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Abstract

In place of the traditional definition of a cellular automaton CA = (S, Q, N, f), a new definition
(S, @, fu,v) is given by introducing an injection called the neighborhood function
v:{0,1,...,n— 1} — S, which provides a connection between the variables of local function Jnof
arity n and neighbors of CA: image(v) is a neighborhood of size n. The new definition allows new
analysis of cellular automata. We first show that from a single local function countably many CA are
induced by changing v and then prove that equivalence problem of such CA is decidable. Then we
investigate what happens if we change the neighborhood. In particular we show that reversibility of
CA is preserved by changing the neighborhood, if CA has 2 states but not if it has 3 states.

1 Introduction

The cellular automaton (CA for short) is a uniformly structured information processing system, which
is traditionally defined by a 4-tuple (S, Q, N, f), where S is a discrete space consisting of (infinitely)
many cells, Q is a finite set of states of each cell, N is a finite subset of .S called the neighborhood of CA
and f is the local state transition function Q¥ — Q. Among others, the neighborhood is a fundamental
constituent of CA. ,

Most studies on CA assume a standard neighborhood (von Neumann, Moore) and then look for or investi-
gate the local function that would meet a given problem. In 2003, however, H.Nishio and M. Margenstern
began a general study of the neighborhood in its own right [4]. Following such a framework, we asked
the question: How does the Neighborhood Affect the Global Behavior of Cellular Automata? It has been
shown that there are some properties which depend on the choice of the neighborhood, while there are
some neighborhood-independent properties [3].

Recently T. Worsch and H. Nishio (2006) designed CA which simulate arbitrarily many CA by changing
the neighborhood [10]. During this joint work, we arrived at the definition of the neighborhood function,
which gives rise to infinitely many CA from a single local function: CA is now defined by a 4-tuple
(S,Q, fn,v), wherev : {0,1,...,n—1} — Z provides a connection between variables of f and neighbors
of CA. v is called a neighborhood function, since range(v) corresponds to the ordinary neighborhood N
of CA.
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2 Preliminaries

Though the theory applies to higher dimensional CA, we describe it principally for 1-dimensional CA
with local functions in 3 variables. 1-dimensional CA is defined by a 4-tuple (Z, Q, f,.,v), where

1. Z is the set of integers,

2. Q is the set of states of a cell and assumed to be a finite field GF(q) where g = p* with a prime p
and a positive integer k,

3. fa: Q" — Q is the local function of arity n: f,(zo,z1,...,Tn—1) and

4. vis an injection from {0, 1, ..., n—1} to Z which we call the neighborhood function. The neighbor-
hood function defines connection between variables of f,, and neighbors for CA: z; is connected to
v(3) for0 < i < n— 1. In other words range(v) = (v(0), (1), ..., v(n — 1)) is the neighborhood
of CA in the ordinary sense. In this paper each neighborhood is expressed by an ordered list of
integers (neighbors) such as (—2,0,1).

The notion of the neighborhood function was first introduced by T. Worsch and H. Nishio (2006) for
achieving universality of CA by changing neighborhoods [10]. Here, we redefine v to be an injection
from {0, 1, ...,n— 1} to Z. The degenerate neighborhood where v is not injective (many to one mapping)
also will do, but we will not discuss such a case in this paper.

fr is expressed by a polynomial over Q in n variables (zo, z;, Z3, ..., Zn-1), see [5]. In case of ternary
function, it reads
fs=Ff(z,4,2) =up+ wmz +ugy + -+ - +uzhydzk 4.
+ugp_pzd 1y 12 4 uqs_lzq"lyq"lzq“l,

whereu; €Q,0<i< g -1. (1)
Furthermore, if Q = GF(2) = {0, 1}, we have
fs=f(z,9,2) = uo + w1 T + uoy + uzz + usTy + us T2z + ugyz + urryz,
whereu; € {0,1}, 0<i<7. (2)

A local function f3 expressed by Equation (2) is called Elementary Local Function (ELF for short). By
Equation (2) it is seen that there are 28 = 256 ELF. The neighborhood function vz such that range(vg) =
(=1,0,1) is called Elementary NeighBorhood (ENB for short). Then (Z, GF(2), f3, vg) is Elementary
Cellular Automaton (ECA for short) as usually called.

Finally, the global map F : C — C where C = QZ is defined as usual: Forany ¢ € C and j € Z, ¢(j)
is the state of cell j in c. Then we have

F(e)(§) = F(e(i +v(0)),e(G + v(1)), ..., e(j + v(n = 1))). 3)

2.1 Ilustrations

Traditional CA (Z,Q, N, f), with space Z, cell states Q, neighborhood N = (—1,0,1) and local
function f : QN — Q is illustrated by Fig.1.
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Figure 1: Traditional definition of CA

New CA (Z, Q, f3,v), where ternary function f3(zo, ,, z3) and neighborhood function v : {0,1,2} —
Z together define a CA, which has the local state transition rule f : QW(@»Ww2) _, Q. Fig 2
illustrates the case image(v) = (-2,0,1).
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Figure 2: New definition of CA

From the above observation, it will be easily understood that different neighborhood functions give rise
different CA for the same local function. The next section gives a formal proof for that.

