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INTRODUCTION

In $1980’ s$ , Hochster and Huneke introduced the notion of tight closure in
positive characteristic. They gave a very short proof of Brian\caon-Skoda the-
orem (in positive characteristic), and proved that any pure subring of regular
domain is Cohen-Macaulay using tight closures. Recently, tight closures give
us a powerful technique in the theory of commutative algebra. However, we
note that in the theory of tight closure, there are many open problems (Local-
ization, completion, etc.); see e.g. [13], [17].

Fedder and Watanabe [6] defined the notion of F-rational rings using tight
closures of parameter ideals, and have studied the relationship between them
and rational singularities. Smith [29] proved that any excellent F-rational local
ring is (pseudo-)rational, and Hara [7] and Mehta and Srinivas [25] proved the
converse under some mild conditions.

In 2003, Hara and the author [11] introduced the notion of ideal-adic tight
closure and defined the generalized test ideal, which is an anaJogue of the
multiplier ideals in Algebraic Geometry (in equi-characteristic zero). Roughly
speaking, the modulo $p$ reduction of a multiplier ideal for large enough $p$ co-
incides the generalized test ideal; see [11, Theorem 6.8]. On the other hand,
there exist several differences between them. For instance, one needs the exis-
tence of resolution of singularities and some vanishing theorems to define the $\cdot$

multiplier ideal. So one cannot define it in positive characteristic in the same
manner. However, the generalized test ideal can be defined in any rings of
positive characteristic.

The main purpose of this talk is to give a summary of the theory of ideal-adic
tight closures and the generalized test ideals. Let us explain the organization
of this report.

In Section 1, we summalize basic properties of tight closures associated de
scending filtration of ideals (e.g., ideal-adic tight closures). In particular, we
prove an existence of $a$.-test element for all filtration $a$. of ideals in an excellent
reduced local ring.

In Section 2, we introduce the notion of the generalized test ideal $\tau(a.)$ with
respect to filtration $a$. of ideals, and give basic properties of them; see [11] and
[9].

In Section 3, we give a proof of Skoda’s theorem, which is an analogue
of Skoda’s theorem with respect to multiplier ideals; see e.g., $[18, 19]$ . The
simplest version of Skoda’s theorem says that $\tau(a^{n})=\tau(a^{n-1})a$ holds for all
$n\geq d$ for any ideal a of a d-dimensional complete local ring $R$.
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In Section 4, we give a Howard-type theorem with respect to the generalized
test ideals for monomial ideals; see $[11, 3]$ . Let $a$ be a monomial ideal in a affine
toric ring. Then one can define not only the generalized test ideal for $a$ but aJso
the multiplier ideal for $\mathfrak{a}$ . Our result implies that both ideals coincide. This
is a generalization of Howald’s theorem on the multiplier ideals of monomial
ideals in a polynomial ring over a field $k$ .

In Section 5, we prove the rationality of jumping exponents for any ideal in
a polynomial ring over a petfect field $k$ (after Blickle, $Musta\mathfrak{g}\check{a}$ and Smith [4]).
As its application, we give an example of the multiplier ideal $\tau(f^{\Phi t(f)})$ which
is not integrally closed (not also radical!) in $k[x, y, z]$ .

In Section 6, we give a brief explanation of Restriction theorem and Subad-
ditivity Theorem.

In Section 7, we discuss about the question when $\tau(a)=\mathcal{J}(a)$ holds in a 2-
dimensional rational Gorenstein local domain. As a result, we prove that $\tau(a)$

is integraJly closed for any m-primary (integrally closed) ideal in such a ring.
It seems to be open whether $\tau(\mathfrak{a}^{t})$ is always integrally closed for a rational
number $t$ .

I was not able to discuss about some important properties of $\tau(a^{t})$ . I recom-
mend that you refer Watanabe’s, Hara’s and Takagi’s report for more details.

Acknowledgement. I thank Professor Kei-ichi Watanabe to give me an
opportunity to talk at this symposium. Also, I am grateful to Dr. Takeshi
Yoshizawa at Okayama University for taking notes of my talk and for sending
his report to me. I wrote this report based on his report.

1. IDEAL-ADIC TIGHT CLOSURES

1.1. Basic properties. Throughout this talk, let $R$ be a Noetherian ring
of characteristic $p>0$ , that is, $R$ contains a prime field $F_{p}=\mathbb{Z}/p\mathbb{Z}$ . The
Frobenius map (denoted by $F$ or $F_{R}$ ) is the homomorphism sending $a$ to $a^{p}$ .
The ring $R$ viewed as an R-module via the e-times iterated Frobenius map
$F^{e}$ : $Rarrow R(a-\rangle a^{p^{\epsilon}})$ is denoted by $eR$ . Then the map $F^{e}$ : $Rarrow eR$ is an
R-algebra homomorphism, and also it is identffied with the natural inclusion
map $Rarrow R^{1/p^{\epsilon}}$ provided that $R$ is reduced. For an R-module $M$ and $e\in N$ ,
we put $\mathbb{F}_{R}^{e}(M)=eR\otimes_{R}M$ and regard it as an R-module by the action of
$R=eR$ from the left. Then we have the induced e-times iterated Frobenius
map

$F^{e}$ : $Marrow F_{R}^{e}(M)$ $(m\vdasharrow m^{p^{\epsilon}} :=F^{e}(m) :=1\otimes m)$ .
For an R-submodule $N$ of $M$ and $q=p^{e}$ , we put

$N_{M}^{[q]}={\rm Im}(F_{R}^{e}(N)arrow F_{R}^{e}(M))=Ker(F_{R}^{e}(M)arrow F_{R}^{e}(M/N))$.
Note that $\mathbb{P}_{R}(N)arrow F_{R}^{e}(M)$ is not injective in general. For an ideal $I$ of $R$ ,
$I^{[q]}$ denotes the ideal generated by all elements $a^{q}$ for $a\in I$ . Then $I^{[q]}=I_{R}^{[q]}$

in the above sense.
Let $R^{o}$ denote the complement of the union of all minimal prime ideals of $R$ .

Let $\mathfrak{a}$. $=\{\mathfrak{a}_{n}\}_{n\in N}$ be a collection of ideals of $R$. Then $a$. is called a (descending)
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filtration of ideals in $R$ if the following conditions are satisfied:
$(a)$ $a_{m}a_{n}\subseteq \mathfrak{a}_{m+n}$ for all $m,$ $n\in N$ ;
$(b)$ $\mathfrak{a}_{1}\cap R^{o}\neq\emptyset$;
$(c)$ $\mathfrak{a}_{1}\supseteq a_{2}\supseteq a_{3}\supseteq\cdots$ .

Example 1.1. Let $a$ be an ideal of $R$ such that $\mathfrak{a}\cap R^{o}\neq\emptyset$. Then one can get
several examples of descending filtration of ideals $a$. as follows:

(1) $a_{n}=R$ for all $n\in N$ .
(2) $a_{n}=a^{n}$ for all $n\in N$ .
(3) $a_{n}=\overline{\mathfrak{a}^{n}}$ (the integral closure of $a^{n}$ ) for all $n\in N$.
(4) $\mathfrak{a}_{n}=\mathfrak{a}^{\lceil tn\rceil}$ for all $n\in N$, where $t$ is a given positive real number.
(5) $a_{n}=\mathfrak{a}^{(n)}=a^{n}R_{W}\cap R$ (the symbolic power of $a^{n}$), where $W$ is the

complement of the union of all associated prime divisor of $I$ over $R$.
Prvof We check the condition (a) in the case (4) only. Put $tm=M-\epsilon$ and
$tn=N-\delta$ , where $M,$ $N$ are integers and $0\leq\epsilon,$ $\delta<1$ . Then $\lceil tm\rceil=M$ and
$\lceil tn\rceil=N$ . Moreover, since $\lceil t(m+n)\rceil=\lceil M+N-(\epsilon+\delta)\rceil=M+N-\lfloor\epsilon+\delta\rfloor$ ,
we have

$a_{m}a_{n}=a^{M}\mathfrak{N}=\mathfrak{a}^{M+N}\subseteq a^{M+N-\lfloor e+\delta\rfloor}=a_{m+n}$ ,
as required. $\square$

Remark 1.2. Let $a$. be a descending filtration of ideals in $R$ . Then for any real
number $t>0$ , we can define another filtration of ideals $a^{t}$. as follows: $a_{n}^{t}=a_{\lceil tn1}$

for every $n\in N$ . Indeed, since $\lceil tm\rceil+\lceil tn1\geq\lceil t(m+n)$] we have
$a_{m}^{t}a_{n}^{t}=\mathfrak{a}_{\lceil tm\rceil}a_{\lceil tn\rceil}\subseteq a_{\lceil tm\rceil+\lceil tn\rceil}\subseteq a_{\lceil t(m+n)\rceil}$ .

For any (decending) filtration of ideals in $R$, we define the notion of a.-tight
closure, which gives a slight generalization of (a-)tight closure.

Definition 1.3 ([11, 9]). Let $\mathfrak{a}$. be a (decending) filtration of ideals in $R$ , and
let $N\subseteq M$ be R-modules. For $z\in M$ ,

$z\in N_{M}^{*a}$
$\Leftrightarrow^{def}$ $\exists c\in R^{o}su\$ that $cz^{q}a_{q}\subseteq N_{M}^{[q]}$ for all $q=p^{e},$ $e\gg O$ .

The R-module $N_{M}^{*a}$ is called the $a$.-tight closure of $N$ in $M$.
For an ideal $I$ of $R$ , we define $I^{*}"$ $=I_{R}^{*a}$ .

Remark 1.4. In case of $a$. $=\{R\},$ $N_{M}^{*a}=N_{M}^{*}$ is the tight closure introduced
by Hochster and Huneke [14]. Moreover, in case of $a$. $=\{\mathfrak{a}^{\lceil tn\rceil}\},$ $N_{M}^{ra}=N^{*a^{t}}$

is the $a^{t}$ -tight closure introduced by Hara and the author [11].

Remark 1.5 ([13, 14, 6]). A Noetherian ring $R$ is called weakly F-regular if
any ideal $I$ is tightly closed (i.e., $I^{*}=I$). The ring $R$ is $F$-mular if the
localization $R_{P}$ is weakly F-regular for any prime ideal $P$ in $R$. In fact, $R$ is
weakly F-regular if and only if $R_{\mathfrak{m}}$ is weakly F-regular for all maximal ideals
$\mathfrak{m}$ . But it is not known whether any weakly F-regular rin$g$ is F-regular or not;
see also [17].
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Assume that $R$ is reduced and F-finite, that is, $1R$ is finitely generated as
an R-module. Then $R$ is strongly F-regular if for every element $c\in R^{o}$ there
exists $q=p^{e}$ such that $c^{1/q}Rarrow R^{1/q}$ splits as an R-linear map. In fact,
strongly F-regular ring are F-regular.

Suppose that $(R,\mathfrak{m})$ is local. Then $R$ is F-rational if any parameter ideal is
tightly closed. Clearly, weakly F-regular rings are F-rational. Moreover, F-
rational rings are normal and Cohen-Macaulay if it is a homomorphic image
of a Cohen-Macaulay local iing.

