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ABSTRACT

We study a size-structured population model represented by delay equa-

tions with infinite delay. The population is split into two stages accord-

ing to their maturity whicll is determincd by their size. In this paper,

we $inve_{\wedge}stigate^{\backslash }$. the occurrence of population cycles by implementing nu-
merical simulations with EBT-methods.
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1 Introduction

Individuals differ from each other in terms of size and age etc.. These $ph_{Y}$sio-

logical differences affect the vital rates such as growth, survival, development

and reproduction rates. The growth in age or size is often coupled to matu-

ration so that reproduction takes place only after individuals have reached a

certain $agc$ or size. $T1_{1}ei_{I11}p_{01}\cdot tancc^{1}$ of body size is related to thc fact that

80% of all spccies grow and develop throughout thcir cntire life (Werncr [8]).

Therefore size is one of the most important individual physiological traits which

would affect to the population-level phenomena. Practically, it is often the case
$\iota$

that one distinguishes individuals into several discrete stages in terms of age

or sizc. In continuous time models describcd by delay differcntial cquations,

development or transition to the next stage is described by the maturation

delay (see Cooke et al. [1], Gourley and Kuang [5] etc.). Recently, de Roos

and Persson [7] studied a size structured population model in which two size
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classes, juveniles and adults, are distinguished. The model considered in [7]

is dcscribed by a system of delay differential equation.$\dot{3}$ with state dependent

delay. By means of numerical analysis of steady state and numerical simula-

tions, they showed that three types of population cycles can occur depending

on the nature of competition among individuals. Motivated by the paper [7],

we study a matllematical nlodel which describes the population dynamics of

size structured population of the form:

$b(t)=\beta_{A}(F(t))A(t)$ ,

$\frac{dF}{dt}(t)=D-\gamma_{J}(F(t))J(t)-\gamma_{A}(F(t))A(t)$ ,

$J(t)=./t-\tau(t)tb(\alpha)e^{-\}_{\alpha^{l}}^{t}\iota’(p(\sigma))l\cdot\sigma}d\alpha$ ,
(DE)

$A(t)= \int_{-\infty}^{t-\tau(t)}b(\alpha)e^{-\int_{\alpha}^{\alpha+\overline{\tau}(\alpha)}\mu_{J}(F(\sigma))d\sigma-\int_{\alpha+\tilde{\tau}(\alpha)}^{t}\mu_{A}(F(\sigma))d\sigma}d\alpha$ ,

$s_{n\iota}$. $-s_{f},$ $= \int_{t-\tau(t)}^{t}g(F(\sigma))d\sigma=\int_{t}^{t+\overline{\tau}(t.)}g(F(\sigma))d\sigma$.

Here $b(t)$ denotes the population birth rate, while $F(t)$ denotes the food density

at time $t$ . $J(t)$ and $A(t)$ denote the population sizes of juveniles and adults

at timc $l$ , respectively. Two types of tirne delay $\tau=\tau(t)$ and $\tau=\tilde{\tau}(t)$ are
implicitly defined by the forth equation of (DE). Note that individuals that

mature at time $t$ were born at time $t-\tau$ , while individuals that are born

at time $t$ mature at time $t+\tilde{\tau}$ . The functions $g(F),$ $\mu_{J}(F),$ $\mu_{A}(F),$ $\beta_{A}(F)$ ,

$\gamma_{J}(F)$ and $\gamma_{A}(F)$ represent the rates for individual growth, death of juveniles

and adults, reproduction and consumption of juveniles and adults, respectively.

We assume that the size-at-birth of individuals is fixed at $s_{b}.We$ further assume
that the maturation size of juveniles is also fixed at $s_{m}>s_{b}$ . $D$ is the constant

rate at which food is provided in the environment.

