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1. Introduction. The plasmodium of true slime mold Physarum polycephalum
is a large amoeba-like organism. Its body contains a tube network by means of which
nutrients and signals circulate through the body in effective manner. When food
sources were presented to a starved plasmodium that was spread over the entire agar
surface, it concentrated at every food source, respectively. Almost the entire plas-
modium accumulated at the food sources and covered each of them in order to absorb
nutrients(8]. Only a few tube remained connecting the quasi-separated components
of the plasmodium through the short path. Nakagaki et al. showed that this simple
organism had the ability to find the minimum-length solution of a maze[9, 10]. The
connecting tube traces the shortest path even in a complicated maze. This adaptation
process of the tube network is based on an underlying physiological mechanism, that
is, a tube becomes thicker as a flux in the tube is larger. This insight might be based
on the research on the rhythmic oscillation of Physarum polycephalum(11]. Tero et al.
made a mathematical model in consideration of the qualitative mechanisms clarified
by experiments{12]. They considered the tube network of Physarum polycephalum on
a maze to be a plane graph, set some variables on vertices and edges of the graph, and
described the process of growth and degeneracy of the tube. The model consists of
two parts, equations for flux in tubes and nonlinear ODEs for adaptation of tubes. In
a special case of nonlinear terms, the model is called Physarum solver. According to
numerical simulation results, the minimum-length solution of a maze can be obtained
as an asymptotic steady state of Physarum solver(12, 13]. We have already obtained
partial results in some simple cases[4]. Recently, we have gotten a further general
result. This report is the first announcement of our result, that is, for two specified
vertices s,t on the same face of any planar graph Physarum solver can find the shortest
s-t path. This means that the equilibrium point corresponding to the shortest path
is globally asymptotically stable for Physarum solver. See the forthcoming paper [5]
in details.

2. Preliminaries.

2.1. Graphs. Physarum solver is defined on a finite graph. First, we briefly
introduce some notations. We will assume that the reader is familiar with basic terms
and results from graph theory. See, for details, {2, 3, 7].

A graph G = (V, E) is a pair of sets, V and E, where V is a nonempty and FE is
a set of 2-element subsets of V. Throughout this paper we assume that V is finite.
The elements of V' are called vertices of G, the elements of E are the edges of G. Let
|G| denote the number of vertices. |G| is called the order of the graph G. The degree
of a vertex v, denoted d(v), is the number of edges incident with v.



Let Gy, ..., Gk be subgraphs of the graph G. The union G1U- - -UGy is the graph
H C G with V(H) =V(G;)U---UV(G) and E(H) = E(G1)U--- U E(Gy).

For U C V we denote by G — U the subgraph of G obtained by deleting from
G the vertices in U and all edges incident with them. If FF C E, then G — F is the
subgraph of G obtained by removing from G the edges in the set F.

A path is a nonempty graph P = (V, E) such that

V= {xo,.’r1, - ,:Bk} "E= {zo$1,$1$2, - ,:L‘k_1.'l:k}.

We denote P = zgx; - - - T) and call it the path from zg to zk, or zo-zx path.

A graph is planar if it can be drawn in the plane in such a way that no edges
intersect, except at a common end-vertex. A plane graph is a graph drawn in such a
way. For any graph G, a set R?\ G is an open subset. Its region is called a face of G.
Since G is bounded, just one of the faces is unbounded. The unbounded face of G is
called outer face, and the remainder is called inner face.

2.2. Physarum solver. Now, let us briefly introduce Physarum solver. The
formulation and physiological backgrounds are detailed in [12](See also [13]).

Let G = (V, E) be a graph. We consider a.set N = (G, s,t, L), where s,t € V are
two distinguished vertices, and L is a function from E to R;. Assume that G is a
connected graph and |G| > 2. Let V = {vp,v1,...,vn}, where n > 1. Let e;; denote
the edge joining v; and v; if it exists. If G has multiple edges joining v; and v;, we
denote them by v};,v%,.... Let L(ei;) = Li; > 0 be a length(or weight) of the edge
e:j. Assume that L(e;;) = L(ej;). G is considered as a flow network flowing out from
vo and sinking into v,. To distinguish those two vertices, let us call s = vp a source
and t = v, a sink(or a target). Assume that there exist exactly one source and one
target. For a path P = vg, - --vg, in G, define the length of the path P to be

k—1
L(P) = ZL(eﬁu@iﬂ)'

=0

Throughout this paper, the length of a path does not mean the number of edges which
compose the path.