Lemma 1.6. Let $\mathfrak{a}$. be a (descending) filtration of ideals in R. Let $N\subseteq M$ be
R-modules. Then

(1) $N\subseteq N_{M}^{*}\subseteq N_{M}^{*l}\subseteq M$ .
(2) If $N\subseteq N’\zeta M$ , then $N^{ra}\cdot\subseteq(N’)^{*a}\cdot$ . In particular, $N^{*a}\cdot\subseteq(N^{*\mathfrak{g}}\cdot)^{ra}\cdot$ .
(3) If $b$ . $\subseteq \mathfrak{a}.$ , then $N^{*b}\cdot\supseteq N^{*a}\cdot$ . If, in addition, $b$. $i8$ a reduction of $a.$ ,

that is, there exists $k\in N$ such that $b_{n}\subseteq a_{n}\subseteq b_{n-k}$ for every integer
$n>k$ , then equality holds.

(4) (0) $=N_{M}^{*a}/N$ .
(5) Put (0) $:=\cup(0)_{M}^{*\alpha}$., where $M’$ runs through all finitely generated

R-submodules of $M$ which contains N. Then (0) $\subseteq(0)_{M}^{l\mathfrak{g}}\cdot$ .
Proof. We prove the latter statement of (3) only. Suppose that there exists an
integer $k\in N$ such that $b_{n}\subseteq a_{n}\subseteq b_{n-k}$ for every integer $n>k$ . Then we must
show that $N^{sb}\cdot\subseteq N^{*Q}\cdot$ . Let $z\in N^{rb}\cdot$ . Then there exists an element $c\in R^{o}$

such that $cz^{q}b_{q}\in N_{M}^{[q]}$ for all $q=p^{e}\gg 0$ . Take an element $d\in a_{k}\cap R^{o}$ and fix
it. Then since $da_{q}\subseteq a_{q+k}\subseteq b_{q}$ , we have $(cd)z^{q}a_{q}\subseteq N_{M}^{[q]}$ , as required. $\square$

The following property is known as “Contraction property” in the theory of
tight closure.

Proposition 1.7 (Contraction). Let $Rarrow S$ be a module-finite extension of
Noetherian domains. Let $a$. be a filtration of ideals in R. For an ideal I of $R$,
we have

$I^{*Q}=(IS)^{ra}\cdot\cap R$ .

Proof. We omit it here. 口

For example, we can apply the above proposition to the case of excellent
local domains.

Example 1.8. Let $R$ be an excelent locaJ domain. Let $\overline{R}$ denote the integral
closure of $R$ in the quotient field of $R$ . Let $a$. be a filtration of ideals in $R$.
For an ideal $I$ of $R$, we have

$I^{*}$ $=(I\overline{R})^{*a}$ 口 $R$ .
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1.2. Test element. In this subsection, we prove an existence of a.-test ele-
ment for any filtration $a$. under some mild conditions.

Now let us recall the definition of a.-test element.

Definition 1.9. Let $\mathfrak{a}$. be a filtration of ideals in $R$ . An element $c\in R^{o}$ is
called an $a$.-test element of $R$ if $cz^{q}a_{q}\subseteq I^{[q]}$ holds whenever $I$ is an ideal of $R$

and $z\in I^{*a}$. and $q=p^{e}$ .

Remark 1.10. Suppose that $R$ is an excellent reduced local ring. Let $c\in R^{o}$

be an a-test element of $R$ . Then for any finitely generated R-module $M$ ,
$cz^{q}a_{q}=0$ holds in $F_{R}^{e}(M)$ whenever $z\in(0)_{M}^{*a}$ and $q=p^{e}$ ,

Theorem 1.11 (Existence of a.-test element). Let $R$ be a Noetheri,$an$

reduced ring, and $c\in R^{o}$ . Assume that either one of the following conditions
holds:

(1) $R$ is F-finite and $R_{c}$ is strongly F-regular.
(2) $R$ is of finite type over an excellent local ring and $R_{c}$ is Gorenstein

F-regular ( $e.g.$ , regular).
Then there exists a power $c^{n}(n\in N)$ is an $a$.-test element for any filtration

$a$. of ideals in R. Note that $n$ is independent on $a.$ .
In particular, any excellent reduced local ring has an element $c\in R^{o}$ which

is an $\mathfrak{a}$.-test element for any filtration $\mathfrak{a}$. of ideab in $R$ .
Proof. Let us give a sketch of the proof of (2) in the case $R_{c}$ is regular.

Step 1.: F-finite case.
The following lemma due to Hochster and Huneke is a key lemma in the

proof.

Lemma 1.12 ([13]). Assume that $R$ is F-finite and reduced. If the localization
$R_{c}$ of $R$ at $c\in R^{o}$ is strongly F-regular, then there exists an integer $n\geq 0$ ,
depending only on $R$ and $c$ , satisfying the following property: For any $d\in R^{o}$ ,
there evists a power $q’$ of $p$ and an R-linear map $\varphi:R^{1/q’}arrow R$ sending $d^{1/q’}$

to $c^{n}$ .
Assume that $R$ is F-finite, $c\in R^{o}$ and $R_{c}$ is strongly F-regular. In what

follows, we fix an intger $n\geq 0$ for which the above lemma holds. We claim that
$c^{n}$ is an a.-test element. Let $I$ be an ideal of $R$ and $z\in I^{*}".$ Fix $q=p^{e}$ . By
definition, there exists $d\in R^{o}$ such that $dz^{Q}a_{Q}\subseteq I^{[Q]}$ for all $Q=p^{E}$ . By the
above lemma, we can take a power $q’=p^{e’}$ and an R-linear map $\varphi:R^{1/q’}arrow R$

sending $d^{1/q’}$ to $c^{n}$ . For such a power $q’=p^{e’}$ we have
$dz^{qq’}a_{q}^{[q’]}\subseteq dz^{qq^{l}}\mathfrak{a}_{qq’}\subseteq(I^{[q]})^{[q’]}$ .

Taking a q’-root and applying $\varphi$ to both sides, we obtain that $c^{n}z^{q}a_{q}\subseteq I^{[q]}$ , as
required. Hence we get (1).

Step 2.: excelent case.
Assume that $R$ is of finite type an excellent local ring $B$ , and that $R_{c}$ is

Gorenstein, F-regular.
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First we assume that $B$ is complete local. Using $\Gamma$-construction argument
(see [15]), we can find an F-finite reduced Noetherian local ring $R^{\Gamma}$ such that
$Rarrow R^{\Gamma}$ is faithfully flat, $(R_{\Gamma})_{c}$ is Gorenstein, F-regular (and thus strongly
F-regular). By Step 1, there exists an integer $n\geq 0$ such that $c^{n}$ is $\mathfrak{a}.R^{\Gamma}$ -test
element in $R_{\Gamma}$ . This yields that $c^{n}$ is an a.-test element in $R$ . Indeed, let
$z\in I^{*a}$. and $q=p^{e}$ . Then $c^{n}z^{q}a_{q}\subseteq I^{[q]}R^{\Gamma}\cap R=I^{[q]}$ .

Next, we consider the general case. Assume that $R_{c}$ is regular 1. Put
$R’=R\otimes_{B}\hat{B}$ , where $\hat{B}$ is the $\mathfrak{m}_{B}$-adic completion of $B$ . Since $B$ is excellent,
if $R_{c}$ is regular, so is $R_{c}’$ . By Step 2, there exists an integer $n\geq 0$ such that $c^{n}$

is an a.R’-test element. Since $Rarrow R’$ is faithfully flat, one can conclude that
$c^{n}$ is an $a$.-test element using a similar argument as above. $\square$

1.3. Completion. In the theory of tight closure, it is important problem to
show that any tight closure of an excellent local ring commute with completion.
In this subsection, we discuss about a similar problem for ct-tight closure.

The following proposition gives a partial answer, which is known for original
tight closures.

Proposition 1.13 (Commute with completion). Let $R$ be an excellent
reduced local ring, and I an $\mathfrak{m}- p\dot{m}maw$ ideal. Then for any filtration $a$. of
ideals, we have $I$““ $\hat{R}=(I\hat{R})$“ $a$ .

Proof. Since $R$ is excellent and reduced, there exists an element $c\in R^{o}$ such
that $R_{c}$ and $\hat{R}_{c}$ are regular rings. By Theorem 1.11, we can pick $d=c^{n}$ such
that $d$ is an $\mathfrak{a}$.-test element and $a.\hat{R}$-test element. This yileds that $(I\hat{R})^{*4}\cdot\cap$

$R=I^{*0}\cdot$ . In particular, if $I$ is m-primary, then
$(I\hat{R})^{*Q}=$ ( $(I\hat{R})^{*a}$ 口 $R$) $\hat{R}=I^{*d}\hat{R}$ ,

as $r$明命 ed. 口

Remark 1.14. There exists a non-excellent local ring for which the above propo-
sition does not hold; Loepp and Rotthaus [22]. It is difficult to drop the as-
sumption that $\mathfrak{a}$ is m-primary. For non-reduced case, the problem remains
open.

We do not have any proof without reducedness of $R$ in Proposition 1.13.
But in the case of ideal-adic filtration, we can drop this assumption by virtue
of the following lemma.

Lemma 1.15 (Reduction to the domain case). Let $t\geq 0$ be a real number
and $a$ an ideal of R. Let $a_{o}$ be a filtmtion of ideals defined by $a_{n}=a^{\lceil tn\rceil}$ . Then
for an ideal I of $R$, we have

(1) $I^{*\mathfrak{g}}\cdot/\sqrt{0}=I^{*a}\cdot R_{red}=(IR_{r\alpha 1})^{*\emptyset}\cdot$ .
(2) For any $z\in R,$ $z\in I$““ if and only if $z+\mathfrak{p}\in(I\cdot R/\mathfrak{p})^{sa}\cdot$ .

1Note that you can reIax this assumption to that $R_{c}$ is Gorenstein F-regular by the
argument as in [15, Section 7]
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Proof. (1) It suffices to show that $(IR_{red})^{*a}\cdot\subseteq I^{*a}\cdot R_{r\text{\’{e}}}$ . Take a power $q’=p^{e’}$

such that $(\sqrt{0})^{[q’]}=0$ . Since $a\cap R^{o}\neq\emptyset$ , we can choose elements $a_{1},$
$\ldots,$

$a_{n}\in$

$\mathfrak{a}\cap R^{o}$ which generates $a$ . Put $a=a_{1}^{2q’}\cdots a_{n}^{2q’}\in R^{o}$. Then for any $q=p^{e}$ ,
$aa^{\lceil tqq’\rceil}\subseteq(a^{\lceil tq\rceil})^{[q’]}=(\mathfrak{a}^{[q’]})^{\lceil tq\rceil}$ .

Now suppose that $z+\sqrt{0}\in(IR_{red})^{*a}\cdot$ . Then there exists $c\in R^{o}$ such that
$cz^{q}\mathfrak{a}^{\lceil tq\rceil}\subseteq I^{[q]}+\sqrt{0}$ . This yields that $c^{q’}z^{qq’}(\mathfrak{a}^{\lceil tq\rceil})^{[q’]}\subseteq I^{[qq’]}$ . Since the left-hand
side contains $ac^{q’}z^{qq’}\mathfrak{a}^{\lceil tqq’\rceil}$ , we get the required result.

