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INTRODUCTION
This is a continuation of papers on iteration dynamical sytems of discrete Lapalcian$s([2],[3])$.
$\ln$ this paper we are concemed with (1) Mathematical structure of iteration dynamical system of
discrete Laplacians on the plane lattice and (2)$The$ design-pattems produced by the dynamical
system.
At first we give a stability theorem for the dynamical system whose Laplacian is defined by
even neighborhoods. Next we are concerned with computer simulations of designs. We can
realize many kinds of designs and we can give a classification of designs by the choices of
neighborhoods, sources and the steps of the iterations. Finally we analyze the variations of
pattern and we can show that we supply the design-samplers using our software.

ITERATION DYNAMICAL SYSTEM OF DISCRETE LAPLACIAN
We recall the definition of the iteration dynamical system of discrete Laplacians([l]). We
choose the plane lattice which is generated by two families of lines which are orthogonal each
other. We $identi\theta$ a lattice point with a cell obtained by the lattice. We call a set of cells which
are attached with the reference cells a neighborhood $U_{p}$ . We call neighborhood even(or odd)

ifthe number ofthe cells is even(respectively odd). We list several examples of neighborhoods.

(1) Even neighborhoods

Moor Neuman Dleg Neuman Hexagonal Slorp[n$\kappa I
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(2) Odd neighborhoods
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We denote a neighborhood $U_{p}$ by the directions N,NE,$E$,ES,S,SW,W,NW. For example we
can denote the Neumann neighborhood by N,E, $S$,W. We take the space $F$ of {0,1} valued fUnctions
on the plane lattice and $def_{1}ne$ the Lapacian operation by

$\Delta_{U_{\rho}}f(p)=\sum_{q\in U_{p}}(f(q)-f(p))$

Choosing an initial function $f_{0}\in F$ , we define the dynamical system defined by the iteration of the
Laplacian:

$\{f_{n}\},f_{n}=\Delta_{U}f_{n-l}(n=1,2,\ldots)$

We call point $p\in L$ a source of the dynam $i$ cal system when $f_{n}(p)=$ ] for any $neN$ . Then we
can obtain the designs of distribubons of $0$ and 1 on the lattice plane and we can get various kind of
designs by the choice ofneighborhoods, sources.

SOME BASIC PROPERTIES ON THE DYNAMICAL SYSTEMS
Here we recall some basic notations on the dynamical systems and state assertions on mathematical
structures([1],[2]). At first we notice that we consider dynamical system$s$ under the periodic
condition. Namely, choosing an integer $M$, which is called the size, we consider the following
periodic functions:

$F(N)–\{f\epsilon F|F\{x*M,$ $y+M$) $– F(x)(m, n\epsilon l)|$

Choosing neighborhoods under the periodic condition, we can define the discrete Laplacian
and we can consider the iteration dynamical system. We prepare several basic notations:
(1) A dynamical system is called stable if

$3k\epsilon N$ S. $tf_{n}=f_{k}(^{\vee}n\geq k)$

(2) A dynamical
$s_{3_{n,1s.tf_{n^{-}}}^{stemisca11edperiodic,If}3V}$

(3) A point $p\in F$ is called a source ofa dynamical system, if $f_{n}(p)=1$ for any $n\in N$ .
We can state some basic properties on the dynamical systems:
(1) In the case $M=2^{p}$ and a single source, we may expect the following results:
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lfthe neighborhood is even, we see that the dynamical system is stable with the stability speed
2 $p$ for Moor neigh., Hexagonal neigh., Neuman neigh., and Sierpinski neigh.
Ifthe neighborhood is odd, we see that the dynamical system is periodic, period is
different depending the neighborhoods.

(2) In the case where $M$ is odd, we may expect the dynamical system is periodic in the case
of a single source. We give the table ofperiods for smaller $M$ :

We can prove the following assertion:

PROPOSITION
In the case where $M=2^{p}$ , neighborhood is Sierpinski type, and it has one point source, the

dynamical system is stable with the stability speed $2^{p}$ .

