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Maximum principle via the iterated comparison
function method

Shigeaki Koike (/i 75AE)
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1 Introduction

In this note, we present several maximum pr.inéiples for .LP-viscosity solutions of fully
nonlinear but uniformly elliptic/parabolic partial differential equations (PDEs for short).
Our maximum principles are extentions of Aleksandrov-Bakelman-Pucci (ABP for short)
type for elliptic case, and of ABP-Krylov-Tso for parabolic case. g

We will work in a bounded open set Q2 C R™ for the elliptic case, and in Q:=0x(0,T)
with a fixed T > 0 for the parabolic case. We will denote by B, the open ba.ll w1th center .
at the origin and the radus r > 0. .

We denote by S™ the set of n x symmetric r'natrices with the standard ordering <;

X<Y <= (X6€ <0 forVeeR™
Throughout this paper, we at least suppose ' '

2 .
D> g for the elliptic case and, p > nt for the parabolic case.

We use the standard LP-norm in a domain U ¢ R™ (m = nor n+1); |- l| vy However,
we denote by || - ||, both || - || sy and |- lzeqy if there is no confusion. We also use the
following notation:

LE(U)={ue LP(U) | u>0ae mU}

In what follows, given a function f : U — R, when we dlscuss it in a la.rger set V, we
utilize the zero extention of f by the same f.

Freezing the uniform ellipticity constants 0 < A < A, we denote by S} A the set of all
A€ S"such that \T < A< Al

Then, we define the Pucci operators P*: for X € S*,

P*(X) = max{—trace(AX) | A€ Sial, PT(X) = min{—trace(AX) | A € S}, }.
An easy observation is that for X,Y € $™, ' |
PIX)+P (V)SP(X+Y) <SP (X)+PHY) S PHX +Y) < PH(X) +PH(Y),

which has a roll of “linearity” of fully nonlinear operators P=.



2 Elliptic case

Without loss of generality, we may suppose that QC B;.
Let us consider the most general PDEs of second-order in the elliptic case:

F(z,u,Du,D*u) = f(z) inQ, (1)

where F: @ x R x R" x " — R and f : Q@ — R are given measurable functions, and F
is continuous in the last three variables.

Definition. We call u € C(Q) an LP-viscosity subsolution (resp., supersolution) of (1)
if
essliminf{F(y, u(y), Dé(y), D*(y)) - f(y)} < 0

(rep. - esslimaun (P00, ), Dot D906 - £01} 2 0)

whenever ¢ € W2P(Q) and z €  is a local maximum (résp., minimum) point of u — ¢. |
We then call u € C(Q2) an LP-viscosity solution of (1) if it is an LP-viscosity subsolution
and an LP-viscosity supersolution of (1).
In order to memorize the right inequality, we will often say tha,t u is an LP-viscosity
subsolution of
F(z,u, Du, D*u) < f(:z:) etc.

Definition. We also call u € W2P(Q) an LP-strong subsolution (resp., supersolution)
of (1) if u satisfies

F(z,u(z), Du(z), D*u(z)) - f(z) <0 (resp., >0) a.e. in Q.
We then call u € W2P(Q) an LP-strong solution of (1) if the equality holds in the above.

Remark. Notice that we do not assume that f € LP(Q). Thus, if u is an LP-viscosity |
subsolution of (1), then it is also an Lf-viscosity subsolution of (1) provided ¢ > p.

Now we suppose the uniform ellipticity for F":
P (X-Y)< F(z,r,p,X) — F(z,7,p,Y) S PH(X =)
forzeQ,r €R,peR" and X,Y € S*. Typical examples ofFa.ré

F(z,r,p, X) = X 1gg\’_{—i:ra,ce(A(.'z;z,_7)X) + (é(z;z,y),p) + c(z; 1, 7)r},
where for M, N > 1, functlons z € O — A(z;4,7) € S}y, ¢ € Q — b(z;4,5) € R® and
T — c(z;1,7) are measurable (1 < ¢ < M, 1 < j < N). Notice that the above F is
non-convex and non-concave in general.



Under the uniform ellipticity assumption, we notice that if u is an LP-viscosity subsolu-
tion of (1), then it is also an LP-viscosity subsolution of

P~ (D*u) + F(z,u, Du, 0) < f(z).