(2) We omit the proof. $\square$

Question 1.16. Does the lemma hold for geneml filtmtion $a$. of ideals ?

1.4. Localization. The localization problem in the theory of tight closure
remains open in general.

Question 1.17. Let $W$ be a multiplicatively closed subset in R. For any ideal
I of $R$, does $I^{*}R_{W}=(IR_{W})^{*}$ hold9

Of course, we can generalize the above question to the a-tight closure. As
a partial answer, we can prove the folowing theorem:

Theorem 1.18. Assume that $R$ is regular. Then the above $que8tion$ is true.

Moreover, it is not difficult to generalize the above theorem to the case
where pure subrings of regular rings. On the other hand, the above theorem
also follows from the $follo\dot{\mathfrak{m}}ng$ theorem (under some mild conditions).

Theorem 1.19. Let $(R,m)$ be an excdlent rwular local ring. Let $a$. be a
filtmtion of ideals in R. Then for any element $c\in R^{o}$ there nist8 $e_{0}=e_{0}(c, a.)$

such that for any ideal I of $R$ and $z\in R,$ $z\in I^{*}$ holds whenever $cz^{q}a_{q}\subseteq I^{[q]}$

for some $q=p^{e},$ $e\geq e_{0}$ .

2. A GENERALIZATION OF TEST IDEALS

In the theory of tight closure, Hochster and Huneke [14] defined the test
ideal of $R$:

$\tau(R)=\bigcap_{M:f.g.A- mod\bm{t}e}Ann_{R}(0)_{M}^{*}$
.

In fact, the test ideal $\tau(R)$ is generated by test elements, and $aU$ elements of
$\tau(R)\cap R^{o}$ are test elements of $R$.

In this section, we introduce the notion of the generalized test ideals, which
gives an analogue of multiplier ideals; see [11].

Deflnition 2.1. Put $E=\oplus_{m\in{\rm Max}(R)}E_{R}(R/\mathfrak{m})$ . Let $a$. be a filtration of ideals
in $R$ . Then we define

$\tau(a.)=\bigcap_{M}$ Ann$R(0)_{M}^{na}=Ann_{R}(0)_{E}^{*a^{f_{\zeta}}}$ ,
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where $M$ runs through all finitely generated A-modules (in $E$). We call this
ideal the (genemlized) test ideal with respect to $\mathfrak{a}.$ .

On the other hand, we define $\sim\tau(\mathfrak{a}.)=Ann_{R}(0)_{E}^{*a}\cdot$ .

For an ideal $a$ of $R$ and a real number $t\geq 0$ , we use $\tau(a^{t})$ instead of
$\tau(\{\mathfrak{a}^{\lceil tn\rceil}\})$ .

Remark 2.2. There is a little bit difference between the generalized test ideal
and the original one.

(1) In general, $\tau(a.)\cap R^{o}\neq$ {$c\in R^{o}$ : $c$ is an a-test element.}. For
example, if $R$ is regular, the right-hand vide is equal to $R^{o}$ , but the
left-hand side is not.

(2) Assume that $R$ is a Gorenstein local ring. Let $a_{1},$ $\ldots,$ $a_{d}$ be a system
of parameters. Then one can compute $\tau(a.)$ as follows:

$\tau(a.)=\bigcap_{t=1}^{\infty}(a_{1}^{t}, \ldots, a_{d}^{t})$ : $(a_{1}^{t}, \ldots, a_{d}^{t})^{*C}$ .

More generally, if $R$ is an aPproximately Gorenstein local ring, then
there exists a sequence of ideals $I_{t}$ such that
(a) $I_{1}\supseteq I_{2}\supseteq\cdots$ .
(b) $R/I_{t}$ is a O-dimensional Gorenstein local ring.
(c) For any integer $n\geq 1$ , there exists an intger $t\geq 1$ such that

$I_{t}\subseteq \mathfrak{m}^{n}$ .
(d) $\tau(a.)=\bigcap_{t=1}^{\infty}I_{t}$ : $I_{t}^{*}$ .

(3) Assume that $(R,\mathfrak{m})$ is a complete local ring. Then

$Ann_{E}\tau(a.)=\bigcup_{M}(0)_{M}^{*a}$ ,

where $M$ runs through all finitely generated submodules of $E=E_{R}(R/\mathfrak{m})$ .
This follows $hom$ the Matlis duality theorem. In fact, if $R$ is a complete
local $r\dot{i}g$ , then $W=Ann_{E}(Ann_{R}W)$ holds for any submodule $W$ of
E.

In the next section, we give a way to compute $\tau(a^{t})$ for monomial ideals.

Example 2.3. Let $R=k[[x, y]]$ be a formal power series ring over a field $k$ .
Let $m=(x, y)R$ and $a=(x^{3},xy, y^{3})R$ . Then for each real number $t\geq 0$ ,

$\tau(\mathfrak{a}^{t})=\{\begin{array}{ll}R, (0\leq t<1). m =(x, y), (1\leq t<\frac{4}{3})\mathfrak{m}^{2} =(x^{2},xy, y^{2}), (\frac{4}{3}\leq t<\frac{5}{3})a =(x^{S},xy,y^{3}), (\frac{5}{3}\leq t<2)a\ddagger \mathfrak{n}=(x^{4},x^{2}y,xy^{2},y^{4}), (2\leq t<\frac{7}{3})... \end{array}$
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$\tau(\mathfrak{m}^{t})=\{\begin{array}{ll}R, (0\leq t<2)\mathfrak{m} =(x, y), (2\leq t<3)\mathfrak{m}^{2} =(x^{2},xy,y^{2}), (3\leq t<4)\mathfrak{m}^{3} =(x^{3},x^{2}y, xy^{2}, y^{3}), (4\leq t<5)\mathfrak{m}^{4} =(x^{4}, x^{3}y, x^{2}y^{2},xy^{8}, y^{4}), (5\leq t<6)\end{array}$

Now let us gather basic properties of generalized test ideals.

Proposition 2.4. Let a$,$

$b$ be ideals of $R$ such that $a\cap R^{o}\neq\emptyset,$ $b\cap R^{o}\neq\emptyset$ .
Let $\mathfrak{a}.,$

$b$. be filtmtions of ideals in R. Then the following statements hold:
(1) If $b$. $\subseteq \mathfrak{a}.$ , then $\tau(b.)\subseteq\tau(a.)$ . If $b$ . is a reduction of $a.$ , then equality

holds.
(2) $\tau(\mathfrak{a}.)b\subseteq\tau(\mathfrak{a}.b)$ , where $a.b=\{a_{n}b^{n}\}$ is a filtmtion of ideals.
(3) If $R$ admits a test element, then $\tau(a.)\cap R^{o}\neq\emptyset$ .
(4) Assume that $R$ is weakly F-regular. Then $a\subseteq\tau(\mathfrak{a})$ . If, in addition, a

has pure height 1, then equality holds.

Pmof. (1) It follows $hom(0)_{M}^{*b}\cdot\supseteq(0)_{M}^{*a}$ .
(2) Let $M$ be a finitely generated A-module. If $z\in(0)_{M}^{*\alpha.b}$ , then there exists

$c\in R^{o}$ such that $cz^{q}a_{q}b^{q}=0$ for all sufficiently large $q=p^{e}$ . This implies that
$c(z^{q}b^{[q]})\mathfrak{a}_{q}=0$ and thus $z\in[(0)_{M}^{*a} : b]_{M}$ . Hence (0) $\subseteq[(0)_{M}^{*\mathfrak{a}} : b]_{M}$ .

If $c\in\tau(\mathfrak{a}.)$ , then $c(0)_{M}^{*a}=0$ for any finitely generated A-module $M$. The
above argument implies that $(cb)(0)_{M}^{*a.b}=0$ . Therefore

$\tau(a.)b\subseteq\bigcap_{M:f.g}$
Ann$R(0)_{M}^{ra.b}=\tau(\mathfrak{a}.b)$

by definition.
(3) It follows from $\tau(R)a\subseteq\tau(a)$ .
(4) The first statement immediately follows from (3). For the second state-

ment, see [11, Proposition 1.11]. $\square$

The following theorem is essetially due to Hara [9], which indicates the
importance of ideal-adic filtration. Note that we need to assume that the
filtration satisfies descending condition: $\mathfrak{a}_{n}\supseteq a_{n+1}$ in the proof of the second
statement.

Theorem 2.5. Assume that $(R, \mathfrak{m})$ is an excellent reduced local ring. Let $a$.
be a filtmtion of ideals in R. Then

$\tau(a.)=\max\{\tau(\mathfrak{a}_{p^{\epsilon}}^{1/p^{\epsilon}}) : e\in N\}=\max\{\tau(a_{\ell}^{1/\ell}) : \ell\in N\}$ .
Proof First we prove the following claim.

Claim 1: (0) $\subseteq(0)_{M}^{*a_{k}^{1/k}}$ for any finitely generated A-module $M$ and for
all integers $k,$ $\ell>0$ . In particular, $\tau(\mathfrak{a}_{k}^{1/k})\subseteq\tau(\mathfrak{a}_{k\ell}^{1/k\ell})$ .
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If we write $q=nkl-\epsilon$ , where $0\leq\epsilon<k\ell$ , then $\lceil_{k\ell}-L\rceil=n$ and $r_{k}^{q}\rceil=$

$\lceil n\ell-\frac{\epsilon}{k}\rceil=nl-L\frac{\epsilon}{k}\rfloor(>n\ell-l)$ . Pick $a\in a_{1}\cap R^{O}$ and fix it. Then we have

$a^{u}a_{k}^{\lceil q/k\rceil}\subseteq \mathfrak{a}_{1}^{k\ell}a_{k}^{n\ell-\lfloor\epsilon/k\rfloor}\subseteq a_{k}^{n\ell}\subseteq \mathfrak{a}_{k\ell}^{n}=\mathfrak{a}_{k\ell}^{\lceil q/k\ell\rceil}$ .

The claim follows from this. //
Since $R$ is Noetherian, there exists a maximal element in $\{\tau(a_{k^{/k}}) : k\in N\}$ .

By Claim 1, such an element is unique.
Next, we prove the following claim.

Claim 2: $\tau(a_{\ell}^{1/\ell})\subseteq\tau(a.)$ for every $\ell\in N$ .
Let $\ell\in N$ and $q=p^{e}>\ell$ and fix them. If we write $q=nl-\epsilon$ , where

$0\leq\epsilon<\ell$, then $\lceil_{\ell}-L\rceil=n$ . Thus we get

$\mathfrak{a}_{\ell}^{\lceil q/\ell\rceil}=\mathfrak{a}_{\ell}^{n}\subseteq u\subseteq a_{nl-\epsilon}(=a_{q})$ ,

where we need the descending property of $a$. in the last inequality. (But one
does not need to assume this property in the case $\ell$ is a power of $p.$ ) This
implies that (0) $\subseteq(0)_{M}^{*a_{\ell}^{1/\ell}}$ for any finitely generated A-module $M$ . Hence
we get the assertion of the claim. //

Fix $q=p^{e}$ such that $\tau(a_{k}^{1/q})=\max${ $\tau(a_{Q}^{1/Q})$ : $Q$ is a power of $p$}. In order
to prove the theorem, it is enough to show that $\tau(\mathfrak{a}.)\subseteq\tau(\mathfrak{a}_{q}^{1/q})$ .

