0000000000
0 15540 20070 24-31 24

Variations on Neighborhoods in CA

h—=R e TF N a (B—NVAN—ZKIFER)
Thomas Worsch (University of Karlsruhe, Germany) !
email : worsch@ira.uka.de

and

ERIEZE) (Gt « KKH)
Hidenosuke Nishio (ex. Kyoto University)
emalil: YRA05762@nifty.com

Abstract

We show how an arbitrary finite number of CA with different local rules can be simulated by CA

using the same local rule by just changing the (shape of the) neighborhood. In that way one can even
achieve universality. :

1 Introduction

Usually investigations of cellular automata without further discussion assume some standard neighbor-
hood because it is “without loss of generality”. In general this is correct, except, of course, when one is
interested in questions specifically concerning neighborhoods.

The rest of this paper is organized as follows: In Section 2 we introduce some basic notation we are
going to use later on. The following two sections are devoted to simulations of some CA A; by other
CA, where the latter only differ in their neighborhoods.

Sections 3 presents a solution to the conceptually simpler task of simulating a finite number of CA
A; which all have the same neighborhood but different local functions by CA B; which all have the same
local function but different neighborhoods.

In Section 4 it will be shown that one can even achieve universality in the following sense: There is
one local rule which is used by different CA with different neighborhoods in such a way that any CA
A; with state set {0, 1} for its cells can be simulated, even (and in particular) if the initial configuration
does not contain any information about the CA to be simulated. That does only depend on the specific
neighborhood of the simulating CA.

Throughout the paper we prefer solutions that can be described and used easily over solutions which
are optimized for running time or the number of states per cell.

2 Basics

We will describe the construction in Section 3 for d-dimensional CA and denote by R = Z4 the set
of all cells (in Section 4 we will restrict ourselves to the case d = 1). Let Q denote the finite set of
states for each cell and N the finite neighborhood containing n = |N| relative offsets to cells. Without
loss of generality we assume that 0 = (0,...,0) € N. Letv : {0,...,n — 1} — N be a bijection
satisfying v(0) = 0. This function is introduced in order to have a numbering of the neighbors. It allows
to use “the same local rule” with different neighborhoods. Equivalently one can think of v as a vector
(v(0),...,v(n—1)).

Global configurations are formalized as mappings ¢ : R — Q; thus c(j) is the state of cell 7 in
configuration c. The local rule f : Q™ — Q induces the global function in the usual way. If the CA is

! corresponding author

25

A= (R,Q,N,v, f) we write A : QF — QF for the global function.
A(c)(3) = f(e(d +v(0)),c(d +v(1)),...,c(d +v(n—1))).

3 Simulating several CA using one local function: a simple idea

For0 < i < mlet A; = (R,Qa, N4,va, fi) denote m cellular automata. Configurations ¢: R — Q4
are simply called .4-configurations since all these CA have the same set of configurations.
We will describe m CA B; = (R, @B, Ni,v;, fB) such that each B; simulates A; (in an obvious

sense). Configurations ¢ : R — @ p are simply called B-configurations since all these CA have the same
set of configurations.

Note that the simulating CA B; use the same set of states and the same local function and they only
differ in (the shapes of) their neighborhoods. Furthermore the same embedding of .A-configurations into
B-configurations will be used for all simulations.

Weuse Qg = Q4 x {0,1,...,m — 1}. For any ¢ € Qg we write s(g) and p(q) for the first and
second component of g respectively.

The following embedding F : Qff — QR of configurations will be used:

E(c)(3) = (c(3),5(0] mod m)

where j[0] means the first component of the vector j.
For example, if we want to simulate m = 3 one-dimensional CA 4;, then A-configurations like

o la-s] a4 |-3| |e-2| |em] |@] |@] |@] (@] [@] [&]

will be embedded into

g-5 d-4 q-3 q-2 g-1 qo g1 Q2 g3 q4 qs
1 2 0 1 2 0 1 2 0 1 2

Lemma 1 Let cq be an arbitrary A-configuration and cg = E(ca). Foralli,j € R and all offsets
x € N x {0}2~! holds: '

p(ca(i +) - p(cs(3)) = p(cs(d + =) — p(cs(s)) (mod m)
This should be obvious since the equation is equivalent to

ples(i+) = p(ca(d + =) = p(cs(i)) — p(ca(s)) (mod m).
Definition 2 The CA B; are specified as follows:

o N; = N U {r;} wherer; = (r;,0,...,0) and r; is the smallest positive integer not occurring in
any offsetn € N as a component and r; = i mod m.

