
Variations on Neighborhoods in CA

トーマス・ヴォルシュ (カールスルーエ大情報)

Thomas Worsch (University ofKarlsruhe, Germany) 1

email: worsch\copyright ira.uka.de

and
西尾英之助 (元・京大理)

Hidenosuke Nishio (ex. Kyoto University)
email: YRA05762\copyright nifty.com

Abstract

We show how an arbitrmy finite number of CA with different local rules can be simulated by CA
using the same local rule byjust chmging the (shape ofthe) neighborhood. In that way one can even
achieve $\ovalbox{\tt\small REJECT} ty$.

1 Introduction

UsuaMy investigations of cellular automata without further discussion assume some standard neighbor-
hood because it is “without loss of generality”. In general this is correct, except of course, when one is
interested in questions specifically conceming neighbothoods.

The rest ofthis paper is organized as follows: In Section 2 we introduce some basic notation we are
going to use later on The following two sections are devoted to simulations of some CA At by other
CA, where the latter only differ in their neighborhoods.

Sections 3 presents a solution to the $\infty n\infty ptually$ simpler task of simulating a finite number of $CA$

$A_{i}$ which all have the same $neighborh\infty d$ but different local functions by CA $\mathcal{B}_{i}$ which all have the same
local function but different neighborhoods.

In Section 4 it will be shown that one can even achieve universality in the following sense: There is
one local rule which is used by different CA with different neighborhoods in such a way that any CA
A with state set $\{0,1\}$ for its cells can be simulated, even (and in particular) if the initial configuration
does not $\infty ntain$ any infonnation about the CA to be simulated. That does only depend on the specific
neighborhood ofthe simulating CA.

Throughout the paper we prefer solutions that can be described and used easily over solutions which
are optimized for runming time or the number of states per cell.

2 Basics

We will describe the construction in Section 3 for d-dimensional CA and denote by $R\text{ュ}Z^{d}$ the set
of all cells (in Section 4 we will restrict ourselves to the case $d\text{ュ}1$ ). Let $Q$ denote the finite set of
states for each cell and $N$ the finite neighborhood containing $n\text{ュ}|N|$ relative oMsets to cells. Without
loss of generality we assume that $0\text{ュ}(0, \ldots, 0)\in N$ . Let $\nu$ : $\{0, \ldots,n-1\}arrow N$ be a bijection
satisfying $\nu(0)\text{ュ}0$ . This function is introduced in order to have a numbering ofthe neighbors. It allows
to use “the same local rule’ with different neighborhoods. Equivalently one can think of $\nu$ as a vector
$(\nu(0), \ldots, \nu(n-1))$ .

Global configurations are formalized as mappings $c$ : $Rarrow Q$; thus $c(j)$ is the state of cell $j$ in
configuration $c$ . The local rule $f$ : $Q^{n}arrow Q$ induces the global function in the usual way. Ifthe CA is
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$A=(R, Q, N, \nu, f)$ we write $\mathcal{A};Q^{R}arrow Q^{R}$ for the global function.

$\mathcal{A}(c)(j)=f(c(j+\nu(0)), c(j+\nu(1)),$
$\ldots,$ $c(j+\nu(n-1)))$ .

3 Simulating several CA using one local function: a simple idea

For $0\leq i<m$ let $A=(R, Q_{A}, N_{A}, \nu_{A}, f_{i})$ denote $m$ cellular automata. Configurations $c:Rarrow Q_{A}$

are simply called $A-\infty nfigurations$ since all these CA have the same set of configurations.
We will describe $m$ CA $\mathcal{B}_{i}=(R,Q_{B}, N_{i}, \nu_{i}, f_{B})$ such that each $B_{i}$ simulates $A$ (in an obvious

sense). Configurations $c:Rarrow Q_{B}$ are simply called $\mathcal{B}$-configurations since all these CA have the same
set of configurations.

Note that the simulating $CA\mathcal{B}_{i}$ use the $S\Phi ne$ set ofstates and the same localfunction and thy only
differ in (the shapes of) their neighborhoods. Furthermore the same embedding $ofA$-configurations into
$\mathcal{B}$-configurations will be used for all simulations.