System (DE) can be derived from a size-structured resource-consumer model
degcribed by partial differential equations as a special case (see for example,

[4]). Note that system (DE) includes the equations (3a) and (3b) considered
.

in [7] as a special case. In fact, equations (3a) and (3b) correspond to (DE) if
$\gamma_{J}(F)=aF,$ $\gamma_{A}(F)=qaF,$ $g(F)=\epsilon_{g}aF,$ $\mu_{J}(F)=\mu/(aF),$ $\mu_{A}(F)=\mu/(qaF)$

and $\beta_{A}(F)=\epsilon_{b}qaF$ (for details, see [7]). It is also natural to assume that
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these functions are saturating with respect to the food density. The purpose

of this paper is to investigate the occurrence of population cycles induced by

(DE) with saturating reproduction rate by implementing numerical simulations

with “Escalator Boxcar Train” method [6] (hereafter we use the abbreviation

“EBT”). Although it is difficult to study partial differential equations both
analytically and nunlerically, the EBT-method offers a way to implement nu-
merical simulations easier. The implementation of numerical simulations with

the EBT-method is also possible for a system of delay differential equations

(see de Roos [7]). The organization is as follows. In the next section, we

show the condition for the existence of an interior equilibrium of system (DE).

Finally, we discuss our results.

2 Saturating reproduction rate

2.1 Interior equilibrium

It follows from the fourth equation of (DE), we infer that in steady state

$\tilde{\tau}=\tau=\frac{s_{n\prime}.-s_{b}}{g(F)}$ . (2.1)

For $b\neq 0$ , the steady state version of (DE) reduces to a condition on $F$ , viz.

$\beta_{A}(F)e^{-\tau\mu_{J}(F)}\frac{1}{\mu_{A}(F)}=1$ . (22)

The left hand side is easily interpreted as the basic reproduction number $R_{0}(F)$ .

Note that onc should usc (2.1) to make it into a condition involving only $F$ .

We assume that all $\beta_{A}(F),$ $g(F),$ $\mu_{J}(F)$ and $\mu_{A}(F)$ are smooth functions of $F$ .

For $\beta_{A}(F)$ and $g(F)$ , we further assume that $\beta_{A}’(F)>0$ and $g’(F)>0$ for all
$F\in[0, \infty)$ . While for $\mu_{J}(F)$ and $\mu_{A}(F)$ , we further assume that $\mu_{J}’(F)\leq 0$

and $\mu_{\wedge}’(F)\leq 0$ . Then equation (2.2) has exactly one root whenever the left

hand sidc cxcceds 1 for large $\Gamma^{r}$ .

2.2 Numerical simulations

In this subsection, we implement numerical simulations with EBT-method to

investigate whether population cycles can occur. We specify functions $\gamma_{J}(F)$ ,
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$\gamma_{A}(F)$ and $g(F)$ as

$\gamma_{J}(F)=F$, $\gamma_{A}(F)=F$, $g(F)=F$, (2.3)

The death rates for juveniles $\mu_{J}$ and for adults $\mu_{A}$ are given by $\mu_{J}=\mu$ and
$\mu_{A}=q\mu$ , respectively. The reproduction rate $\beta_{A}$ is giv $d\backslash n$ by

.
$\beta_{A}(F)=\frac{MF}{a+F}$ (2.4)

Parameter values are fixed as $\mu=1.0,$ $q=0.5^{\cdot},$ $a=1,$ $M=100$ and $D=8$ .

We examined two cases in one of which we set $\ell=2$ while in the other of

which we set $\ell=4$ . The left panels of Figure 1 present time evolution of
the food dcnsity (top) and tlic total population (bottom) for $\ell=2$ . We

observe damped oscillations and the convergence to the equilibrium. This
implies that the occurrence of population cycles is not expected. On the other

hand, the right panels of Figure 1 present time evolution of the food density

(top) and the total population (bottom) for $\ell=4$ . In this case, population

cycles arc observed. Thus we concludc that nonlincarity, in particular, the

boundedness of reproduction rate in food density can be a driving factor to
induce population cycles.

3 Discussion

We studied delay equations with infinite delay describing the population dy-

namics of size-structured population which is feeding on some food as a re-
source. We showed the condition for the existence of the interior equilibrium

and inlplcnxcntcd nurncrical sinzulations with EBT-rncthod to invcstigatc the
occurrence of population cycles. We showed that population cycles can be ob-
served for bounded reproduction rate with respect to the food density when the

death rate for juveniles is lower than that of for adults. Further investigation

remains as our future work.
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Figure 1: $\ell=2.0$ (left: convergence) and $\ell=4.0$ (right: oscillation)
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