o The numbering of neighbors is basically the same as for the A;:
) va(j) ifij<n
vi(J) ={ 40) ﬁr]
T fi=n
o We define fg : Q’;’l — QB by specifying the two resulting components separately:

s(fe(g0;...,an)) = fi(s(q0),---,5(gn-1))

where i = s(gn) — 8(go) mod m
p(fB(g0,...,an)) = p(0)

26

Lemma 3 B; simulates A; (for all 0 < i < m) in the following sense: For any A-configuration c and
allt > 0 one has
E(A(c)) = Bi(E(c))

Proof: Consider an arbitrary i and an arbitrary .A-configuration c. The case t = 0 is trivial. Hence it
suffices to prove the claim for t = 1, the rest follows by an easy induction.

From the definition of p(f5(...)) immediately follows that the second component of a B-cell does
never change its value (since we always assume v(0) = 0).

It remains to have a look at the first components. Consider an arbitrary cell j € RR. By definition of
FE one gets

3(E(Ai(e))(d)) = Ai(c)(d) = filc(d +v4(0)),...,c(F + va(n - 1)))
On the other hand for ¢ = E(c) holds

s(Bi(c)(3) = s(fB(cd(G+w(0),...,c'(F +u(n—-1)),d G +wun)))
= fz(8(c (G +w(0))),...,8(d (G +wi(n - 1))
= fo(s(c(G +va(0))),...,s(d(F +va(n—1))))
= fo(e(d +va(0)),...,c(d +va(n—1)))

By Lemma 1 the value z is the same for all cells j and by the definition of s(f5(qo,...,gn)) it is
z = s(gn) — 8(go) mod m = r; — 0 mod m = .)
Hence one gets exactly the same value as on the left hand side of the claim. n

4 Simulating several CA using one local function: a universal solution

In order to make it easier to describe the construction, only one-dimensional CA will be considered from
now on. The generalization to the higher dimensional case is at most tedious but not difficult.

In this section we will describe CA U; which can simulate any CA 4; having 2 states per cell, a
neighborhood of arbitrary size and shape and an arbitrary local function. As in Section 3, all &; will only
differ in the shape of their neighborhoods. The main difference to the previous construction is, that, in
order to achieve universality, we now have to deal with infinitely many A;.

Also, the embedding of .A-configurations into I-configurations will be different from the one in
Section 3. But, of course, we will of maintain the feature that the embedding is independent of the
specific CA A; to be simulated. We choose Qu = {0,1} x Q' for some set Q' which contains the
symbols o and . (among others). The following embedding E : Q@ — Qf of configurations will be
used:

(c(7),0) ifj=0
(c(4),-) otherwise

E(e)(j) = {

Le., nothing is changed, except that a special marker o is set in one cell. It doesn’t matter which cell; we
have chosen j = 0.
Conceptually, the work of any U; consists of three phases:

1. A representation of the CA .A; to be simulated is generated as a binary string.
2. The input representing the initial configuration for .4, is transformed.
3. A; is simulated by U;.

27

As will be seen later on, the second and third phase are overlapped. In the following subsections we will
sketch the most important aspects of the construction:

1. how the number of the CA to be simulated is generated as a binary string;
2. how the CA to be simulated is represented in this string;
3. how the initial configuration is transformed for simulation;

4. how one step of one cell can be simulated;

4.1 Computing the binary string representing the CA to be simulated

Consider the following CA: The set of states? is Q; = {0,1,-} x {0,1,-} x {e,0,5,<,-}. We will
say that the cells consist of three registers containing “sub-states”. In diagrams sub-states .. will not be
shown; instead corresponding registers will simply be left empty and called empty. The first registers
(shown at the top of each cell in Figure 1) are used for “sum bits”, the second (shown in the middle) are
used for “carry bits” and the third (shown at the bottom) are used for signals.

The neighborhood is N = {—r, —1,0, 1, 7} where r is an arbitrary number greater or equal to 2. The
neighbor at position r is called the “remote” neighbor of the origin. It can identify itself, because it sees
the marker o at its neighbor at position —r.