We use $Q_{B}=Q_{A}x\{0,1, \ldots,m-1\}$ . For any $q\in Q_{B}$ we write $s(q)$ and $p(q)$ for the first and
second component of $q$ respectively.

The following embedding $E:Q_{A}^{R}arrow Q_{B}^{R}$ of configurations will be usexS:

$E(c)(j)=$ ($c(j),j[0]$ mod $m$)

where $j[0]$ means the first component of the vector $j$ .
For example, ifwe want to simuIate $m=3$ one-dimensional CA $A_{i}$ , then $A-\infty nfigurations$ like

回回回回
will be embedded into
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Lemma 1 Let $cA$ be an $arbitra\eta \mathcal{A}-co\phi gumtion$ and $C_{B}=E(C_{A)}$ . For all $i,j\in R$ and all offiets
$x\in Nx\{0\}^{d-1}hold\sigma.\cdot$

$p(c_{B}(i+x))-p(c_{B}(i))=p(c_{B}(j+x))-p(c_{B}(j))$ $(mod m)$

This should be obvious since the equation is equivalent to

$p(c_{B}(i+x))-p(c_{B}(j+x))=p(c_{B}(i))-p(c_{B}(j))$ ($m$屋 d $m$).

Definition 2 The $CA\mathcal{B}_{i}a\prime e$ specified asfollows:
$\bullet$ $Ni=N\cup\{r:\}$ where $r_{i}=(r_{i}, 0, \ldots, 0)$ and $r_{i}$ is the smallest positive integer not occurring in

arry offset $n\in N$ as a component and $r\iota=i$ mod $m$.
$\bullet$ The numbering ofneighbors is basically the same asfor the $\mathcal{A}_{i}$ :

$\nu_{1}(j)=\{\begin{array}{ll}\nu_{A}(j) iff j<nr: iff j=n\end{array}$

$\bullet$ We define $f_{B}$ : $Q_{B}^{n+1}arrow Q_{B}$ by sPeciffing the two nesulting components sepamlely:

$s(f_{B}(q_{0}, \ldots, q_{n}))$ $=$ $f_{1}(s(q_{0}), ...,s(q_{n-1}))$

where $i=s(q_{n})-\epsilon(q_{0})$ mod $m$

$p(f_{B}(q_{0}, \ldots, q_{n}))$ $=p(q_{0})$
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Lemma 3 $\mathcal{B}_{i}$ simulates $A_{1}$ (for all $0\leq l’<m$) in thefollowing sense: For any $\mathcal{A}$-configuration $c$ and
all $t\geq 0$ one ha s

$E(A^{t}(c))=\mathcal{B}_{i}^{t}(E(c))$

Proof. Consider an arbitrary $i$ and an arbitrary $\mathcal{A}-\infty nfifflationc$ . The case $t=0$ is trivial. Hence it
suffices to prove the claim for $t=1$ , the rest follows by an easy induction.

From the definition of $p(f_{B}(\ldots))$ immediately follows that the second component of a $\mathcal{B}$-cell does
never change its value (since we always assume $\nu(0)=0$).

It remains to have alook at the first components. Consider an arbitrary cell $j\in R$. By definition of
$E$ one gets

$s(E(A_{t}(c))(j))=A_{i}(c)(j)=f_{i}(c(j+\nu_{A}(0)), \ldots,c(j+\nu_{A}(n-1)))$

On the other hand for $c’=E(c)$ holds

$s(B_{1}(c’)(j))$ $=$ $s(f_{B}(c’(j+\nu_{1}(0)), \ldots, c^{l}(j+\nu_{i}(n-1)), c’(j+\nu_{1}(n))))$

$=$ $f_{x}(s(c’(j+\nu_{j}(0))), \ldots, s(d(j+\nu_{i}(n-1))))$

$=$ $f_{l}(s(c’(j+\nu_{A}(0))), \ldots, s(c’(j+\nu_{A}(n-1))))$

$=$ $f_{l}(c(j+\nu_{A}(0)), \ldots, c(j+\nu_{A}(n-1)))$

By Lemma 1 the value $x$ is the same for all cells $j$ and by the definition of $s(f_{B}(q_{0}, \ldots, q_{n}))$ it is
$x=s(q_{n})-s(q_{0})$ mod $m=r_{j}-0modm=i$ .