Let T denote the time variable. For each i, the variable p;(7) is a pressure at the
vertex v;. For each edge e;;, D;;(t) and Q;;(T) are its conductivity(corresponding
to a thickness of tube) and flux, respectively. In addition, as described above, e;;
has its length L;;. For each edge, D;; should be nonnegative and D;; = Dj;. Let
D(71) = (Di;j(7))i,; be the set of all D;;(7)’s. Note that p;, D;; and Q;; are variables
depending on time 7, and L;; is a positive constant. We want to obtain the s-t path
such that its length is smaller than that of any other s-t paths.

First, we give two rules for flux. The flux Q;; is given by

_ Dy '
(2.1) Qi = E;Q’i—l’j) = 9i;(pi — Pj),

where gi; = D;;/Li; is the conductance of the edge e;;. (2.1) is an analogy of Ohm’s
law for electric circuits. It is clear that Q;; = —Q;i. Moreover, we assume the
Kirchhoff’s law at each node:

: Io lfl=0,
(2.2) Y Q=40 if0<i<n,

jEi ~Ip ifi=mn,
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where I, is the flux from the source vertex. In this model, it is assumed that Ip is a
positive constant.
Next, we give an adaptation rule of conductivity:

(2.3) Di; = |Qi;| — Dsjy

where we use Z to represent the derivative dz/dr.

By setting p, = 0 as a basic pressure level, all p;’s are determined by (2.2). Then
Qi;'s are determined by (2.1), and the evolution of D;;’s is described by (2.3). We
call the system (2.1),(2.2),(2.3) Physarum solver for N = (G,s,t,L).

We sometimes consider an orientation of graph G by means of the direction of
flux. If Q;; > 0, then we suppose that e;; is oriented from v; to v;. Naturally, this
orientation can change as time passes.

3. Mathematical analysis. In this section, we state important lemmas and
propositions, and our main result without proof. People who would like to see the
details may refer to the forthcoming paper [5].

3.1. Kirchhoff’s Law. Here we discuss a system of linear equations derived
from Kirchhoff’s law (2.2). Solving this system, we obtain the values of pressure at
each vertex.

Assume that |G| = n + 1 for an integer n > 1. For simplicity, we interpret that
gij > 0 if e;; € G, otherwise g;; = 0. Substitute (2.1) for (2.2), then the equation to
be solved is

I ifi=0,
31) g«_g"j(”“pj)z{ 0 fl<i<n-1,
J7F

where p,, = 0 and g;; > 0. (3.1) is written in matrix form

where
(3.3) P = *(po,p1,.. . Pn-1) ,b="(I,0,...,0),
and A = (A;;) is a square matrix of order n given by
. o Zl#igil 1f7’=],
(3-4) Aij = { —9ij otherwise,

where i,7 = 0,...,n — 1. We first study the solution of (3.2).

PROPOSITION 3.1. The coefficient matriz A is a symmetric nonsingular M-
matriz.

PROPOSITION 3.2. The system (8.2) has a unique non-negative solution p.

The next proposition guarantees that the vertex s = vg actually works as a source
and t = v, works as a sink.

PROPOSITION 3.3. For any v; € G, po = ;-

It follows that all Q;;’s are bounded.

PROPOSITION 3.4. For any e;; € G, |Q;;| < Io.

PROPOSITION 3.5. Let B = {8}, C {0,1,...,n} and By = 0,8, = n, and
| < n. Suppose that Dg.g,,, >0 for 0 <i <l—1. When D,, — 0 for every r,s such
that (7, 8) # (Bs, Bit+1) for any 0 <1 <1 -1, all p;’s remain finite.
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Now we consider the orientation of G by the direction of flow as described in the
prev1ous section. If p; > p; and e;; € G for v;,v; € G, let € be oriented from i to

. Let E be the set of orientable edges in such a way and G= VW, E), then G is a
d1rected graph with one source s = vp and one target ¢t = vn. Note that E = E does
not always hold and E can change as time passes. The next is, however, a universal
property which holds through the adaptation process.

PROPOSITION 3.6. G is acyclic, that is, G has no directed cycle.

3.2. Equilibria and s-t paths. Here we discuss the relation between equilibria
of an adaptation equation and s-t paths in a graph G. In an equilibrium state, i.e.
D;; =0, it holds that

(3.5) Dy; (lpi —pi| = Li) =0
D. Iy, ifi=0,
(3.6) 2 Si—p) =g 0 Hif0m,
—Io if i =n.