Take $c\in\tau(R)\cap R^{o}$ and fix it. Let $z\in$ (0) . Since $R$ is excel-
lent reduced (and thus approximately Gorenstein), there exists a sequence of
finitely generated (cyclic) submodules $\{M_{t}\}_{t=1,2},\ldots$ of $E=E_{R}(R/\mathfrak{m})$ such that
(0) $= \bigcup_{t=1}^{\infty}(0)_{M_{t}}^{*a}$ . Hence $z\in(0)_{M_{t}}^{*a_{q}^{\iota/q}}$ for some $t\in N$ . Since $M_{t}$ is Artinian,

there exists a minimai element (0) of the set $\{(0)_{M_{t}}^{sa_{Q}^{1/Q}}\}$ . In fact, this ideal
is the minimum element in this set by Claim 1. If necessary, replacing $q$ with
$qq’$ , we may assume that $q’=q$ . Hence $z\in(0)_{M_{t}}^{*a_{q}^{1/q’’}}$ for all powers $q”=p^{\epsilon’’}$ of
$p$ . In particular, $cz^{q’’}\mathfrak{a}_{q’’}=0$ in $F^{e’’}(M_{t})$ . This implies that $z\in(0)_{M_{t}}^{*a}\cdot\subseteq(0)_{E}^{*a^{f_{l}}}$ .
Therefore $\tau(a.)\subseteq\tau(\mathfrak{a}_{q}^{1/q})$ , as required. $\square$

Remark 2.6. We have no counterexamples of filtrations for which the above
theorem fails without its descending condition.

Many good properties of $\tau(a^{t})$ can be derived from $\tau(a^{t})=\sim\tau(a^{t})$ . See [10]
for more details. So the following theorem (see also [2, 30]) is very important.

Theorem 2.7 ([11, Theorem 1.13]). Let $(R,\mathfrak{m})$ be an excellent normal local
domain w\’ith $d=\dim R\geq 1$ . Let $J\subseteq R$ be $a$ $di$例$so$短 $al$ ideal of $R$ such that.
$ord(cl(J))<\infty$ . Then

(0) $=(0)_{H_{m}^{d}(J)}^{*}4^{f_{C}}$

If, in addition, $R$ is $\mathbb{Q}- Gorenstein$ , we have that $\overline{\tau}(\mathfrak{a}.)=\tau(a.)$ .
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Proof. One can prove this similarly as in the argument of the proof of [
$11\square$’

Theorem 1.13].

Remark 2.8. Lyubeznik and Smith [23] (see also Blickle [3]) proved another .

result: Let $R$ be an N-graded ring with the unique homogensou maximal ideal
$\mathfrak{m}$ and $\mathfrak{a}$ a homogeneous ideal of $R$ such that $a\cap R^{o}\neq\emptyset$ . Put $\mathfrak{a}$. $=\{a^{\lceil tn1}\}$

$fg$

for some positive real number $t$ . Then (0) $=(0)_{E}^{ra}$ , where $E=E(R/\mathfrak{m})$ .
Namely, we have $\sim\tau(a.)=\tau(a.)$ . How about arbitrary filtration?

3. SKODA $S$ THEOREM

The following theorem, which is called Skoda’s theorem, is an analogy of
one of fundamental theorems with respect to multiplier ideals. See also Hara’s
report for more details.

Theorem 3.1 (Skoda’s theorem). Assume that $R$ is a complete local ring.
Let $\mathfrak{a},$

$b$ be ideats of $R$ such that $a\cap R^{o}\neq\emptyset$ and $b\cap R^{o}\neq\emptyset$ . Moreover, suppose
that $a$ has a rduction generated by at most $p$ dements. Then

$\tau(\mathfrak{a}^{p}b^{t})=\tau(\mathfrak{a}^{\ell-1}b^{t})a$.
Remark 3.2. A similar result holds for any F-finite Q-Gorenstein normal local
domain; See [10].

In order to prove this theorem, we need the next lemma.

Lemma 3.3. Assume that $(R,\mathfrak{m})$ is complete. Let $a$. $=\{a_{n}\}$ be a filtmtion of
ideals in $R$, and let $b$ be an ided of R. Then

$\tau(a.)b=\bigcap_{M}Ann_{R}[(0)_{M}^{*a} : b]_{M}$
,

where $M$ runs through all finitely generated A-submodules of $E=E_{R}(R/\mathfrak{m})$ .

Proof Suppose that $z\in Ann_{E}(\tau(a.)b)$ . Then $z b\subseteq Ann_{E}(\tau(a.))=\bigcup_{M}(0)_{M}^{*d}$

by Matlis duality. Hence there exists a finitely generated A-submodule $M$ of
$E$ such that $zb\subseteq(0)_{M}^{*a}\subseteq(0)_{M+Rz}^{*0}$ . If necessary, replacing $M$ with $M+Rz$,
we may assume that $z\in M$ . Then $z \in\bigcup_{M\subseteq E}[(0)_{M}^{*Q} : b]_{M}$. Since the opposite
inclusion is also true, we have

Ann$E( \tau(a.)b)=\bigcup_{M\subseteq E}[(0)_{M}^{*a} : b]_{M}$
.

Therefore
$\tau(\mathfrak{a}.)b=Ann_{R}Ann_{E}(\tau(\mathfrak{a}.)b)=\bigcap_{M\subseteq E}[(0)_{M}^{*l} : b]_{M}$

,

as required. 口
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Sketch of the prvof of Theorem 3.1. First we show that

(0) $=(0)_{M}^{*a^{\ell-1}b^{t}}$ : $a$

for every finitely generated A-submodule $M$ of $E$ and for every $p\geq\mu(a)$ . Then
by the above lemma, we get

$\tau(a^{\ell}b^{t})=\bigcap_{M\subseteq E}$
Ann

$R((0)_{M}^{*a^{\ell}b^{t}})= \bigcap_{M\subseteq E}$
Ann$R((0)_{M}^{*a^{\ell-1}b^{t}} : a)=\tau(\mathfrak{a}^{\ell-1}b^{t})a$ .

口

Corollary 3.4. Assume that $(R,\mathfrak{m})$ is complete. Put $d=\dim R\geq 1$ . Then
for any ideal $a$ of $R$ such that $\mathfrak{a}\cap R^{o}\neq\emptyset$ , we have

$\tau(\mathfrak{a}^{t})=\tau(\mathfrak{a}^{d-1+\epsilon})\mathfrak{a}^{n-d+1}$ ,

where $n=\lfloor t\rfloor$ and $\epsilon=t-n$ .
Remark 3.5. In the hypothesis of the above corolary, one can replace $d=$

dim $R\geq 1$ ’ with $\mu(a)\geq 1$ ’ or $a$ has a reduction generated by at most $d$

elements“.
Applying Skoda’s theorem to the ideal $\tau(\mathfrak{a}^{t})$ in Example 2.3, we obtain the

following result.
Example 3.6. Let $R=k[[x, y]]$ be a formal power series ring over a field $k$ .
Let $\mathfrak{m}=(x, y)R$ and $a=(x^{3}, xy, y^{3})R$ . For each real number $t\geq 0$ , if we put
$n=\lfloor t\rfloor$ , then.

$\tau(a^{t})=\{\begin{array}{ll}R, (0\leq t<1)\{\mathfrak{n}\mathfrak{a}^{n-1} =\tau(\mathfrak{a}^{n}), (n\leq t<n+\frac{1}{3})m^{2}\mathfrak{a}^{n-1} =\mathfrak{a}^{n} : \mathfrak{m}, (n+\frac{1}{3}\leq t<n+\frac{..2}{3})\mathfrak{a}^{n}, (n+\frac{2}{3}\leq t<n+1)\end{array}$

Briangon-Skoda’s theorem for F-regular rings can be derived $hom$ Skoda’s
theorem. See below.
Corollary 3.7. Assume that $(R,\mathfrak{m})$ is a complete local ring of characteristic
$p>0$ . Suppose that $a$ has a reduction genemted by $p$ elements. Then

$\tau(R)\overline{\mathfrak{a}^{n+\ell-1}}\subseteq a^{n}$ ,
wheoe $\overline{b}$ denotes the integml closure of $b$ .
Pruof Note that $\tau(b^{n})=\tau(\overline{b^{n}})$ holds since $\{b^{n}\}$ is a reduction of $\{\overline{b^{n}}\}$ . Then
by Skoda’s theorem and basic property of $\tau$ , we get

$\tau(R)\overline{a^{n+\ell-1}}\subseteq\tau(\overline{a^{n+p-1}})=\tau(a^{n+\ell-1})=\tau(a^{\ell-1})a^{n}\subseteq \mathfrak{a}^{n}$.
口

Remark 3.8. Tight Closure Briangon-Skoda theorem says that $\overline{\mathfrak{a}^{n+\ell-1}}\subseteq(a^{n})^{*}$

under the same assumption in Corollary 3.7. (Precisely $speak\dot{i}g$ , one does not
need to assume that $R$ is complete.)

On can also obtain the above corollary from Tight closure Briangon-Skoda
theorem because $\tau(R)b^{*}\subseteq b$ by definition.
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4. HOWALD TYPE THEOREM-GENERALIZED TEST IDEALS OF MONOMIAL
IDEALS

Example 4.1. Let $R=k[x, y]$ be a polynomial ring over a field $k$ . Let
$\mathfrak{m}=(x, y)R$ and $a=(x^{3}, xy, y^{3})R$. For each real number $t\geq 0$ , if we put
$n=\lfloor t\rfloor$ , then

$\tau(\mathfrak{a}^{t})=\{\begin{array}{ll}R, (0\leq t<1)\mathfrak{m}\mathfrak{a}^{n-1} =\tau(a^{n}), (n\leq t<n+\frac{1}{3})\mathfrak{m}^{2}a^{n-1} =\mathfrak{a}^{n} : \mathfrak{m}, (n+\div\leq t<n+\frac{2}{3})a^{n}, (n+\frac{2}{3}\leq t<n+1)\end{array}$

I will explain how to determine $\tau(\mathfrak{a}^{t})$ as above. Before doing that, we recall
Howald’s theorem, which gives a combinatorial description of the multiplier
ideal $\mathcal{J}(a^{t})$ of a monomial ideal in a polynomial ring over a field.

Theorem 4.2 (Howald). Let $a$ be a monomial ideal in a polynomial $\Gamma\dot{b}ngR=$

$k[x_{1}, \ldots,x_{d}]$ over a field $k$ . For a real number $t\geq 0$ , we have
$\mathcal{J}(\mathfrak{a}^{t})=(x^{m} : m+ (1, 1, \ldots , 1)\in Int(t\cdot Newt(a)))$ ,

where the Newton polytope Newt(a) denotes the convex hull of {$m\in N^{d}$ :
$X^{m}\in a\}$ in $\mathbb{R}^{d}$ , and Int(X) denotes the relative interior of a subset $X\in \mathbb{R}^{d}$ .
Question 4.3. How about $\tau(\mathfrak{a}^{t})$ ?

The purpose of this section is to give an answer to this question. In fact,
$\tau(a^{t})$ admits a similar description in a more general situation.