We will explain the local rule with the help of Figure 1. The CA will be started in a configuration
where all parts of all cells are empty except one cell. Without loss of generality assume that this is cell 0
and call it the origin cell from now on. Initially its first two registers are empty, while the third contains
Q,

The goal is to reach a configuration which contains the number , i.e. the distance of the remote
neighbor, in binary representation in the first registers of some cells.

To achieve this the CA does the following in parallel:

o Using the third registers a signal (depicted > in Fig. 1) is started from the origin to the right. It is
passed on to the next neighbor until it reaches the cell which observes the state of the origin cell
as its neighbor at —r. There the signal reverses its direction (depicted <) and moves back to the
origin where it changes o to e after 2r steps indicating that everything has been done.

e Simultaneously to the left of the origin a counter is established, initialized with 0 and incremented
in each step until the origin observes that the signal just described has arrived at its remote neigh-
bor. Thus the final counter value is . The time until the signal comes back to the origin is used to
process the 1 carry bits in the counter cells if there are any.

4.2 Representation of a CA to be simulated

It is clear that each two-state CA can be represented as a word over some fixed alphabet. Without going
into details let us simply give an example: As the alphabet one could use {0,1,+,-,+, [,1}.

As the complete encoding of a CA one can use the concatenation of the encodings of the neighbor-
hood and the encoding of the local transition functions. For example, the neighborhood v = (-2,0,1)
can be encoded as

([-10] [+0] (+1]]

For example, the local transition function of rule 90 can be encoded as

[{ooo00} [0011] {0101] [0111] [2000] [1011] [1101] [1110]]

?Basically, this set Q, is part of the set Q' mentioned in the beginning of this section.

28

EENEEEEEEEEEEEEEEN NN EEREEE RN NN

IR NEEEEENEEEEDEEEEEREERREE RN

EEEERENEE NN EEN NN EEENERNEN EEE

L

| AENEEDEEEEEEEEE NN NN RN NEE

IR EEDEEE RN RN EEEEEE RN NN NN

EEEEEDEEEEEENEEEERNEEEEE N NN NEE

o[T T T T T T el el e o) =]

Tl =TT oL T YTl =Tel J=fol =Tl J=[=]]

7L

LTI T T edel NeTel Yolo] Jolof Jlofel Jelol Jolol |

7|

|] [T T TN T T T =el Jolof f=dof f=lel

|

HREREEEEEEEEEEEE NN EEREERRREREE

7

8

9
t=10

Figure 1: A CA converting the distance of the remote neighbor to a binary number (r = 5).

29

We call a sub-word of the form [qq,...,gn—1, f(g0,...,qr~1)] a local rule. If the i-th neighbor of a
cell is in state s, we say that [qo,...,gqn-1, f(qo,...,qn-1)] is relevant, iff ¢; = s. For example, if the
state of the second neighbor is 0, the first, second, fifth and sixth local rule are relevant.

The CA U; produce binary strings as representations. For that the symbols above have to be encoded
as bit strings of some fixed length. It is clear that a CA can check whether an arbitrary binary string
really is the encoding of a CA as described above quite easily.

4.3 Transforming the configuration to be used for the simulation

For the simulation each U/-configuration consists of blocks. Each block
e contains a complete copy of the description of 4; as explained in the previous subsection,
e is responsible for the simulation of one .A4;-cell,
e stores the current and the previous state of the represented .4;-cell, and

o together with each state one of the integers {0,1,2}. They are used for Nakamura’s technique
[3] of simulating synchronous updating in a framework where the updates cannot really be syn-
chronous. '

After the first phase, U; has one copy of the description of A;. The cells containing this copy form the
block for simulating cell —1 of A;; we call this the “block —1". In the sequel I; has to

o establish more and more subsequent blocks to the left and to the right with copies of the description
of A;,

o shift the states of the A; cells —2, —3, —4, . .. to the left and the states of the A;-cells 0,1,2,...to
the right to their corresponding blocks, and

e initialize the mod 3 counters.

Since there is an infinite number of cells to be simulated, this process will never come to an end. But after
a finite number of steps enough blocks will be set up so that the first step of cell —1 can be simulated. At
some later time, there will be enough blocks to simulate the first step of each neighbor of cell —~1. Hence
afterwards the second step of cell —1 can be simulated, etc.