Hence one gets exactly the same value as on the left hand side ofthe claim. $\blacksquare$

4 Simulating several CA using one local function: a universal solution

In order to make it easier to describe the construction, only one-dimensional CA will be considered from
now on. The generalization to the higher dimensional case is at most tedious but not difficult.

In this section we will describe CA $u$ which can simulate any CA Ae having 2 states per cell, a
neighborhood ofarbitiury size and shape and an $a\iota biba\iota y$ local function. As in Section 3, all $u$ will only
differ in the shape of their $neigborh\infty ds$ . The main difference to the previous $\infty nstruction$ is, that, in
order to achieve universality, we now have to deal with infinitely mary A.

Als$0$, the embedding of $\mathcal{A}-\infty nfigurations$ into $\mathcal{U}-\infty nfi_{\Psi}atioo$ will be different from the one in
Section 3. But, of murse, we will of maintain the feature that the embedding is $indep\epsilon ndent$ of the
$sp\infty ific$ CA $A_{i}$ to be simulated. We choose $QU=\{0,1\}xQ’$ for some set $Q’$ which contains the
symbols $\circ andrightarrow$ (among others). The following embedding $E$ : $Q_{A}^{R}arrow Q_{U}^{R}$ of configurations will be
used:

$E(c)(j)=\{\begin{array}{ll}(c(j), \circ) if j=0(c(j),rightarrow) otherwse\end{array}$

I.e., nothing is changed, except that a special marker $\circ$ is set in one cell. It doesn $t$ matter which cell; we
have chosen $j=0$.

$Conoep ually$, the work ofany $u$ consists ofthree phases:

1. A representation ofthe CA A to be $8imulatd$ is generated as a binary string.

2, The input representing the imtial configuration for $A$ , is transformed.

3. $A_{i}$ is simulated by $u$ .
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As will be seen later on, the second and third phase are overlapped. In the following subsections we will
sketch the most $impo\iota tant$ aspects ofthe consmction:

1. how the number of the CA to be simulated $is$ generated as a binary string;

2. how the CA to be simulated is represented in this string;

3. how the initial $\infty nfiguration$ is transformed for simulation;

4. how one step of one cell can be simulated;

4.1 Computing the binary shlng representing the CA to be simulated

Consider the following CA: The set of states2 is $Q_{1}=\{0,1,-\}x\{0,1,-\}\cross\{\bullet 0\geq<,rightarrow\}$ . We will
say that the cells consist of three registers containing “sub-states“. In diagrams sub-states $rightarrow$ will not be
shown; instead $\infty\pi es\mu nding$ registeIs will simply be left empty and called empry. The first registers
(shown at the top of each cell in Figure 1) are used for $s\iota un$ bits”, the second (shown in the middle) are
used for cary bits” and the third (shown at the bottom) are used for signals.

The neighborhood is $N=\{-r, -1,0,1, r\}$ where $r$ is an arbitrary number greater or equal to 2. The
neighbor at position $r$ is called the ”oemote neighbor ofthe origin. It can identify itselC because it sees
the marker $0$ at its neighbor at posi$lion-r$.

We will explain the local rule with the help of Figure 1. The $CA$ will be started in a conflguration
where all parts $ofaU$ cells are empty except one cell. Without loss ofgenerality assume that this is cell $0$

and call it the origin cell from now on. Initially its first two registers are empty, while the third contains
$0$ .

The goal is to reach a $\infty nflguration$ which contains the number $r$, i.e. the distance of the remote
neighbor, in binary representation in the first registers of some cells.

To achieve this the CA does the following in parallel:

$\bullet$ Using the third registers a signal (depicted $>in$ Fig. 1) is started from the origin to the right It is
$pass\epsilon d$ on to the next neighbor until it reaches the cell which observes the state ofthe origin cell
as its neighbor at-r. There the signal reverses its direction (depicted $<$ ) and moves back to the
origin where it changes $0$ to $\bullet$ after $2r$ steps indicating that everything has been done.

