<table>
<thead>
<tr>
<th>Title</th>
<th>On asymptotics of a second order linear O.D.E with a turning-regular singular point (Functional Equations Based upon Phenomena)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakano, Minoru</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1547: 27-33</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/80808</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
§1. Introduction.

1.1. The differential equation studied is

\begin{equation}
\varepsilon^2 \frac{d^2 y}{dx^2} - \left(x^m - \frac{\varepsilon}{x} \right) y = 0,
\end{equation}

where \(x_0 \) and \(\varepsilon_0 \) are constants. This differential equation has a turning point and a regular singular point, both of which are situated at the origin. We do not have a one-step-method to obtain an asymptotic approximation to the solution as \(\varepsilon \to 0 \) in the whole domain \(D = \{ x : 0 < |x| \leq x_0 \} \), so we split (1.1) into two different types of the differential equation whose solutions are obtained separately (§2) and then we connect them by a so-called matching matrix in a common domain as shown in §4.

1.2. The differential equation (1.1) is represented in the matrix form:

\begin{equation}
\varepsilon \frac{dY}{dx} = \begin{bmatrix} 0 & 1 \\ x^m - \varepsilon/x & 0 \end{bmatrix} Y,
\end{equation}

where \(Y \) is a 2-by-2 matrix. (1.2) has the first two terms of

\begin{equation}
\varepsilon \frac{dY}{dx} = \left\{ \begin{bmatrix} 0 & 1 \\ x^m & 0 \end{bmatrix} + \varepsilon \begin{bmatrix} 0 & 0 \\ -1/x & 0 \end{bmatrix} + O(\varepsilon^2) \right\} Y.
\end{equation}

If \(O(\varepsilon^2) \) is small for \(x \in D \) and \(\varepsilon \), then a solution of (1.3) is a regular perturbation of one of (1.2) with respect to a small \(\varepsilon \). In this sense (1.2) is dominant to (1.3)

Our aim is to get two types of the formal solution of (1.1) and match them as \(\varepsilon \to 0 \). In order to do it, analyzing Stokes curve configuration is important (§3). The case of \(m = 1 \)
has been studied in Nakano [5].

Remark: We do not show any proofs or illustrations as they would take many pages.

§2. The reduced equations.

2.1. The differential equation (1.2) is written in the form

\[x^{(m+1)/2}(x^{-m-1}\varepsilon)\frac{dZ}{dx} = \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + (x^{-m-1}\varepsilon) \begin{bmatrix} 0 & 0 \\ -1 & -mx^{m/2}/2 \end{bmatrix} \right) Z, \]

where \(Y := \text{diag}[1, x^{m/2}] Z \). This differential equation is called an outer equation of (1.2) and it should be analyzed when \(x^{-m-1}\varepsilon \to 0 \), that is, for \(x \) in a sub-domain \(S := \{ x : K\varepsilon^{1/(m+1)} \leq |x| \leq x_0 \} \) \((K = \text{large constant})\) of the whole domain \(D \). A solution of (2.1) is called an outer solution of (1.2).

Theorem 2.1. The formal outer solution \(\tilde{Y}_{out} \) of (1.2) is given by

\[\tilde{Y}_{out} := x^{m/4} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} e^{\frac{1}{\varepsilon} \alpha}, \]

\[\alpha := \frac{2}{m+2\varepsilon} x^{(m+2)/2} + \frac{1}{m} \frac{1}{x^{m/2}}, \]

or

\[\tilde{Y}_{out} := \begin{bmatrix} x^{-m/4} & 0 \\ 0 & x^{m/4} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^{\alpha} & 0 \\ 0 & e^{-\alpha} \end{bmatrix}, \]

which is the leading term of an asymptotic expansion of a true outer solution of (1.2), namely, there exists a true outer solution \(Y_{out} \) such that

\[Y_{out} \sim \tilde{Y}_{out} \quad (x^{-m-1}\varepsilon \to 0) \]

in an outer domain, i.e., in a sector

\[S_m := \{ x : K\varepsilon^{1/(m+1)} \leq |x| \leq x_0, \quad -\frac{\pi}{m+2} < \arg x < \frac{3\pi}{m+2} \}. \]

Notice that the arguments of \(x \) in the above sector \(S_m \) correspond to the arguments of the boundaries of a canonical domain \(C_m^\infty \) (cf. (2.10)). \(\tilde{Y}_{out} \) is an outer WKB approximation.
to the solution of (1.2) of a matrix form.