According to (3.6), there always exists at least one s-t path such that D;; > 0 for all
ei; in the path.

We assume that the length of s-t path is different each other. For given any s-t
path P = vg, - - - vg,, let Dp = (Dy;)i,; be the conductivities with

{ D-;j > 0 and Ip,- ——pjl = Lij if ey € P,

(3.7 Dy =0 otherwise,

where vg, = s and vg, =t. Then Dp satisfies (3.5). Let us call Dp the equilibrium
point corresponding to the path P.
It is easy to characterize Dp. The next proposition immediately follows from
(3.5)-(3.7).
PRrROPOSITION 3.7. The following two hold.
1. The pressures at vertez vg, € P is given by

L ifi=0,...,k-1
8 ;= Z;—z B3 Bj+1 1o )
(3:8) P { 0 if i = k.
FEspecially, po is equal to the length of P.

2. The fluz and the conductivity at edge eg,p,., € P are

QB:’B\'«H = Dﬁiﬁi-&-x = Io.

Therefore, the equilibrium point Dp is given by
o Io ife.,;jEP,
(3.9) Di; = { 0 otherwise.

Our goal is to prove that the equilibrium point Dp, corresponding to the shortest
s-t path P, is globally asymptotically stable for Physarum solver.

Remark. If G has h edges such that L(P,) = --- = L(Pn)(h > 2), the number of
equilibria corresponding to Pi,..., Py is uncountably infinite. Let G' = PLUP,U---U
Py, V(G") = {Uyg, -+, Vy, }, and vy, = 8,0, =t. The set of equilibria corresponding
to the paths consists of all the point such that

k—
23—1 Y075 = Z —'é D'YJ’Yk = IO) o
EJ>I D'Ym = 230 ViV if i #0,k.
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3.3. Main Theorem. Here we prove the main theorem of this paper:
THEOREM 3.8. Assume that N = (G, s,t, L) satisfies the followmg properties:
(i) G is a connected planar graph with IGI > 2.

(ii) The source s and the target t are on the same face of G.

(iii) G has ezactly one shortest s-tpath Py = Vg, * - Va,, Where voy = 8,vq, =t.
Then the equilibrium point Dp, corresponding to the path P, is globally asymptotically
stable for Physarum solver (2.1)-(2.8).

First, the results in the previous section allow us to restrict the phase space of
Physarum solver.
LEMMA 3.9. The hypercube

is attracting and invariant for Physarum solver.
Therefore, we can always restrict the phase space into H. Hereafter we suppose
that D(0) € H. The lower boundary of H is invariant for Physarum solver.
LEMMA 3.10. For any edge e;;, the set {D|D;; = 0} is mvamant for Physarum
solver. More generally, for a s-t path P the set

(311) {DlD-,,J =0 fOI €ij ¢ P}

i8 an invariant subset.
LEMMA 3.11. Let G be a connected graph, then the following three hold.

1. If G has a vertez v(# s,t) with d(v) = 1, then the conductivity of the incident
edge tends to zero as T — 00.
2. If G is s-t path, i.e. G = P,, then Dp, is globally asymptotically stable.
3. If G is a tree, then Dp, is globally asymptotically stable
LEMMA 3.12. Assume that G is not a path and satisfies the assumption (iii).
Then there is no inner equilibrium point, that is, the interior of H contains no equi-
librium point.
Now, we introduce the main tool.
DEFINITION 3.13. For an edge e;; € G, we define a function F;;(D) as

(312) ' F-,;j (D) = L-,',J' log D,;j-
For a path P = vg, . .v.vg,‘ in G, we define a function Fp(D) as
(3'13) FP(D) = ZFﬁiﬂi+1'
1=0
LEMMA 3.14. The derivative of Fi; is calculated as
(314) Fjj = ‘p,; - p]l - L,;J'.
Therefore we obtain

(3'15) FP = Z Ipﬁi _p13¢+1| - L(P)

=0



LEMMA 3.15. Let P = vg,---vg, C G be a s-t path such that P # P,. Assume
that Qp, .., (T) > 0 for alli and T > 0. Then there exists at least one edge e;; € P\ P,
such that D;; — 0 as 7 — co. Therefore any orbit is attracted into an invariant subset

(3.16) {D € H|Dy; = D;; = 0}.

According to Lemma 3.15, we can restrict the system into (3.16) to know the w-
limit set of Physarum solver for N. The reduced system corresponds to the Physarum
solver on the graph G — e;;.
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