$\bullet$ Simultaneously to the left ofthe origin a counter is established, initialized with $0$ and incremented
in each step until the origin observes that the signalj ust described has amived at its remote neigh-
bor. Thus the final $\infty unter$ value is $r$ . The time until the signal comes back to the origin is used to
process the 1 carry bits in the counter cells ifthere are any.

4.2 $Repr\epsilon sentabon$ of a CA to be simulated
It is clear that each two-state CA can be represented as a word over some fixed alphabet. Wthout going
into details let us simply give an example: As the alphabet one $\infty uld$ use $\{0,1, +, -, \pm, [, ]\}$ .

As the $\infty mplete$ encoding of a $CA$ one can use the $concat\epsilon nalion$ of the $en\infty din_{\mathfrak{B}}$ of the neighbor-
$h\infty d$ and the encoding ofthe local transition functions. For example, the neighborhood $\nu=(-2,0,1)$
can be encoded as

$[[-10][\star 0][+1]]$

For example, the local transition function ofrule 90 can be $\epsilon n\infty d\bm{r}d$ as

[ $[0000]$ [0011] [0101] [0111] [IOOO] [1011] [1101] $[11l0]$ ]

2Buically, this set $Q_{1}$ is $p\alpha$ ofthe set $Q’$ mentioned in the $k\dot{g}nning$ ofthis section.
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$t=0$ ...

$t=1$ ...

$t=2$ ...

$t=3$ ...

$t=4$ ...

$t=5$ ...

$t=6$ ...

$t=7$ ...

$t=8$ ...

$t=9$ ...

$t=10$ ...

Figure 1: A CA mnverting the distance ofthe remote neighbor to a binasy number $(r=5)$ .
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We call a sub-word of the form $[q_{0}, \ldots, q_{n-1}, f(q_{0}, \ldots, q_{n-1})]$ a local rule. If the i-th neighbor of a
cell is in state 8, we say that $[q_{0}, \ldots , q_{n-1}, f(q_{0}, \ldots, q_{n-1})]$ is relevant, iff $q_{i}=s$ . For example, ifthe
state ofthe second neighbor is $0$ , the first, second, fifth and sixth local rule are relevant.

The CA $u$ produce binary sbings as representations. For that the symbols above have to be encoded
as bit strings of some fixed length. It is clear that a $CA$ can check whether an arbitrary binary string
really is the encoding of a CA as described above quite easily.

4.3 Transforming the configuration to be used for the simulation
For the simulation each $\mathcal{U}$-configuration $\infty oists$ of block,. Each block

$\bullet$ contains a $\infty mpl\epsilon te$ copy ofthe description of $A_{t}$ as explained in the previous subsection,

$\bullet$ is $\infty sponsible$ for the simulation ofone A-cell
$\bullet$ stores the current and the previous state ofthe represented A-celL and

$\bullet$ together with each state one of the integers $\{0,1,2\}$ . Thcy are used for Nakamura’s technique
[3] of simulating synchronous updatin$g$ in a framework where the updates cannot really be $s$yn-
chronous.

After the first phase, $u$ has one copy ofthe description of $A$ . The cells containing this $\infty py$ fom the
block for simulating cell-l of $A_{i}$ ; we call this $\bm{i}eblock-1’$ . In the $s\eta uelu$ has to

$\bullet$ establish more and more subsequent blocks to the left and to the right with $\infty pies$ ofthe description
$ofA$ ,

$\bullet$ shift the states ofthe $A$ cells-2, $-3,$ $-4,$ $\ldots$ to the left and the states ofthe $A$-celk $0,1,2,$ $\ldots$ to
the right to their $co\sigma\epsilon sponding$ blocks, and

$\bullet$ initialize the mod 3 countmrs.

Since there is an infinite number of cells to be simulated, this process will never come to an end But after
a finite number of steps enough blocks will be set up so that the first step ofcell-l can be simulated. At
some later time, there will be enough blocks to simulate the first step of each neighbor of cell-l. Hence
aflerwards the second step ofcell-l can be simulated, etc.

We assume that the reader is familiar enough with standard CA techniques, so that $she/he\infty uld$ fiU
out the details here.