Let $M=\mathbb{Z}^{d},$ $N=Hom_{Z}(M, \mathbb{Z})$ and denote the duality pairing of $M_{R}=$

$M\otimes_{Z}\mathbb{R}$ with $N_{R}=N\otimes_{Z}\mathbb{R}$ by $\langle$ , $\rangle:M_{R}xN_{R}arrow \mathbb{R}$ . Let $\sigma\subset N_{\mathbb{R}}$ be a
strongly convex rational polyhedral cone, and let $n_{1},$ $\ldots,n_{\delta}\in N$ be a primitive
generators of $\sigma$ . Then

$\sigma^{\vee}=$ {$m\in M_{R}$ : $(m,$ $n\rangle\geq 0$ for all $n\in\sigma$} $= \bigcap_{i=1}^{\theta}\{m\in M_{R} : (m, r4\rangle\geq 0\}$.

Let $R=k[\sigma^{\vee}\cap M]\subseteq k[x_{1}^{\pm}, \ldots, x_{d}^{\pm}]$ denote the toric ring over a field $k$ defined
by $\sigma$ . A toric ideal $a\subseteq R$ is an ideal of $R$ generated by monomials in $x_{1},$ $\ldots,$ $x_{d}$ .
Let $a\subseteq R$ be a toric ideal, and let $P=Newt(\mathfrak{a})\subset M_{R}$ be the Newton polygon
of $a$ , that is, the convex hull of $\{m\in M : x^{m}\in a\}$ in $M_{R}$ . We denote the
relative interior of $P$ in $M_{R}$ by Int $(P)$ . Note that $R$ is $\mathbb{Q}$-Gorenstein if and
only if there exists $w\in M_{R}$ such that $\langle w,n_{i}\rangle=1$ for $i=1,$ $\ldots,$

$s$ .
Example 4.4. (1) Put $M=\mathbb{Z}^{d},$ $\sigma=\mathbb{R}_{+}(1,0, \ldots , 0)+\cdots+\mathbb{R}_{+}(0, \ldots , 0,1)$ .

Then $R=k[\sigma^{\vee}\cap M]=k[x_{1}, \ldots.x_{d}]$ is a polynomial ring, and one can
take $w=(1, \ldots, 1)$ .

(2) Put $M=\mathbb{Z}^{2}$ . Put $n_{1}=(3, -1),$ $n_{2}=(0,1)$ and $\sigma=\mathbb{R}_{+}n_{1}+\mathbb{R}_{+}n_{2}.\cdot$

Then $k[\sigma^{\vee}\cap M]=k[s, st, st^{2}, st^{3}]\cong k[x^{3}, x^{2}y, xy^{2}\cdot, y^{3}]$ . If we take
$w=( \frac{2}{3},1)$ , then $\langle w, n_{1}\rangle=\langle w, n_{2}\rangle=1$ .

The main result in this section is the following theorem.
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Theorem 4.5. Let $M,$ $N,$ $\sigma$ be as above, and let $n_{1},$
$\ldots,$

$n_{s}\in N$ be a primitive
generators of $\sigma$ . Let $\mathfrak{a}\subseteq R$ be a toric ideal (monomial ideal) in R. Assume
that $R$ is $\mathbb{Q}$-Gorenstein, that is, there enists $w\in M_{\mathbb{R}}$ such that $\langle w, n_{i}\rangle=1$ for
all $i=1,$ $\ldots,$

$s$ . Then for any real number $t\geq 0$ , we have
$\tau(a^{t})=\{x^{m}\in R : m\in M, m+w\in Int(t\cdot Newt(a))\}$ .

Corollary 4.6. Let $R=k[x_{1}, \ldots, x_{d}]$ or $k[[x_{1}, \ldots, x_{d}]]_{f}$ and let a be a mono-
mial ideal of R. Then $\tau(a^{t})\cdot=\mathcal{J}(a^{t})$ is integrally $clo8ed$ for each $t\in \mathbb{R}$ .
Remark 4.7. The above theorem has been generalized to the class of $non- \mathbb{Q}-$

Gorenstein toric rings by Blickle [3].

Sketch of the $p$roof of Theorem 4.5. We now consider the Frobenius ac-
tion on $E=H_{m}^{d}(R)=Hom_{k}(R, k)$ . Note that

$E= \bigoplus_{(m,n:\rangle\leq 0}kX^{m}$
,

$F^{e}(E)=H_{m}^{d}(\omega_{R}^{(q)})=,\bigoplus_{\langle m_{b}\rangle\leq q-1}kX^{m}$
.

Then e-times Frobenius map is defined by
$F^{e}$ : $Earrow F^{e}(E)(X^{m}rightarrow X^{qm})$ ,

where $q=p^{e}$ .
In the following, we may assume that $R$ is F-finite. We show that if $X^{m}\in$

$\tau(a^{t})$ , then $m+w\in Int(t\cdot Newt(\mathfrak{a}))$ . (The converse will be proved by a similar
method.) Suppose that $X^{m}\in\tau(\mathfrak{a}^{t})$ . By assumption, $\tau(\mathfrak{a}^{t})=$ Ann$R(0)_{E}^{*a^{t}}$ .
Then one can easily see that $X^{m}\in\tau(a^{t})\Leftrightarrow X^{-m}\in(0)_{E}^{*a^{t}}$ . Since 1 is a
$\mathfrak{a}^{t}$-test element, there exists $q=p^{e}$ such that $X^{-qm}a^{\lceil tq\rceil}\neq(0)$ in $F^{e}$ . For such
a rational number $q$ ,

$(-qm+\lceil tq\rceil\cdot Newt(\mathfrak{a}))\cap M\cap\{u\in M : \langle u,n_{i}\rangle\leq q-1(i=1, \ldots, s)\}\neq\emptyset$ .
Take $u\in M$ and $v\in Newt(a)$ such that $u=qm+\lceil tq\rceil v$ and $\langle u, n_{i}\rangle\leq q-1$

for every $i=1,$ $\ldots$ , $s$ . Since $\langle w-\frac{1}{q}u, n_{i}\rangle\geq\frac{1}{q}>0$, we have

$m+w=(t+ \frac{\epsilon}{q})v+(w-\frac{1}{q}u)Int(t\cdot Newt(a))$ ,

where $\epsilon=\lceil tq\rceil-tq$ . The proof can be easily see the proof of this theorem. $\square$

5. DISCRETENESS AND RATIONALITY OF JUMPING EXPONENTS

In the previous section, we gave a way to compute the test ideaJs with
respect to monomial ideals, but it is not so easy to compute the test ideak
with respect to other ideals. In this section, we will introduce another way
by Blickle, $MustaJ\check{a}$ and Simth in [BMS]. As its application, we can show that
discreteness and rationality of jumping exponents.

Throughout this section, let $R$ be a Noetherian ring of characteristic $p>0$
such that $R$ is a finitely generated $heeR^{p}$-module. For example, any regular
local ring whose residue field is perfect (i.e., $k=k^{p}$ ) and any polynomial ring
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over a perfect field $k=k^{p}$ satisfies this condition. Conversely, any Noetherian
ring which satisfies this condition is an F-finite regular ring.

Definition 5.1. A non-negative real number $t$ is a jumping exponent for $\mathfrak{a}$ if
$\tau(\mathfrak{a}^{t})\neq\tau(a^{t-\epsilon})$ whenever $\epsilon>0$ .

Suppose that $R$ is weakly F-regular, that is, $\tau(R)=R$ . Then we put
fpt(a) $= \max\{t\in \mathbb{R}\geq 0 : \tau(a^{t})=R\}$ .

We call it the F-threshold for $a$ . Note that fpt(a) is equal to the minimum
jumping exponent.

Example 5.2. Let $R=k[x,y]$ (or $k[[x,y]]$ ) be a polynomial ring (a formal
power series ring) over a field $k=k^{p}$ . Let $m=(x,y)R$ and $a=(x^{3},xy,y^{3})R$ .
For each real number $t\geq 0$ , if we put $n=\lfloor t\rfloor$ , then

$\tau(a^{t})=\{\begin{array}{ll}R, (0\leq t<1)ma^{n-1} =\tau(\mathfrak{a}^{n}), (n\leq t<n+\frac{1}{3})\mathfrak{m}^{2}a^{n-1}=a^{n} : mm, (n+\frac{1}{3}\leq t<n+\frac{2}{3})a^{n}, (n+\frac{2}{3}\leq t<n+1)\end{array}$

Thus the set of jumping exponents for $\mathfrak{a}$ is

$\{n,$ $n+ \frac{1}{3},$ $n+ \frac{2}{3}(n=1,2, \ldots)\}$ .

In fact, we will show that the set ofjumping exponents for an ideal is discrete,
and that the jumping exponent is a rational number.

5.1. A variant of $\tau(a^{t})$ . We first introduce the notion of $\tau’(a^{t})$ as a variant
of $\tau(a^{t})$ .
Lemma 5.3. Let $e,$ $r\geq 0$ be integers. Take a $sy8tem$ of genemtors $h_{1},$

$\ldots,$
$h_{\epsilon}$

of $a^{r}$ . Take a ffee basis $e_{1},$ $\ldots,$ $e_{N}$ of $R$ over $R^{p^{\epsilon}}$ , for each $i$ we can unite $h_{i}$

as follows:
$h_{i}= \sum_{j=1}^{N}a_{ij}^{p^{e}}e_{j}$

for some $a_{tj}\in R$ . If we put
$I_{r,e}(a)=(a_{ij} : 1\leq i\leq s, 1\leq j\leq N)$ ,

then $I_{r,e}(a)$ is equal to the smallest ideal $J$ for which $a^{r}\subseteq J^{[p^{e}]}hold8$ .
In particular, $I_{r,e}(\mathfrak{a})$ is independent of the choice offfee basis of $R$ over $ffl^{\epsilon}$

and genemtors of $a^{r}$ .
Prvof By definition, $\mathfrak{a}^{r}\subseteq I_{r,e}(a)^{[p^{e}]}$ . So it is enough to show that if $\mathfrak{a}^{r}\subseteq J^{[p^{6}]}$ ,
then $I_{r,e}(a)\subseteq J$ . Suppose that $a^{r}\subseteq J^{[p^{\epsilon}]}$ . Put $J=(g_{1}, \ldots,g_{m})$ . Since
$\mathfrak{a}^{r}\subseteq J^{[p^{\epsilon}]}$ , one ct write as follows:

$h_{i}= \sum_{\ell=1}^{m}g_{p}^{p^{\epsilon}}b_{p}$
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for some $b_{p}\in R$ . Let $e_{1}^{*},$

$\ldots,$
$e_{N}^{*}\in Hom_{R^{p^{e}}}(R, R^{p^{e}})$ be a dual basis of $e_{1},$ $\ldots$ , $e_{N}$ .

That is, $e_{j}^{*}(e_{i})=\delta_{ij}$ for $i,j=1,$ $\ldots,$
$N$ . Then

$a_{ij}^{p^{\epsilon}}=e_{j}^{*}(h_{i})= \sum_{=p1}^{m}g_{\ell}^{p^{e}}e_{j}^{*}(b_{\ell})\in J^{1p^{e}]}$.

Thus $a_{ij}\in J$ because the Frobenius map is injective. Hence $I_{r,e}(\mathfrak{a})\subseteq J$ , as
required. $\square$

Lemma 5.4. Let $\mathfrak{a},$
$b$ ideals of $R$, and let $r,$ $r’\geq 0$ be intqers.