Therefore, for the sake of simplicity, instead of (1), we shall study the maximum principle
for

P™(D*) - u(2)|Du| = f(z) inQ. (2)

Proposition 1. There exist C; = Cik(n,A,A) > 0 (k=1,2) such that if f,u € Ly (),
and u € C(Q) N W2T(R) is an L"-strong subsolution of (2), then we have

- maxu < maxu + Crexp(Cef| lln) | flln- / (3)

Remark. In the above statement, we can replace ||f|l, by ||f]| L~(T{u)), Where T'[u] is
the upper contact set of u in Q. See Gilbarg-Trudinger’s book for the definition of I'[u].
From Proposition 1, it is trivial to obtain the corresponding result for LP-strong super-
solutions of
P*(D) + u(z)|Du| 2 f(z) inQ

by taking » = —u, which is an LP-viscosity subsolution of
P (D*) - u(@)|Dv] < —f(z) in Q.

Thus, we will give results oﬁly for subsolutions. :
To utilize the “iterated comparison function method”, we often use the following exis-
tence result for extremal equations (see [3]).

Proposition 2. There exists py = po(n, A/)) € [n/2,n) satisfying the following: If p >
po and (1 satisfy the uniform exterior cone condition, then there are C = C(n,p, A\,A) > 0
such that for f € LP(Q), there is an LP-strong solution v € C(Q) N WZP(Q) of

PH( D) = f(x) in Q,
v=0 on 612

such that _
—ClifllpLv< C’Hf*’l]p in Q.

Moreover, for each open set Q' @ , there is C' = C'(n, p, \, A, dist(£Y,00)) > 0 such that

lvllwae@y < C'll£llp-

In this section, A © B means 4 C B.

To show Proposition 1 for LP-viscosity solutions, when ¢ is unbounded (i.e. 4 € LI(Q)
with 1 < g < oo in our case), it is not trivial even if we suppose f = 0. (When u € L®(Q),
we may apply a techinque as in our first paper [10].) :



The next proposition is a restatement of Lemma 2.11 of [8] although our assumption
that suppu @ Q seems restrictive (cf. [8]).

Proposition 3. Let {2 satisfy the uniform exterior cone condition. For
g=p>n or ¢g>p=mn, (4)

we suppose f € LP(), and p € LL(Q) with suppy Q. Then, there exist an LP-strong
supersolution u (resp., LP-strong subsolution v) € C(f1) N W2P(Q) of

{ P~ (D?u) — u(z)|Dul 2 f(z) inQ, (resp { P*(D*) + p(z)|Dv| £ f(z) inQ, )
u=0 ondN V =0 ondQ

such that : _
lulloo (resp., ||vlleo) < Crexp(Collpslla)llf I,

where C: and C; are the constants from Proposition.1. Moreover, for each open ' @« (2,
we have

lullwasi@) (xesp., [ollwas@n) < C(n,p, A, A, ||pllq, dist (ﬂ’ )| flp-

Now, we present an LP-viscosity version of Proposmon 1.

Proposition 4. Assume (4). Then, there exist C; = Cix(n,A\,A) > 0 (k = 1,2) such
that if f € LE(Q), p € LL(Q), and u € C(Q) is an LP-viscosity subsolution of (2), then we
have ' ’

mg.xu < maxu + Crexp(Calltlln) | £l

Proof. Fix ¢ €>0. Reca.lhng 1 C By, from Proposition 2, we find an LP-strong subsolu-
tion v € C(Bz2) N W2P(B,) of

{ P*+(D%) + u(z)|Dv| £ —f(z) — € in By,
y =0 on aBg

such that
0= —v < Ciexp(Callplla) (| flln +€)  in By,

It is easy to check that w ;= u + v is an LP-viscosity subsolution Qf
P~ (D*w) — u(z)|Dw| < — in Q.

Hence, if w attains its maximum at z € (, the definition of LP-viscosity subsolutlons y1e1ds
a contradiction. Thus, we have
maxw = maxw,
a an

which implies that

<nm —v).
mgxu_z%%xu+mgx( v)



This gives the result follows by letting ¢ — 0. O _
Next, we consider the case of py < p < n, which extends that in [8] and [9].

Theorem 5. Assume py < p < n < ¢, and m = 1. There exist an integer N = N (n,p,q)
and C = C(n, A, A,p,q) > 0 such that if f € L2(Q), p € Li(Q), and u € C(Q) is an L*-
viscosity subsolution of (2), then we have '

N-1 :
maxu < e+ C {oxp (Gl Il + 3 1l 171y

Idea of proof. Due to Proposition 2, we find an LP-strong solution v; € C(Bg,) N
vvlig’(BRz) of
P*(D*n) = —f(z) in By,
v1 =0 on 9B,
such that 0 < —v; < C||f|lp in B;. By the Sobolev embedding, we have

1wl 5y ) < Cllf (5)

Here and later, forn > p > 1, np

We will also use C > 0 to denote various universal constants. _
By setting w; = u +v; in Q, it is easy to see that w; is an LP-viscosity subsolution of

>0. .