2.2. We reduce (1.2) to another form in the complement $C := \{ x : 0 < |x| < K \varepsilon^{1/(m+1)} \}$ of the sub-domain S, i.e., $D = C \cup S$. Let $x := \varepsilon^{1/(m+1)} t$ (a stretching transform) and $Y := \text{diag}[1, \varepsilon^{m/2(m+1)}] U$, then (1.2) becomes a form such as

\[
\varepsilon^{m/2(m+1)} \frac{dU}{dt} = \begin{bmatrix} 0 & 1 \\ p(t) & 0 \end{bmatrix} U \quad \left(p(t) := t^m - \frac{1}{t} \right),
\]

which has a very similar form to (1.2) but lacks a term of ε and is called an inner equation of (1.2). The origin $t = 0$ is a regular singular point and zeros of $p(t)$ are turning points of (2.6), which are called secondary turning points of (1.2). A solution of (2.6) is called an inner solution of (1.2).

Theorem 2.2. The formal inner solution \tilde{Y}_{in} of (1.2) is given by

\[
\tilde{Y}_{in} := \begin{bmatrix} 1 & 0 \\ 0 & \varepsilon^{m/2(m+1)} \end{bmatrix} \begin{bmatrix} p & 0 \\ 0 & p^{1/4} \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} e^\beta \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},
\]

\[
\beta := \frac{1}{\varepsilon^{m/2(m+1)}} \int^t \sqrt{p} \, dt,
\]

or

\[
\tilde{Y}_{in} := \begin{bmatrix} 1 & 0 \\ 0 & \varepsilon^{m/2(m+1)} \end{bmatrix} \begin{bmatrix} p^{-1/4} & 0 \\ 0 & p^{1/4} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} e^\beta & 0 \\ 0 & e^{-\beta} \end{bmatrix},
\]

which is the leading term of the asymptotic expansion of a true inner solution of (1.2), namely, there exists a true inner solution Y_{in} of (1.2) such that

\[
Y_{in} \sim \tilde{Y}_{in} \quad \text{as} \quad \begin{cases} \varepsilon \to 0 \\ t \to \infty \end{cases}
\]

in a canonical domain

\[
\mathbb{C}_m^\infty := \left\{ t : 0 < |t| < \infty, -\frac{\pi}{m+2} < \arg t < \frac{3\pi}{m+2} \text{ near } t = \infty \right\}.
\]

\tilde{Y}_{in} is an inner WKB approximation to the solution of (1.2) of a matrix form. The property (2.9) is called the double asymptotic property (Fedoryuk [2]).
§3. Stokes curves and the canonical domains.

3.1. A Stokes curve for (2.6) is, by definition, a set of points t's given by

\[(3.1) \quad \{t : \Re \xi(a, t) = 0\},\]

where

\[(3.2) \quad \xi(a, t) := \int_a^t \sqrt{p} \, dt \quad (p(a) = 0).\]

An anti-Stokes curve of (2.6) is defined by an equation

\[(3.3) \quad \Im \xi(a, t) = 0 \quad (p(a) = 0).\]

These curves are particular level curves defined by $\Re \xi(a, t) =$ const. and $\Im \xi(a, t) =$ const., namely, they are the curves of level zero.

The global property of Stokes curve configuration for a general rational function $p(t)$ is well known in Evgrafov-Fedoryuk [1], Fedoryuk [2] and Nakano [6]-[7], and Fukuhara [3], Hukuhara [4] and Paris-Wood [8] for a local property of Stokes curves. The outline of the Stokes curve configuration for (2.6) is as follows:

Theorem 3.1. The Stokes and anti-Stokes curves for (2.6) possess the following properties:

(i) The origin $t = 0$ is a regular singular point from which one Stokes curve and one anti-Stokes curve emerge.

When $m =$ odd, two lines $t < -1, 0 < t < 1$ on the real axis are Stokes curves, and two lines $-1 < t < 0, 1 < t$ are anti-Stokes curves.

When $m =$ even, a line $0 < t < 1$ on the real axis is a Stokes curve and two lines $t < 0, 1 < t$ on the real axis are anti-Stokes curves.

(ii) The point at infinity $t = \infty$ is an irregular singular point and $m+3$ Stokes curves emerge from (or tend to) $t = \infty$ at angles $\pm \frac{\pi}{m+2}, \pm \frac{3\pi}{m+2}, \pm \frac{5\pi}{m+2}, \ldots$.