3 Infinitely many CA made by changing neighborhoods

Theorem 1 By changing the neighborhood function v, infinitely many different global CA functions are
induced by any single local function f3(z,y, z) which is not constant. :

Proof
Itis clear that to each non-constant function f at least one of the following three cases applies.

D) If f3(a,b,¢c) # fa(a,b,c) for a,b,c # ¢ € Q, consider CA and CA’ which have the same local
~ function f3(z, y, z) and different neighborhoods (~1,0,1 + k) and (~1,0,1 + ¥’) where 0 < k < Kk’.
Then, for configuration W = vabdcd’c’'w, where W(0) = b, § and & are words of lengths k — 1 and
'K — k — 1 and v, w are semi-infinite words over Q, we have F(W)(0) = f3(a,b,c) # fs(a,b, d) =
F'(W)(0). That is F(W) # F'(W).

In this way, countably many different CA {(Z, Q, f3,(~1,0,1 + k)), k > 1} are induced from a single
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local function f3.

2) If f3(a,b,c) # fa(a,V/,c) for a,b # b',c € Q, consider CA and CA’ which bave the same local
function f3(z,y, z) and different neighborhoods (—1,2 + k,1) and (—1,2 + k', 1), where 0 < k < k.
Then, for configuration W = vadcdbd’b'w, where W(0) = d, & and &' are words of lengths k — 1 and
K — k — 1 and v, w are semi-infinite words over Q, we have F(W)(0) = fs(a,b,c) # fa(a,b,c) =
F'(W)(0). That is F(W) # F/(W).

In this way, countably many different CA {{(Z, Q, f3,(—1,2+k,1)), k > 1} are induced from a single
local function f3.

3) If f3(a,b,c) # f3(a’,b,c) for a # a’,b,c € Q, consider CA and CA’ which have the same local
function f3(z,y, z) and different neighborhoods (—k — 1,0,1) and (=&’ — 1,0,1) where 0 < k < ¥’.
Then, for configuration W = va'é'adbcw, where W (0) = b, § and &' are words of lengths k — 1 and
K — k - 1 and v, w are semi-infinite words over Q, we have F(W)(0) = fs(a,b,c) # fa(a’,b,c) =
F'(W)(0). That is F(W) # F'(W).

In this way, countably many different CA {(Z, Q, f3, (—1 — k,0,1)), k > 1} are induced from a single
local function f3. |

Corollary 1 There are infinitely many 2 states 3 neighbors CA different from any ECA.

4 Egquivalence Problem of CA

When Z and Q are understood, we denote (Z, Q, f, V') simply by (fn, V).

Definition 1 Two CA (fn,v) and (f!,, V') are called equivalent, denoted by (f,,v) = (f1, V"), if and
only if their global maps are equal.

Note that there is a local function which induces an equivalent CA for different neighborhood functions,
while different local functions may induce an equivalent CA by changing the neighborhood function.
For example, (1285, (-1,0,1)) = (R51, (-1, 1,0)), where R85 and R51 are ELF in Wolfram number
which give reversible ECA on ENB, see proof of Theorem 3.

We have here a decidability theorem whose proof is independent of dimensionality.
Theorem 2 The equivalence problem of CA is decidable.

Proof. Consider two CA (f,,v) and (f,, ') for the same set Q of states. Let N = range(v)Urange(1/).
We will consider finite “subconfigurations” £ : N — Q.

Changing in c the states of cells outside the finite part N has no influence in the computation of F(c)(0)
or F'(c)(0). Thus any subconfiguration £ determines states F(c)(0) or F'(c)(0) which we denote G(£)
and G'(¢).

o Now assume, that the two CA are not equivalent: (f,,v) % (f/,,1/), i.e. the corresponding global
maps F and F' are not the same. Then there is a configuration c such that F(c) # F’(c). Since
global maps commute with the shift, it is without loss of generality to assume that F(c)(0) #
F'(c)(0). Hence in this case there is an £ = c|y such that G(£) # G'(¢).

¢ On the other hand, when there exists an £ such that G(£) # G'(£), then obviously F and F’ will
be different for any configuration ¢ satisfying c|n = £ and hence the CA are not equivalent.
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For deciding the equivalence it is therefore sufficient to check whether forall £: N — Q holds: G(¢) =
G’ (). If this is the case, the two CA are equivalent, if not they are not. ]

In the following, we generally discuss the case n = n’ (local functions are of the same arity). For an
example of the case n 5 n/, see Proposition 1 below.