(1) If $a\subseteq b$ , then $I_{r,e}(a)\subseteq I_{r,e}(b)$ .
(2) If $r\leq r’$ , then $I_{r,e}(a)\supseteq I_{r’,e}(a)$ .
(3) $I_{r,e}(a)\subseteq I_{rp,e+1}(a)$ .

(4) If $e\leq e’,$ $\frac{r}{p^{e}}\geq\frac{r’}{p^{e}’}$ , then $I_{r,e}(a)\subseteq I_{r’,e’}(a)$ .
(5) For a real number $t\geq 0$ , we have $I_{\lceil tp^{\epsilon}\rceil,e}(\mathfrak{a})\subseteq I_{\lceil tp^{e+1}\rceil,e+1}(a)$ .

Proof (1) By definition, $\mathfrak{a}^{r}\subseteq b^{r}\subseteq I_{r,e}(b)^{[p^{\epsilon}]}$ . Hence the minimality of $I_{r,\epsilon}(\mathfrak{a})$

yields that $I_{r,e}(\mathfrak{a})\subseteq I_{r,e}(b)$ .
(2) By definition, $\mathfrak{a}^{r’}\subseteq \mathfrak{a}^{r}\subseteq I_{r,e}(a)^{[p^{\epsilon}]}$ . Hence the minimality of $I_{r’,e}(\mathfrak{a})$

yields that $I_{r’,e}(a)\subseteq I_{r,e}(a)$ .
(3) Since $(a^{r})^{[p]}\subseteq a^{rp}\subseteq I_{rp,e+1}(a)^{[p^{e+1}]}$ , we have $a^{r}\subseteq I_{rp,e+1}(a)^{[p^{\epsilon}]}$ . Hence

$I_{r,e}(a)\subseteq I_{rp,e+1}(a)$ .
(4) The assumption yields $rp^{e’-e}\geq r’$ . Thus $I_{r,e}(\mathfrak{a})\subseteq I_{rp^{\epsilon’-},e},(\mathfrak{a})\subseteq I_{r’,\epsilon’}(\mathfrak{a})$ .

by (3) and (2).

(5) Write $tp^{e}=N-\epsilon$ , where $N\in \mathbb{Z}$ and $0\leq\epsilon<1$ . Then since $tp^{\epsilon+1}=$

$Np-\epsilon p$ , we get

$\frac{\lceil tp^{e+1}\rceil}{p^{e+1}}=\frac{Np-\lfloor\epsilon p\rfloor}{p^{e+1}}=\frac{N}{p^{e}}-\frac{\lfloor\epsilon p\rfloor}{p^{e+1}}\leq\frac{N}{p^{e}}=\frac{\lceil tp^{e}\rceil}{p^{e}}$.

Therefore (5) follows from (4). $\square$

Let us define a variant of $\tau(a^{t})$ as a limit of $I_{\lceil tp^{\epsilon},\rfloor,e}(a)$ .
Definition 5.5 ([4]). Let $R$ be a Noetherian ring of characteristic $p>0$ .
Suppose that $R$ is a finitely generated free ffl-module. Then for any ideal $a$

ofR anda real numbert $\geq 0$ , we define

$\tau’(a^{t})=\bigcup_{e=1}^{\infty}I_{\lceil tp^{\epsilon}\rceil,e}(a)$ .

Remark 5.6. By Lemma 5.4, $\{I_{\lceil tp^{\epsilon}1e}(\mathfrak{a})\}$ forms an increasing sequence of ideals
in $R$, and it stabilizes. Hence $\tau’(.a^{t})$ is equal to $I\lceil tp^{\epsilon}\rceil,e(a)$ for sufficiently large
$e\gg 0$ .

Moreover, $\tau’(a^{t})$ commutes with completion or locahization.
For any F-finite regular local ring, this $\tau’(\mathfrak{a}^{t})$ coincides the original one.

Moreover, the similar result is true for polynomial rings via localization.
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Proposition 5.7. Assume that $(R,\mathfrak{m})$ is an F-finite regular local $ni\cdot ng$ . Then
for any ideal $a$ of $R$ and any real number $t\geq 0$ , we have $\tau’(\mathfrak{a}^{t})=\sim\tau(a^{t})=\tau(a^{t})$ .

Proof. Since an F-finite regular local ring is an excellent Q-Gorenstein normal
local domain, we have that $\tau\sim(\mathfrak{a}^{t})=\tau(\mathfrak{a}^{t})$ . So it is enough to show that $\tau’(a^{t})=$

$Ann_{R}(0)_{E}^{*a^{t}}$ , where $E=E_{R}(R/\mathfrak{m})$ .
Put $Z_{r,e}(\mathfrak{a})=$ {$\xi\in E$ : $a^{r}\subseteq$ Ann$R(\xi^{p^{\epsilon}})$ } for all integers $r,$ $e\geq 0$ . We

claim that $Z_{r,e}(a)=Ann_{E}I_{r,e}(a)$ . In fact, for any $\xi\in E\cong H_{\mathfrak{m}}^{d}(R)$ , we can
write $\xi=[\frac{z}{(x\iota\cdots x_{d})^{n}}]$ for some $z\in R$ and $n\in N$ , where $\mathfrak{m}=(x_{1}, \ldots, x_{d})$ and
$d=\dim R$ . Then since Ann$R(\xi)=(x_{1}^{n}, \ldots,x_{d}^{n}):z$ , we get

$Ann_{R}\xi^{p^{e}}=(x_{1}^{np^{\epsilon}}, \ldots,x_{d}^{np^{\epsilon}}):z^{p^{\epsilon}}=(Ann_{R}(\xi))^{[p^{\epsilon}]}$ .
Hence $Z_{r,e}(a)=\{\xi\in E : a^{r}\subseteq Ann_{R}(\xi)^{[p^{e}]}\}=\{\xi\in E : I_{r,e}(a)\subseteq Ann_{R}(\xi)\}$ .
That is, $Z_{r,e}(\mathfrak{a})=Ann_{E}(I_{r,e}(a))$ , as required.

Since 1 is an $a^{t}$-test element and

(0) $=(0)_{E}^{*a}$ ,

we have (0) $= \bigcap_{e=1}^{\infty}Z_{\lceil tp^{e}\rceil,e}(a)$ . Thus we get

$Ann_{R}((0)_{E}^{*a^{t}})$ $= Ann_{R}(\bigcap_{e=1}^{\infty}Z_{\lceil tp^{\epsilon}\rceil,e}(\mathfrak{a}))$

$Ann_{R}$ ( $\bigcap_{e=1}^{\infty}$ Ann$EI_{\lceil tp^{e}\rceil,e}(a)$ )

$=Ann_{R}Ann_{E}I_{\lceil tp^{\epsilon}\rceil,e}(\mathfrak{a})$ $(e\gg O)$

$=Ann_{R}Ann_{E}\tau’(\mathfrak{a}^{t})$

$=\tau’(a^{t})$ .

This completes the proof. 口

This method enables us to compute $\tau(f^{t})$ for any element $f$ in an F-finite
regular local ring, although it may be not so useful to compute $\tau(a^{t})$ for mono-
mial ideals. In fact, we can obtain the following, which provides an example
of $\tau(f^{c})$ where $c=\Phi t(f)$ such that $\tau(f^{c})$ is not integrally closed.

Example 5.8. Let $R=k[[x, y, z]]$ be a formal power series ring over a prime
field $k=\mathbb{F}_{p}$ . Put $f=x^{p}+y^{2p+1}+z^{2p+1}$ . Then

(1) $fpt(f)=\frac{1}{p}$ .
(2)

$\frac{\tau(f^{1/p})--}{(x,y^{2},z^{2})}=(x,y^{2},yz, z^{2})(x,y^{2},z^{2}).T.his$

ideal is not integrally closed. In fact,

Proof. First we prove (2). In fact, since $f^{\lceil(1/p)p^{\epsilon}\rceil}=f^{p^{\epsilon-1}}=x^{p^{e}}\cdot 1+y^{p^{G}}$ .
$y^{p^{\epsilon-1}}+z^{p^{e}}\cdot z^{p^{e-1}}$ and 1, $y^{p^{e-1}},$ $z^{p^{\epsilon-1}}$ forms part of a ffee basis of $R$ over $R^{p^{\epsilon}}$ ,
we have that $I\lceil(1/p)p^{\epsilon}\rceil,e(fR)=(x,y^{2}, z^{2})$ for each $e\geq 1$ by definition. Hence
$\tau(f^{1/p})=(x,y^{2}, z^{2})$ . Moreover, it is clear that $\overline{(x,y^{2},z^{2})}=(x,y^{2},yz, z^{2})$ .
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Next we give a sketch of the proof that $fpt(fR)=\frac{1}{p}$ In order to do that,
it is enough to show that if $0 \leq t<\frac{1}{p}$ then $\tau(f^{t})=R$ . Put $t= \frac{1}{p}-\epsilon$ for
$0<t< \frac{1}{p}$ Take a sufficiently large integer $e$ for which $\epsilon\cdot p^{e}\geq 1$ holds. Then
since the expansion of $f^{\lceil tp^{c}]}$ contains a term $x^{\lceil tp^{\epsilon}\rceil}$ , which is part of a free basis
of $R$ over $R^{p^{e}}$ , we conclude that $1\in I_{\lceil tp^{e}\rceil,e}(fR)$ . Hence $\tau(f^{t})=R$ . $\square$

Remark 5.9. More generally, we can show that any ideal is obtained in this
form in an F-finite regular local ring in some sense.

5.2. Discreteness and rationality. In this subsection, we give a sketch of
the proof of the following theorem (see [4] for more general form) based on the
idea of Blickle, $Mustat\check{a}$ and Smith. Note that a similar result is also known
for multiplier ideals.

Theorem 5.10. Let $R=k[x_{1}, \ldots,x_{n}]$ be a polynomial ring over a perfect field
$k=k^{p}$ . Let $a$ be an ideal of R. Then

(1) The set of jumping exponents for $a$ is discrete, that is, in every finite
interval, there are only finitely many such numbers.

(2) Any jumping exponent for a $i8$ a rational number.

Remark 5.11. In [4], Blickle, $Mustal\check{a}$ and Smith proved a similar result in the
above theorem for essentially of finite type a field of $k$ , but it remains still open
for a formal power series ring over a field $k$ .

In this talk, Professor Ambro asked me whether the set ofjumping exponents
for $a$ is periodic. Although I think that it is probably true, but I do not have
a proof.

Now let us strat our proof of the above theorem with giving the following
lemma, which plays a key role.

Lemma 5.12. There exists $\epsilon>0$ such that $\tau(a^{t})=I_{r,e}(\mathfrak{a})$ whenever $t< \frac{r}{p^{\epsilon}}<$

$t+\epsilon$ . In particular, $\tau(\mathfrak{a}^{t})=\tau(a^{t’})$ for every $t’\in[t,t+\epsilon$).