Also, $m+3$ anti-Stokes curves emerge from (or tend to) $t = \infty$ at middle angles between neighboring two Stokes curves.

(iii) All the zero $t = e^{2k\pi i/(m+1)}$ ($k = 0, 1, 2, 3, \ldots$) of $p(t)$ are situated on the unit circle $|t| = 1$ symmetrically with respect to the real axis and they are simple secondary
turning points. From a turning point \(t = e^{2k\pi i/(m+1)} \) three Stokes curves emerge at angles
\[
\pm \frac{\pi}{3} + \frac{4k\pi}{3(m+1)}, \quad \pi + \frac{4k\pi}{3(m+1)}.
\]
Three anti-Stokes curves emerge from every zero at middle angles between neighboring two Stokes curves.

(iv) There is a Stokes curve connecting \(\alpha := e^{2k\pi i/(m+1)} \) and \(\alpha^* := e^{2\pi i - 2k\pi t/(m+1)} \). This Stokes curve crosses the anti-Stokes curve \(-1 < t < 0\) and can not cross lines \(t < -1 \) or \(0 < t < 1 \).

(v) There is an anti-Stokes curve connecting \(\alpha := e^{2k\pi i/(m+1)} \) and \(\bar{\alpha} := e^{-2k\pi i/(m+1)} \). This anti-Stokes curve crosses only the Stokes curve \(0 < t < 1 \).

(vi) Any Stokes curve (resp., any anti-Stokes curve) can not cross other Stokes curves (resp., anti-Stokes curves) except for at turning points or at \(t = \infty \).

(vii) A Stokes curve and an anti-Stokes curve emerging from a turning point tend to another turning point or to \(t = \infty \).

(viii) Any Stokes curve or any anti-Stokes curve can not cross itself.

(ix) When a point \(t = \alpha \) is a turning point or a simple pole, there are no (sums of) Stokes or anti-Stokes curves homotopic to a circle surrounding \(\alpha \). Therefor there are no circle-like Stokes or anti-Stokes curves for (6.1).

3.2. A canonical domain on the \(t \)-plane (or the Riemann surface) is, by definition, a simply connected domain bounded by Stokes curves which is mapped by \(\xi = \xi(a, t) \) onto the whole \(\xi \)-plane except several slits. Refering Theorem 3.1 we can get several canonical domains whose illustration is omitted here.

Existence domains \(S_m \) and \(C_m^\infty \) of the outer and the inner solutions have a common part where two solutions relate linearly. This linear relation is represented by a so-called matching matrix. The matrcing matrix \(M := [m_{ij}] \) between \(Y_{out} \) and \(Y_{in} \) is defined by the equality \(Y_{out}M = Y_{in} \); i.e.,

\[
(4.1) \quad \tilde{Y}_{out}M \sim \tilde{Y}_{in} \quad (\varepsilon \to 0).
\]
Theorem 4.1. The matching matrix defined by (4.1) is given by

\[
M \sim \varepsilon^{m/4(m+1)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad (\varepsilon \to 0).
\]

§5. The main theorem.

Summing up the results so far, we can get

The main theorem. The differential equation (1.1) (or (1.2)) possesses a formal outer solution (an outer WKB approximation) (2.2) (or (2.3)) which is an asymptotic expansion of the true outer solution in a sector (i.e., an outer domain) (2.5) as \(x^{-m-1} \varepsilon \to 0 \). The differential equation (1.1) possesses a formal inner solution (an inner WKB approximation) (2.7) (or (2.8)) which is an asymptotic expansion of the true inner solution in a canonical domain (i.e., an inner domain) as \(\varepsilon \to 0 \) or \(t \to \infty \). The arguments of the outer domain's boundaries are \(-\pi/(m+2) \) and \(3\pi/(m+2) \), and those of the inner domain's boundaries are identical for a large \(t \), and two domains have a common part in which the outer and the inner solutions are related by the matching matrix (4.2).

References

[1] Evgrafov, M. A. and M. V. Fedoryuk, Asymptotic behavior as \(\lambda \to \infty \) of solutions of the equation \(w''(z) - p(z, \lambda)w(z) = 0 \) in the complex \(z \)-plane. Uspehi Mat. Nauk 21, or Russian Math. Surveys 21 (1966), 1-48.

