoming paper.

This research was started by Maki Nakagawa as the master's thesis [3] in a simple case, which is supervised by the author. After that, Takeshi Ohtsuka and the author have revised and completed it.

REFERENCES

3. 中川真紀, 結晶のらせん転位によるスパイラル成長について — 運動の一意性と定義関数の構成 —, 2003 年 1 月, 金沢大学修士論文.