We assume that the reader is familiar enough with standard CA techniques, so that she/he could fill
out the details here.

4.4 The simulation
Whenever a block wants to simulate one state transition of the represented .A;-cell, it does the following:

1. It sends some kind of state request signals to the “neighbor blocks”, i.e., the blocks representing
the neighbors of the cell to be simulated.

2. If such a block has already made enough simulations steps (aocordin_g to Nakamura's technique),
it can attach the needed state to the signal and send it back to its originating block. Otherwise the
information is sent back, that the state is not yet available.

3. Upon arrival of a state in the block that had requested it, the corresponding rules of the transition
table are marked as relevant. If a “not-yet-available” value returns, the request signal is sent again.

30

4, If all signals have returned a valid state, the new state can be read off the transition table and stored
as the new current state while moving the old the previous register. The mod3 counter of the new
current state gets 1 plus the value of the now previous state.

The two basic technical aspects which deserve further explanation are the signals and how they are used
to select the correct “row of the transition table”.

The signals have to know how many blocks the have to travel (and they have to travel as many blocks
back to their origin). One can use a standard signal of constant speed (strictly smaller than 1 for the
algorithms described below to work) and attach to it a pair of binary numbers (d, D), which initially are
both the number of blocks the signal has to travel. While d is used several times for counting down to
zero, D is never changed and used to restore the original value for d.

The binary values can be arbitrarily large and hence have to be stored in a distributed fashion in
some subsequent cells. When travelling to the neighbor block, d is decremented at each left (or right,
depending on the direction of travel) block boundary it passes. The signal has reached its destination
block when the value has become 0. For the travel back d is reset to the initial value from D.

The selection of the relevant local rule, it is most convenient, to image that the signals just described
have another pair of numbers (k, K) attached to them (in addition to d and D). It is the index of the
neighbor: If initially d = D = v(i), then k = K = i. Analogously to the above, K is used to restore the
original value of k, whenever k has been decremented to 0. This is done during the process of marking
relevant local rules:

Whenever a signal is returning from the K-th neighbor with some state s, it passes all local rules

{gos- .+ qn-1, f(qo,...,qn-1)]. Each time it arrives at some g;, it checks the content of k.

e Ifk =0, ¢; is compared with s and if they are identical, ¢; is marked as relevant.
o Ifk > 0, the value k is decremented and the signal moves on to g;4.

Atthe end] of the local rule, k is restored to K, so that the next local rule can be checked analogously.

In addition, each such signal can always check, whether all states qp, . .., gn—1 are marked as rele-
vant, If this is the case, the state at the end of the local rule (immediately before the closing]) is the new
state of the simulated cell.

S5 Summary and outlook

In Section 3 we he have shown that it is possible to simulate a finite number of CA A; with the same
neighborhood and different local rules by CA B; with the same local rule and different neighborhoods.

In Section 4 we he have shown that it is even possible to simulate an infinite number of CA A; with
neighborhoods of different size and shape and different local rules by CA U; with the same local rule and
different neighborhoods which all have size 5.

In both constructions the embedding of the configurations of the simulated CA into configurations of
the simulating CA were independent of the specific CA to be simulated. It was only the difference in the
neighborhoods of the simulating CA that could be and was exploited.

The two constructions did make use of different types of embedding of configurations and different
types of simulations. It remains to be investigated, whether in the construction showing universality one
really needs to “break symmetry” by setting the special marker in one cell.

We just want to point out that it would not be the first such case. E.g., when looking at the simulation
of arbitrary CA by reversible CA for infinite configurations, it is known that this is possible for some
kind of simulation [1] while it is provably impossible for another type of simulation [2].

31

References

(1] Jéréme O. Durand-Lose. Reversible space-time simulation of cellular automata. Theoretical Com-
puter Science, 246:117-129, 2000.

[2] Peter Hertling. Enibedding cellular automata into reversible ones. In C. S. Calude, J. Casti, and M. J.
Dinneen, editors, Unconventional Models of Computation, pages 243-256. Springer-Verlag, 1998.

[3] Katsuhiko Nakamura. Synchronous to asynchronous transformation of polyautomata. Journal of
Computer and System Sciences, 23:22-37, 1981.

manuscript for “kokyuroku” of LA symposium at RIMS, Jan. 2007, March 29, 2007