Proof. Suppose that there exists integers $r_{m},$ $e_{m}\geq 1$ for which $I_{r_{m},e_{m}}(a)\neq$

$I_{r_{m+1},e_{m+1}}(a)$ for each $m\geq 1$ and a decreasing sequence $\overline{e}_{m}^{R}r$ converges $t$ . We
may assume that $e_{m}\leq e_{m+1}$ without loss of generality. Then $I_{r_{m},e_{m}}(a)\subsetneq$

$I_{r_{m+1},e_{m+1}}(a)$ by Lemma 5.4. But this contradicts the avsending chain condition
for ideals in $R$ . Hence there exists $\epsilon>0$ and an ideal $I$ in $R$ such that $I_{r,e}(a)=I$

for $t< \frac{r}{p^{e}}<t+\epsilon$ .
In order to prove the lemma, it suffices to show that $I=\tau(a^{t})$ in the

above situation. Take a large enough $e\in N$ such that $\tau(a^{t})=I_{\lceil tp^{\epsilon}\rceil,e}(\mathfrak{a})$ and
$L^{t_{L^{e}}}1p^{e}<t+\epsilon$ . If $tp^{e}\not\in \mathbb{Z}$ , then $t<L^{t_{L^{\epsilon}}}Jp^{\epsilon}$ Hence $I=\tau(\mathfrak{a}^{t})$ by the choice
of $I$ and $\epsilon$ . So we may assume that $tp^{e}\in \mathbb{Z}$ and $t+ \frac{1}{p^{\epsilon}}<t+\epsilon$. Then
$I=I_{tp^{\epsilon}+1,e}(\mathfrak{a})\subseteq I_{tp^{\epsilon},e}(a)=\tau(a^{t})$ . Thus we want to show that. $a^{tp^{\epsilon}}\subseteq I^{[p^{\epsilon}]}$ .
Indeed, this implies that $I_{tp^{e},e}(a)\subseteq I$ . Now let $z\in a^{tp^{e}}$ . If $e’\geq e$ , then
since $t< \frac{tp^{\epsilon_{\lrcorner_{-}}’}1}{p^{\epsilon}}<t+\epsilon$, we have that $a^{tp^{\epsilon’}+1}\subseteq I^{[p^{\epsilon’}]}$ . Fix $0\neq d\in a$. Then
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$sincedu^{p^{e’-\epsilon}}r\in \mathfrak{a}^{tp^{e}+1}\subseteq(I^{[p^{e}]})^{[p^{\epsilon’-e}]}$
, we obtain that $u\in(I^{[p^{\epsilon}]})^{*}=I^{1p^{e}]},$

$as\square$

required.

We now introduce the notion of the (generalized) F-threshold for $\mathfrak{a}$. Let $\mathfrak{a}$ ,
$J$ be ideals of $R$ such that $a\subseteq\sqrt{J}$ . Put $\nu_{a}^{J}(p^{e})=\max\{r\in \mathbb{Z} : \mathfrak{a}^{r}\not\subset J^{[p^{\epsilon}]}\}$ . If
such an integer $r$ does not exist, then we put $\nu_{a}^{J}(p^{e})=0$ . One can easily see
that $\{^{\underline{\nu^{J}}\omega^{e}}p^{\epsilon}\}$ is an increasing sequence and bounded above. So we define

$c^{J}(\mathfrak{a})$ $:= \sup_{e\in N}\frac{\nu_{a}^{J}(p^{e})}{p^{e}}=\lim_{\epsilonarrow \text{科科}}\frac{\nu_{a}^{J}(p^{e})}{p^{e}}$

and call it the F-threshold for $a$ with respect to $J$ . Note that the original
F-threshold for $\mathfrak{a}$ is equal to $c^{\tau n}(\mathfrak{a})$ . The next theorem gives a relationship
between jumping exponents for $a$ and F-thresholds for $\mathfrak{a}$ .
Theorem 5.13. Let $a$ be an ideal of R. Now consider the two maps

$\tau(a)$ : $\mathbb{R}\geq 0$ $arrow$

$c(\mathfrak{a})$ : { $id\alpha$ 化 of $R$} $arrow$

Then

$\{idea_{\mathbb{R}\geq 0}lsofR\}$

$(trightarrow\tau(a^{t}))$ ,
$(Jrightarrow c^{J}(\mathfrak{a}))$ .

(1) $c^{J}(a)$ is a jumping $\mathfrak{U}onent$ for $a$ .
(2) If $t$ is a jumping exponent for $\mathfrak{a}$, then $t=c^{\tau(a^{t})}(\mathfrak{a})$ .

Proof. We omit it here. The proof could be seen at Watanabe’s report. $\square$

We are now ready to prove Theorem 5.10.

Pivof of Theorem 5.10. (1) Suppose that a sequence $\{\alpha_{m}\}$ ofjumping ex-
ponents such that $\lim\alpha_{m}$ exists (say, $\alpha$). By Lemma 5.12, we may assume that
$\alpha_{m}\uparrow\alpha$ .

Fix integers $r,$ $e\geq 1$ . Assume that $\mathfrak{a}$ is generated by polynomials of degree
at most $d$ , and that $e_{1},$ $\ldots,$ $e_{N}$ be a free basis of $R$ over $p^{\epsilon}$ . Let $h_{1,}h_{\delta}$ be
a minimal system of generators of $\mathfrak{a}^{r}$ . If we write $h_{i}= \sum_{j=1}^{N}a_{ij}^{p^{e}}e_{j}$ for some
$a_{ij}\in R$ $(i=1, \ldots , s)$ , then $I_{r,e}(\mathfrak{a})=(a_{ij} : i=1, \ldots, s, j=1, \ldots, N)$ and
$\deg(a_{ij}^{p^{*}})\leq\deg h_{i}\leq rd$ . Thus $I_{r,e}(a)$ can be generated by polynomials of degree
at most $\frac{rd}{p^{\epsilon}}$ Hence $\tau(\mathfrak{a}^{\alpha_{n}}’)$ can be generated by polynomiaJs of degree at most
$\lfloor\alpha_{m}d\rfloor\leq\lfloor\alpha d\rfloor$ . On the othere hand, since $\{\tau(a^{\alpha_{m}})\}$ form a strictly decreasing
sequence of ideaJs, there exists a strictly increasing sequence of subspaces of
$k[x_{1}, \ldots,x_{n}]_{\lfloor ad\rfloor}$ . This is a contradiction. Hence we get (1).

(2) Let $\alpha>0$ be ajumping exponent for $a$. Then we can write as $\alpha=c^{J}(a)$

for some ideal $J$ of $R$. Since $\nu_{a}^{J^{[p]}}(p^{e})=\nu_{a}^{J}(p^{e+1})$ , we have $p\alpha=c^{J^{[p]}}(\mathfrak{a})$ is also
jumping exponent for $\mathfrak{a}$ . So is $p^{e}\mathfrak{a}$. Put $m=\mu(\mathfrak{a})$ , and let $p^{\epsilon_{0}}\alpha>m$ . For every
$e\geq e_{0}$ , Skoda’s theorem implies that $\{p^{e}\alpha\}+m-1$ is a jumping exponent
for $\alpha$ , where $\{\beta\}=\beta-\lfloor\beta\rfloor$ is the fractional part of $\beta\in \mathbb{R}$ . Note that these
jumping exponents are in the interval $[m-1,m$). By (1), there exists a pair
$(e_{1}, e_{2})$ such that $e_{0}\leq e_{1}<e_{2}$ and $\{p^{e_{1}}\alpha\}+m-1=\{p^{\epsilon_{2}}\alpha\}+m-1$ . This
means that $(p^{e_{1}}-p^{e_{2}})\alpha\in \mathbb{Z}$ . Hence $\alpha$ is a rational number. $\square$
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Remark 5.14. Watanabe and the author [35] have investigated the Hilbert-
Kunz multiplicities of local rings. For a d-dimensional Noetherian local ring
of characteristic $p>0$ , the Hilbert-Kunz multiplicity $e_{HK}(R)$ is defined by

$e_{HK}(R)= \lim_{earrow\infty}\frac{l_{A}(A/\mathfrak{m}^{1p^{e}]})}{p^{ed}}$ .

Then the rationality of $e_{HK}(R)$ remains open in general.

6. RESTRICTION THEOREM

In this section, we state so-called Restriction theorem with respect to the
generalized test ideal. A Similar result for multiplier ideak is known.

Before stating the $th\infty rem$ , let us recall a brief background. Now let $(R,\mathfrak{m})$

be an excellent normal local domain of characteristic $p>0$ . Let $x\in \mathfrak{m}$ be a
non-zero element. Then

(1) If $R/xR$ is F-rational, then $R$ is F-rational.
(2) If $R/xR$ is weakly F-regular and $R$ is $\mathbb{Q}$-Gorenstein, then $R$ is (weakly)

F-regular.

In (2), the QGorensteinness is not superfluous. In fact, Singh [28] con-
structed the fouowing example.

Example 6.1 ([28]). Let $S=k[A, B, C, D, E]$ be a polynomial ring over a
field $k$ with char$(k)=p>0$ . Let $m,$ $n$ be integers with $(p, m)=1$ and
$m- \frac{m}{n}>2$ . Put

$I=I_{2}(\begin{array}{llll}A^{2}+T^{m} B DC A^{2} B^{2} -D\end{array})$

Then $R/TR$ is F-regular, but $R$ is not F-regular (even not F-pure).

The following theorem (Restriction theorem) generalizes the above result
(under some extra condition). In fact, if $\tau(S)=S=R/xR$ , then the theorem
implies that $\tau(R)=R$ .
Theorem 6.2 (Restriction Theorem). Let $(R, \mathfrak{m})$ be a normal Q-Gorenstein
complete local domain of charactertstic $p>0$ . Assume that $S$ is a Q-Gorenstein
normal local domain. Then for any filtmtion of ideals $a$. in $R$, we have

\mbox{\boldmath $\tau$}(ら $S$) $\subseteq\tau(a.)S$.
Proof. One can prove this by a simmilar argument as in the proof of [11, Theorem
4.1]. 口

In [11], we proved so-called Subadditivity theorem using the idea of “restric-
tion to the diagonal”. But we can prove it more directly following Takagi’s
idea.

Theorem 6.3 (Subadditivity Theorem). Let $(R,m)$ be a complete or an
F-finite reyular local ring of characteristic $p>0$ . Let $a,$ $bideal8$ in R. Then

(1) $\tau(ab)\subseteq\tau(a)\tau(b)$ .
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(2) For any real numbers $t,$ $s\geq 0,$ $\tau(\mathfrak{a}^{t}b^{s})\subseteq\tau(a^{t})\tau(b^{s})$ .
We state the sketch of the proof of (2) (after Takagi). Let $(R, \mathfrak{m})$ be a

complete local ring. We first show that
$[(0)^{*a^{t}b^{\epsilon}} : \tau(\mathfrak{a}^{t})^{*a^{t}}]_{M}\supseteq[(0)_{M}^{*b^{\delta}} : \tau(a^{t})]_{M}$ .

for any finitely generated A-module $M\subseteq E=E_{R}(R/\mathfrak{m})$ . Then by Lemma
3.3, we have

$\tau(\emptyset)^{*\mathfrak{a}^{t}}\tau(\mathfrak{a}^{t}b^{\epsilon})\subseteq\tau(\mathfrak{a}^{t})\tau(b^{s})$.
Hence it suffices to show that $\tau(a^{t})^{ra}=R$ if $R$ is regular. See also Takagi’s
report for more details.