4.4 The simulation

Whenever a block wants to simulate one state transition ofthe represented A-cell, it does the following:

1. It sends some kind of state request signals to the “neighbor blocks”, i.e., the blocks representing
the neighbors ofthe cell to be sinulatd.

2. If such a block has already made enough simulations steps (according to Nakmura $s$ technique),
it can attach the needed state to the signal and send it back to its originating block Otherwise the
information is sent back, that the state is not yet available.

3. Upon amival of a state in the block that had requested it, the conesponding rules ofthe mnsition
table are marked as relevant. Ifa not-yet-available’ value returns, the request signal is sent again.
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4. Ifall signals have retumed a valid state, the new state can be read offthe transition table and stored
as the new current state while moving the old the previous register. The $mo$d3 counter ofthe new
curIent state gets 1 plus the value of the now previous state.

The two basic technical aspects which deserve further explanation are the signals and how they are used
to select the correct ‘Yow ofthe transition table”.

The signals have to know how many blocks the have to travel (and they have to travel as many blocks
back to their origin). One can use a standard signal of constant speed (strictly smaller than 1 for the
algorithms described below to work) and attach to it a pair of binary numbers $(d, D)$ , which initially are
both the number of blocks the signal has to travel. While $d$ is used several times for counting down to
zero, $D$ is never changed and used to restore the original value for $d$.

The binaIy values can be arbitiurily large and hence have to be stored in a distributed fashion in
some subsequent cells. When travelling to the neighbor block, $d$ is decremented at each left (or right,
depending on the direction of travel) block boundary it passes. The signal has reached its destination
block when the value has become $0$ . For the travel back $d$ is reset to the initial value from $D$.

The selection of the relevant local rule, it is most convenient, to image that the signals just described
have another pair of numbers $(k, K)$ attached to them (in addition to $d$ and $D$). It is the index of the
neighbor: Ifinitially $d=D=\nu(i)$ , then $k=K=i$. Analogou81y to the above, $K$ is used to restore the
original value of $k$, whenever $k$ has been decremented to $0$ . This is done during the process ofmarking
relevant local rules:

Whenever a signal is retuming from the K-th neighbor with some state $s$, it passes all local rules
$[q_{0}, \ldots,q_{n-1},f(q_{0}, \ldots, q_{n-1})]$ . Bach time it arrives at some $q_{i}$ , it checks the content of $k$ .

$\bullet$ If $k=0,$ $q_{i}$ is compared with $s$ and ifthey are identical $q_{i}$ is marked as relevant.

$\bullet$ If $k>0$ , the value $k$ is deeremented and the signal moves on to $q_{i+1}$ .

At the end 1 ofthe local rule, $k$ is restored to $K$ , so that the next local rule can be checked analogously.
In addition, each such signal can always check, whether all states $q_{0},$

$\ldots,$
$q_{n-1}$ are maIked as rele-

vant. Ifthis is the case, the state at the end ofthe local rule (immediately before the closing 1) is the new
state ofthe simulated cell.

5 Summary and outlook

In Section 3 we he have shown that it is $\mu ssible$ to simulate a finite number of $CA$ A with the same
neighborhood and different local rules by CA $B_{i}$ with the same local rule and different $neighborh\infty ds$ .

In Section 4 we he have shown that it is even possible to simulate an infinite number of CA A with
neighborhoods ofdifferent size and shapo and different local rules by $CAu$ with the same local rule and
different neighborhoods which all have size 5.

In both constructions the embedding of the $\infty nfi_{1}rations$ of the simulated CA into configurations of
the simulating CA were independent of the $sp\infty ificCA$ to be simulated. It was only the difference in the
neighborhoods of the simulating CA that could be and was exploited.

The two constructions did make use of different types of embedding of configurations and different
qPes of simulations. It remains to be investigated, whether in the construction showing universality one
really needs to $k\epsilon ak$ symmetry“ by setting the special marker in one cell.

We just want to $\varphi int$ out that it would not be the first such case. E. $g.$ , when looking at the simulation
of $arbiffa\iota yCA$ by roversible $CA$ for infinite $\infty nfigurations$, it is known that this is possible for some
kind of simulation [1] while it is provably impossible for another type of simulation [2].
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