P~(D*wy) — w(z)| Dwn| < p(z)|Dui(z)| =: folz) in Q.
By (5) and the Hélder inequality yield
“f2”L‘"(Bs/z) < “N”q“DUIHLP‘(Ba/,) < C”#”q”f“m

where ¢ = npg/{(n — p)g + pn}. Note ¢; > p.
“Let us suppose ¢, > n; p > ng/(2g — n). In view of Proposition 4, we have

mgxwl < r%%x w) + CleXP(C;'”H"n)"fz”qv '
which implies
maxu < mg.x'wl + mgx(—vl) |
< maxu+ C||fll, + C1Cexp(Callplln) lullqll fll,-
If ¢ < n, then we use the L% -strong solution v; € C(Ba/g) N W22 (By/s) of

PH(D%,) = —fo(z) in Bj,
V Vg = 0 on 333/2



to derive the eqaution satisfied by ws := w; + vg;
P~ (D*ws) — p(z)|Dwgl < fi(z),

where f; € L%(Bs/4) with go > ¢;. We keep on this procedure to arrive the situation
gnv > n. Thus, we may apply Proposition 4 to conclude our result. O

Next, for m.> 1, we consider the PDE
P~ (D?*u) — u(z)|Du|™ = f(z) in Q. (6)

In order to show the maximum principle for (6), we need some restrictions as in [10] because
there is a counter-example (see [11]).

Theorem 6. Assumen < p < g, and m > 1. Then, there exist § = d(n, A\ A, m,p, q) >
0 and C = C(n, A, A,m,p,q) > 0 such that if f € L% (), /JEL (),

Ilfllp “ullg <6

and u € C(Q) is an LP-viscosity subsolution of (6), then we have

maxu < maxu +C (Ifllp + £l I1ulle) -

The idea of proof of Theorem § is a combination of those in [10] and Theorem 4.
Following the argument used in the proof of Theorem 5, we can now extend Theorem 6
to the case when p € (po, n].

Theorem 7. Assume pgo < p < n < ¢, and m > 1. Denote ayp = 0 and a; =
I+m+---4+m*?! for k > 1. Then, there exist an integer N = N(n,m,p, g)=>21,6=
d(n,\,A,m,p,q) >0 and C = C(n, A\, A,m,p,q) > 0 such that if f € LL(Q), u € Li(Q),

ng(m-1) | |
P> (7)

Nim—- -
IFIF" =D pllgvim=D+t < 4,

‘and u € C(Q) is an LP-viscosity subsolution of (6), then we have

: N+41
maxu < maxu+C Y llsll2* L £l
k=0

Remark. When 1 < m < 2~ n/q, (7) is automatically satisfied.



DIAGRAM 1 - P~ (D%) ~ pu(z)|Du|™ < f(z) => maxu — maxu < C x RHS

m wWELI felLP restriction RHS
n<p<Lg<o . '
C
orm=p<q<oo | othing exp(Cllulin) 1 flln
{ezp(Cllslla)lully
N

iy HMHZ} 1£1,
k=0

m=1|po<p<n<gq<oo |Nothing

m>1[n<p<g<oo 171l < 36 11 + DA el
ng(m — 1)
: p> m—, N+1 .
m>1|p<pin<g<o ”f”ma"'(m-l)”u”nN(m—l)+1 Z II#llZ”Ilfll;"
35 ) =0
<

Recall gy =14+ m +-.-mF-1,
We notice that when m > 1, pp < p and ¢ = 00, we obtained the maximum principle
with/without restriction in [10].

3 Parabolic equations

In this section, we consider parabolic PDEs in Q := Q x (0, 7], where Q C B again, and
0 <T <1 for simplicity. For 1 < p < oo, the parabolic Sobolev space W21?(Q) is deﬁned
by | '
w»(Q) = {u € I”(Q) : ws, Du, Du € ()}

In this section, we denote the parabolic boundary by Gp@ =0 x {0} UIQ x [0,T).

We will also use the space Wi2e?(Q) = {u: Q = R : u € W2L?(Q) for all Q' « Q},
where in this section, Q' © Q means dist(Q’, 5,Q) > 0. ' .