Remark 6.4. In the above theorem, (1) holds in the case 2-dimensional F-finite
F-regular local domain. In higher dimensional case, there is a counterexample
to (1).

On the other hand, (2) is sometimes said to be Strong Subadditivity Theorem.
This is not necessary true for Gorenstein F-regular local domains even in 2-
dimensional case.
Example 6.5. Let $R=k[[x, y]]$ be a formal power series ring over a field $k$ .
Put $\mathfrak{a}=(x^{3}, xy, y^{3})$ . Let $t,$ $s\geq 0$ be real numbers, and put $n=\lfloor t\rfloor,$ $m=\lfloor s\rfloor$ .
Then

$\tau(a^{t})=\{\begin{array}{ll}R, (0\leq t<1)m\mathfrak{a}^{n-1}, (n\leq t<n+\div)m^{2}\mathfrak{a}^{n-1}, (n+\frac{1}{3}\leq t<n+\frac{2}{3})\mathfrak{a}^{n}, \end{array}$

$(n+ \frac{2}{3}\leq t<n+1)$

Now let us confirm the Strong Subadditivity Theorem in this case. If $n\leq$

$t<n+ \frac{1}{3}$ , then since $n+m\leq t+s$ , we have
$\tau(a^{t+s})\subseteq m\mathfrak{a}^{n+m-1}=(\mathfrak{m}a^{n-1})\mathfrak{a}^{m}\subseteq\tau(a^{t})\tau(a^{\epsilon})$ .

If $n+ \frac{1}{3}\leq t<n+1$ and $m+ \frac{1}{3}\leq s<m+1$ , then since $n+m+ \frac{2}{3}\leq t+s$ ,
we have

$\tau(a^{t+\epsilon})\subseteq a^{n+m}=a^{n}a^{m}\subseteq\tau(a^{t})\tau(a^{s})$ .

7. How TO COMPUTE $\tau(a)$ IN A $2$-DIMENSIONAL GORENSTEIN RATIONAL
LOCAL DOMAIN

Throughout this section, let $(R,\mathfrak{m})$ be a 2-dimensional excellent local domain
of characteristic $p>0$ with infinite residue field $k$ . Then one can define the
multiplier ideal $\mathcal{J}(\mathfrak{a})$ as well as $\tau(a)$ for any $m$-primary ideal $a$. So it is natural
to ask the following question.

Question 7.1. Let $R$ be as above, and let $a$ be an m-primary ideal ofR. When
does $\tau(\mathfrak{a})=\mathcal{J}(a)$ hold? In particular, is $\tau(\mathfrak{a})$ integrally closed?

In the following, we take a restrict our attention to Gorenstein rational local
domains. In this case, a-primary ideals enjoy many good properties. Let us
summarize them.
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Lemma 7.2. Assume that $(R, \mathfrak{m})$ be a 2-dimensional excellent Gorenstein m-
tional local domain, so-called rational double point $(RDP)$ . Let $a$ be an $\mathfrak{m}-$

pnimary integrally closed ideal of R. Then
(1) There erist a minimal reduction $b$ of a ( $i.e.,$ $b$ is a parameter ideal

which is contained in $a$ such that $\mathfrak{a}^{r+1}=ba^{r}$ for some $r\geq 0$) such that
$a^{2}=ba$ .

(2) $\overline{\mathfrak{a}^{n}}=\mathfrak{a}^{n}$ for every $n\geq 1$ .
(3) $\mathcal{J}(a)=b$ : $a$ for every minimal reduction $b$ of $\mathfrak{a}$ .

In the above lemma, the Rees algebra $R(\mathfrak{a})=R[at]=\oplus_{n>0}a^{n}t^{n}$ , which is a
subalgebra of $R[t]$ , is a Cohen-Macaulay normal domain. In fact, if $R$ contains
a $Q$ , then such an algebra has also rational singularity (due to Lipman [20]). So
one expects that $R(a)$ must be F-mtional” in our situation ($R$ contains $F_{p}$).
However, it is not necessarily true. The situation is a little bit complicated in
our case.
Question 7.3. Let $(R,m)$ and $a=a$ be as above. When is $R(a)$ F-mtional?

In higher dimensional case, we do not have any satisfactory answer. But in
2-dimensional case, we have the following criterion; see [12].

Proposition 7.4. Let $(R,m)$ be a 2-dimensional excellent Gorenstein mtional
local domain. Let $a$ be an $\mathfrak{m}$-primary integrally closed ideal, and $b=(x, y)a$
minimal reduction of $a$ . Then

$R(a)$ is F-rational $\Leftrightarrow$ $(x^{p}, y^{p})^{*b}=\mathfrak{a}^{2\ell-1}+(x^{p}, y^{\ell})$ for any $\ell\geq 2$ .

The F-rationality of the Rees algebra $R(a)$ is closely related to the first
question. Using this criterion, we can show the following.

Theorem 7.5. Let $(R, \mathfrak{m})$ be a 2-dimensional excellent Gorenstein rational
local domain. Let a be an $m$-primary integrally closed ideal, and $b=(x,y)a$
minimal reduction of $a$ . Then

(1) $\tau(a)\subseteq \mathcal{J}(\mathfrak{a})$ .
(2) $\mathcal{R}=R(a)$ is F-rational if and only if $\tau(a)=\mathcal{J}(\mathfrak{a})$ .

When this is the case, the graded canonical module $w_{\mathcal{R}}$ is given by

$\omega_{\mathcal{R}}=\bigoplus_{n\geq 1}H^{0}(Y, \mathfrak{a}^{n}\mathcal{O}_{Y})=\bigoplus_{n\geq 1}\tau(a^{n})$
,

where $Y=Proj(R(\mathfrak{a}))$ .
(3) If $(R,m)$ is F-rational, then so is $R(\mathfrak{a})$ .

Proof (1) Put $b=(x, y)$ . We first show that $a=b^{*b}$ . For each $q=p^{e}$ , since
$a^{q}b^{q}=b^{2q-1}a\subseteq b^{2q-1}\subseteq \mathfrak{y}^{[q]}$

we have $a\subseteq b^{*b}$ . Conversely, let $z\in b^{*b}$ . Then there exists $c\neq 0$ such that
$cz^{q}b^{q}\subseteq b^{[q]}$ for all $q=p^{e}$ . Hence $cz^{q}\in(x^{q}, y^{q}):(x, y)^{q}=(x, y)^{q-1}$ because $x$ ,
$y$ forms a regular sequence. This implies that $z\in\overline{b}=a$ .
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Next, we show that $\tau(b)\subseteq b$ : $a$ . In fact,

$\tau(b)=\bigcap_{=p1}^{\infty}(x^{\ell}, y^{\ell})$ : $(x^{\ell}, y^{\ell})^{*b}\subseteq(x, y)$ : $(x, y)^{*b}=b$ : $\mathfrak{a}$ .

Hence $\tau(a)=\tau(b)\subseteq b:a=\mathcal{J}(a)$ .
For (2),(3), we omit the proof here. 口

As a corollary, we have

Corollary 7.6. Let $(R, \mathfrak{m})$ be a 2-dimensional Goremtein F-mtional local do-
main. Then for any m-primary integrally closed ideal $a$ and for any integer
$n\geq 1$ , we have that $\tau(a^{n})=\mathcal{J}(\mathfrak{a}^{\mathfrak{n}})$ . In particular, $\tau(a^{n})$ is integrally $clo8ed$.
Remark 7.7. Using the canonical cover trick, one can generahize the above
corollary to 2-dimensional strongly F-regular local rings.

We believe that $\tau(\mathfrak{a}^{t})$ is integrally closed for any real number $t\geq 0$ , but we
have no proof. We will give a more direct proof of Corollary 7.6 here. Namely
we have:

Lemma 7.8. Let $(R,\mathfrak{m})$ and $a$ be as in Corollary 7.6. Take a minimal rduc-
tion $b$ of $a$ . Then for any real number $t$ with $0<t\leq 1$ , we have

$\tau(a^{t})=\tau(b^{t})=b$ : $b^{*b^{t}}$ .
Proof Put $b=(x, y)$ and $b^{1^{p]}}=(x^{\ell},y^{p})$ for each $P\geq 1$ . Since $R$ is an excellent
Gorenstein local ring, we know that

$\tau(a^{t})=\tau(b^{t})=\bigcap_{\ell=1}^{\infty}b^{[\ell]}$ : $(b^{[\ell]})^{*b^{t}}$ .

So it is enough to show that $b^{[\ell]}$ : $(b^{[\ell]})^{*b^{t}}=b$ : $b^{*b^{t}}$ for $\ell\geq 2$ . In order to do
that, we prove the following claim:

Claim: $(b^{[\ell]})^{*b^{t}}=(x^{p},y^{\ell})+b^{*b^{t}}(xy)^{\ell-1}$ .
Suppose that $z\in(b^{[\ell]})^{*b^{t}}$ . By definition, there exists $c\in R^{o}$ such that

$cz^{q}b^{\lceil tq\rceil}\subseteq(x^{\ell q}, y^{\ell q})$ for all $q=p^{e}$ . Since $0<t\leq 1$ , we have
$cz^{q}\in(x^{\ell q},y^{\ell q})$ : $(x, y)^{q}\subseteq(x,y)^{(2\ell-1)q-1}+(x^{\ell q},y^{p_{q}})\subseteq((xy)^{(\ell-1)q}, x^{\ell q},y^{\ell q})$ .

This implies that $z\in((xy)^{\ell-1}, x^{\ell}, y^{p})^{*}=((xy)^{\ell-1}, x^{\ell}, y^{\ell})$ . Hence we can write
as $z=w(xy)^{\ell-1}(mod (x^{\ell}, y^{\ell}))$ . Then $cw^{q}b^{\lceil tq\rceil}\subseteq(x^{p_{q}},y^{\ell q})$ : $(xy)^{(\ell-1)q}=$

$(x^{q}, y^{q})$ . Thus $w\in \mathfrak{y}*\iota$ as required.

By Claim, we get
$b^{\mathfrak{l}\ell]}$ : $(b^{1^{p]}})^{*b^{t}}=b^{1\triangleleft}:$ $(b^{[\ell]}+b^{sb^{t}}(xy)^{\ell-1})=(b:(xy)^{\ell-1}):b^{*b^{t}}=b:b^{*b^{t}}$ .

口

Remark 7.9. When $t=1$ , we have $\tau(a)=\tau(b)=b$ : $a$ ; see the proof of
Theorem 7.5(1).

Example 7.10. Let $k$ be a field of characteristic 2.
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(1) Put $R=k[[x, y, z]]/(x^{2}+y^{3}+z^{3})$ . Then $R$ is a rational double point of
type $(D_{4})$ , but not F-rational. However, $R(m)$ is F-rational. Indeed,
$\tau(\mathfrak{m})=\mathcal{J}(\mathfrak{m})=\mathfrak{m}$ .

(2) Put $R=k[[x, y, z]]/(x^{2}+y^{3}+z^{5})$ . Then $R$ is a rational double point
of type $(E_{8})$ , but not F-rational. Moreover, $R(\mathfrak{m})$ is not F-rational.
Indeed, $\tau(\mathfrak{m})\subseteq(x, y, z^{2})$ and $\mathcal{J}(m)=\mathfrak{m}$ .
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