PROOF
We give an outline of the proof of Proposition in the case $p=4$ . Only by an observation in this
simple case we may understand that our assertion holds. The detail will be given in another paper.

口$arrow$ $\circ$ $O$

口$\div$
$-\backslash$

We notice the following facts:
(1) Putting the source at the upper corner in the right side, we see that the Pascal triangle mod 2

appears in the upper triangle part.
(2) At the 4 step, every element in the diagonal is 1.
(3) The lower triangle is filled by $0$ .
By these facts we see that the dynamical system is stable.
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SOFTWARE”DESIGNER KENTAURUS 2005”
We make a brief comment on our soft ware. We have well developed software named “Designer
Kentaurus 2005”. The software is written by JAVA.

The software has three panels:(l)The main panel describes the behavior ofthe dynamical system,
and (2)$the$ second panel describes the table of $neigborh\infty ds$ and (3)$the$ third one describes the
sources.

CLASSIFICATION OF DESIGN-PATTERNS
We can classify the design-pattems choosing neigborhoods, sources, steps. We notice that
their characters depend $on$ oddness and evenness of neighborhoods strongly as we have seen in
the previous paper[3]. We treat dynamical systems with a single source.

Design-pattern I -even neighborhood–
We can observe the following kinds of designs. The left side of the explanations under the
picture$s$ is type ofneighborhood, for example moor, Neumann diag. Neumann etc and the
middle [’] is the number of sources and the right side is the number of the step.
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(4)$Bordered$ pattern (5)$Crystal$ pattern (6)$Braid$ pattern

(7) Gasket pattern

Table 1 examination ofpattems I (even neighborhood)

111



Design-pattern $II$ -odd neighborhood with plural sources-
We can obtain design pattems with different taste $:(1)stripe$ pattern, (2)$mosaic$ pattem,
(3)$checkpattem,(4)undulate$ pattern and(5)$line$ pattern:

(1) Stripe pattern

$|\cdot|\Vert\Vert|\Vert\Vert|\Vert|[[\Vert\Vert$

$NE$ SE SW $W[4]$ step-127

(2) Mosaic pattern

(3) Check pattern
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(4) Undulate pattern

NWNESESW [5) $step-120$ NWNESESW [5] step-128 NWNESESW [5) $step-152$

(5) Line pattern

(6) Chaotic pattern

We can make chaotic pattems and designs of periodic characters choosing plural sources.
When we put the sources without symmetries, we may obtain chaotic patterns easily.

Table 2 examination ofpattems $\Pi$ (odd neighborhood)
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CONSTRUCTION OF DESIGN-SAMPLERS
By these observations, we can obtain the following manual of constructing designs.

Table 3 structure of software

We need some experiences for getting desired pattem$s$ . We will give a manual ofproducing
designs systematically.

CONCLUSIONS AND DISCUSSIONS
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(1) We have given a theorem on the mathematical structure of iteration dynamical system
on our dynamical system in the simple$st$ case. Namely we have proved a stability
theorem for the Sierpinski’s neighborhood with a source. We may expect to obtain
analogous results for general even neighborhoods. This will be given in the forthcoming
paper.

(2) We notice that our dynamical system in the case of line lattice is identical with the
dynamical system #90 of Wolffam’s table of cellular automata([7]). Hence we
may expect to obtain analogous results for the plane lattice.

(3) We have produced many kinds of designs by $u$se of our simulators and make analysis
on them. Our simulations are defined by the iteration dynamical systems and we can
reproduce them as one wants to obtain them. By this fact we have given the manual of
producing designs following the consumer’s needs.

(4) The $evenness/oddness$ of neighborhoods give big difference not only in their impressions
given by the designs but also in their mathematical structures. This can be observed in the
psychological experiments on the visual impressions([3]). We notice that this character
plays an important role in the discussions on the difference of Japanese and European
designs. Also we have $s$een that we have made the simulations ofthe time change of
numbers of families of extinct animals by use of the even neighborhoods([4]). Here we
want to express our stress on the fact that our simulations may expect to describe the
evolution ofthe universe. This topics will be discussed in the forthcoming paper.
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