The parabolic distance between (z,t) and (y, s) is defined by

dist((z,2), (v, 5)) = (Iz =yl + |t - s|)}.
We recall the definition of LP-viscosity solution of general fully nonlinear parabolic PDEs.
Definition. We call u € C(Q) an LP-viscosity éuBsolution (resp., supersolution) of
Ut + F(z,t,u, Du, D*u) = f(z,t) in Q, (8)
if

o {6:(v,9) + F(y,5,u(y, ), Dg(y, 5), D*(y, s)) — f(y,5)} < 0



» (resp.., €38 hmsup {¢t(y, S) + F(ya S, u(y, S), D‘b(’!/: 5)) D2¢(y: S)) - f(y) 5)} > 0)

(v,8)€Q—(z,2)

whenever ¢ € W2?(Q) and (z,t) € 2x (0, T) is a local maximum (resp., minimum) point

of u — ¢. :

We call u € C(Q) an LP-viscosity solution of (8) if it is an LP-viscosity sub- and super-
solution of (8). '

As in the elliptic case, we call u € W2"*(Q) an LP-strong solution of (8) if u satisfies

uy(z,t) + F(z, ¢, u(z,t), Du(z,t), D?u(z, t)) = f(z, t) a.e. in Q.

As in section 2, we will establish maximum principles for the following simpler parabolic
PDE

us + P~ (D%u) — pu(z,t)|Dul™ = f(z,t) inQ, (9)

where m > 1.
The following version of maximum principle can be derived from [13].

Proposition 8. Let m = 1, f € L%*!(Q) and p € L"*(Q). Then, there exist
Ck = Ck(n,\,A) > 0 (k = 1,2) such that if u € C(Q) N WZ™(Q) is an L™+-strong
subsolution of (9), then we have

mex < max u + C1exp(Col|plln+1) || fllns1-
Q 5,Q

We may also refine the above estimate using the upper contact set (see [13] for the
details). . o

In this section, we fix p; = p(n, A/)A) € ((n+2)/2,n+1) to be the “parabolic” constant
that gives the range of exponents for which the following generalized maximum principle
holds (see [7]): for p > p;, there is a constant C = C(n, A, A, p) such that if f € LP(Q) and
u € C(Q) NWEI?(Q) satisfies u, + P~ (D) < f (z,t) a.e. in @, then we have

maxu < maxu + C|| f¥|l,.
xu < maxu + C| £,
We recall results on solvability of extremal equations and on estimates of Du.

Proposition 9. Let p > p1. There exists C = C(n,\,A,p) > 0 such that for
f € L?(Q), there exists an LP-strong solution u € C(Q) N W2HP(Q) of :

| { us + PH(D%u) = f(z,t) in Q,

u=0 an §,Q, (10)

such that
=Cllf llp <u<C|ft], inQ.



Moreover, for each set Q' & Q, there exists C' = C'(n, A, A, p, dist(Q’, 5,Q)) > 0 such that

lullwz1rgy < C'll flp-

To study (9), as in the elliptic case, it is important to know the L®-estimate of Du from
the embeddings:

Proposition 10. (cf. Theorem 7.3 in (5]) Let p > p;. For ea.ch set @ & Q, there
exists C = C(n, A, A, p, dist(Q’, 8,Q)) > 0 such that if u € C(Q)NW2P(Q) is an LP-strong
solution of (9), then we have

 IDulle@) < Clllullzmza + Ifll) Ep>n+2,
|1 DullLe @y < Clllullz=a, + Iflls) if p € (1,7 +2).
Here and later, p* above is defined by '

»_ p(n+2)
n+2-p

We present a parabolic version of Proposition 3:

for p<n+2.

Proposition 11. Let  satisfy the uniform exterior cone condition.
g=2p>n+2 or ¢g>p=n+2, (11)

f € LA(Q), and let ¥ € C(8,Q). Let u € LL(Q) satisfy suppy Q. Then, there exist
Lp-strong subsolutions u (resp., LP-strong supersolution v) € C(Q) N W2P(Q) of

ue + P~ (D%u) — u(:v t)|Du| 2 f(z,t) inQ,
u=0 on dpQ,

(resp. { v + P+(D%) + p(z,t)| Do < f(z,t) inQ, )
‘ L v=0 on §,Q

such that ,

lull L= (@) (resp., ||v||Leo(Q)) < C’lexp(anul[n_‘_l)||f”n+1,

where C) and C; are constants from Proposition 8. For each Q' © Q, we have

lullwz1r(q) (reSP-’ [vllw210qr) ) < C(n,p, M A, || pll o), dist (@, Be@) flle(@)-  (12)
By following the proof of Proposition 4, Proposmon 10 allows us to obtain the followmg
maximum principle.

Proposition 12. Assume (11) and m = , 1. Then, there exist Cy = Ci(n,\,A) > 0
(k =1,2) such that if f € L% (Q), » € LL(Q), and u € C(Q) is an LP-viscosity subsolution
of (9), then we have

max < maxu + Crexp(Calllnsa) | fllnsr-
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We first show that if u € LP(Q), then even for m > 1, we do not need to assume that

Il or || fllp is small. Recall that such a restriction is necessary in the elliptic case as
discussed in [10] and [11].

Theorem 13. Assume n +2 < p < gq and m > 1. Then, there exixts C =
C(n, A, A,p,m) > 0 such that if f € L£(Q), u € LP(Q), and u € C(Q) is an LP-viscosity
'subsolution of (9), then we have

maxu < maxu + C(|fll + lluflell F15")
We next extend Theorem 13 to the case p € (p1,n +2].

Theorem 14. Assume p; < p < n+ 2 < g, and m > 1. Then, there exist an integer
N =N(n,p,m) 2 1 and C = C(n, A\, A,p,m) > 0 such that if f € L,(Q), u € LL(Q),

p> (m-—lf)n(n+2)’ ’ (13)

and u € C(Q) is an LP-viscosity subsolution of (9), then we have

: N
maxu < maxu+ C (Hfll;“ 5 lullE+ nunz”“nfu;") .

Remark. We remark that when m € [1,2], since p; > (n+2)/2 > (m — 1)(n + 2)/m,
the restriction (13) is not necessary. ‘
Next, we discuss the case when m =1 in (9) but 4 € LI(Q) with ¢ > n + 2.

Theorem 15. Assume p; <p<n+2<gq,and m = 1. Then, there exist an integer
N = N(n,p,q) 2 1 and C = C(n, A, A,p,q) > 0 such that if f € L%(Q), u € L1(Q), and
u € C(Q) is an LP-viscosity subsolution of (9), then we have ‘

‘ © N-1
mgcu < e+ C {exp(Clllns Y + 3 Il 171
Q »Q . k=0
Finally, we give sufficient conditions under which the maximum principle for (9) with
m > 1 holds true. The first result corresponds to Theorem 6 for elliptic PDEs.

Theorem 16. Assume n;|-2 < p < ¢g,and m > 1. Then, there exist § = d(n, A\,A, m,p,q) >
0 and C'=C(n,A,A,m,p,q) > 0 such that if f € L% (Q), u € L1(Q),

I£1z lully < o,
and u € C(Q) is an LP-viscosity subsolution of (9), then we have

maxu < maxu+ C(Ifllp+ el A1)



11

Our last result extends Theorem 16 to the case of pr<p<n+2

Theorem 17. Assume p; <p<n+2<gq. Denoteay=0and ax =1+m+---+mk-1
for £ > 1. Then, there exist an integer N = N(n,m,p,q) > 1, § = §(n, )\, A, m, p, g)>0
and C = C(n,\,A,m,p,q) > 0 such that if f € LE(Q), p € LL(Q),

S (m—1)g(n+2)

14

P
and u € C (Q) is an LP-viscosity subsolution of (9),
£ 15l < 6,

then we have

. N+1 .
mgeu < g+ { 3 Il .

Remark. If1 <m < 2~ (n+2)/q, the restriction (14) is not necessary.

DIAGRAM 2 u; + P~ (D) — u(z,t)|Dul™ < f(z,t) => max u — Igax u < C x RHS

m uwell felL? restriction RHS
m>1|n+2<pq=oo Nothing 1 £llp + liellooll FlIZ:
N
: -1 2 m k
m21|p<p<n+2g=co |p> ™ 3,5"+ ) ”f""z;)"y'“w
2
~ I P s T
< ,
m=1] " +t2<psg<o Nothing exp(Cllpllns1) | flln+1
orn+2=p<g<oo :
{exp(Cllulnr) IR
m=1 <p<n+2<q< o |Nothin ' N-l
e ! ¢ + 3 Nl 11l
e k=0
m>1n+2<p<Lg< WA Hlelle < 35 £ llp + 1Al leellg
(m —1)g(n +2)
p> mg—n—2 " N+1 b
m>1Ipp<p<n+2<g<oo. “f“maN(m—l)“#“au(m—l)-l-l Z ”#“:" ”f"p
Elg g k=0
<
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