The following easily proved proposition shows that for CA defined by the neighborhood function v, there
is an equivalent CA’ having the ordinary neighborhood of scope 2r + 1.

Proposition 1 For (f,,v), letr = max{|v(i)| | 0 < i < n—1}. Then there is an equivalent (f3, ,,V")
such that range(V') = (—r, —r+1,...,0,....,7—1,7) and f;,, takes the same value as f, onrange(v),
while variables x; are don’t care for i such that V(i) ¢ range(v).

5§ Neighborhood Family and Permutation Family

We define and analyze two families of CA which are obtained by changing and permuting the neighbor-
hood.

Definition 2 The neighborhood family F(fy) of frn is an infinite set of global functions defined by

F(fa) = |J Ffarv), @)

vENRn

where N,, is the set of all injections v : {0,...,n — 1} — Z and F(f,v) is the global function induced
by f and v.

Definition 3 A permutation = of image(v) is denoted by w(v) or simply ™ when v is known. The per-
mutation family P(fp,v) of (fn,V) is a finite set of global functions defined by

ni—1

P(frv) = |J F(fam@)). )

i=0

Example: In case of n=3 there are 6 permutations of ENB.

o = (—LO, 1)37"1 = (_la 1’0)77"2 = (01 -1, 1):
3 = (0’ 1"—1)57"4 = (11 "’130)’”5 = (1)07 —1)-

Lemma 1 The set of CA U;(f,v) = {(fn, V) | fa : n-ary function} is closed under permutation of the

neighborhood. That is
Uz, v) = ). 6)
f ! :

Proof: Since a permutation of the neighborhood amounts to a permutation of the variables of the local
function with the neighborhood being fixed, for any f there is a function g and permutation 7; such that
(f,v) = (g,mi(v)) forsomel <i<nl—1. ]

Some properties of CA are sensitive to changing the neighborhood but others are not. See also [3].

First, we give some propositions without proof for showing the properties which are not sensitive to
changing the neighborhood.



21

Proposition 2 f,,(z1, ..., z,) is called totalistic if it is a function of Y 7, zi. If fn is totalistic, then any
(fn,v) € F(fn) is totalistic.

Proposition 3 An affine CA is defined by a local function
fa(z1,22, ..., Z0) = ug + U1 T + -+ * + UpnTp, Whereu; € Q, 0 < i< n.
If fn is affine, then any (frn,v) € F(fy,) is affine.

Proposition 4 A local function f : Q™ — Q is called balanced if | f ~*(a)| = |Q|* !, Va € Q. A finite
CA is called balanced if any global configuration has the same number of preimages.
In case of finite CA, if (fyn, v) is balanced then ( f,, w(v)) is balanced for any .

In contrast, there is a property which is sensitive to permutations of the neighborhood.
Proposition 5§ The number-conserving ECA are sensitive to permutation.

Proof. The only number-conserving ECA are (R184, 7o) and its conjugate (IR226, mp) [1]. It is seen that
(R184,m2) = (R172, mp) which is not number-conserving. A similar relation holds for R226. n

6 Reversibility of CA

This section addresses the problem how the reversibility of 2 and 3 states 3 neighbors CA is affected by
changing the neighborhood.

Theorem 3 The set of 6 reversible ECA is closed under permutation.

Proof: There are 6 reversible ECA; R15, R51, R85, R170, R204, R240 expressed by Wolfram numbers,
see page 436 of [9]. Their local functions are listed in Table 1. In the sequel these 6 functions are called
elementary reversible functions(ERF for short). Note that R204 is the conjugate of RS1, R240 is the
conjugate of R1S5 and R170 is the conjugate of R85.

Table 1. Reversible CA with 2 states 3 neighbors

local configuration 000 001 010 011 100 101 110 111
~ RIS 1 1 1 1 0 0 o0 0

RS1 1 1 0 0 1 1 0 O

R& 1 0 1 0 1 0 1 0

RI70O 0 1 o0 1 o0 1 o0 1

R204 0 0 1 1t o0 o0 1 1

RO 0 0 0 O0 1 1 1 1

For instance, from R51, by permuting ENB, we obtain R15 and R85. Summing up, we see that

(R51a 1"1) = (R85, 1!'0), (12519 7r2) = (R15$ WO)s (R517 773) = (Rls, 770)
(R51,m4) = (R15,m), (R51,ms) = (R51,m) = < 2 symmetry.

Similarly from R204 we obtain R170 and R240 by permutation. Note, however, that R170 can not be
obtained by permutation of R51 but by taking conjugate. In other words, P(R51, vg)NP(R170,vg) = 0.
.
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Problem 1 It is not known if the set of reversible 3 states CA (Z,GF(3), f3, 7(vg) is closed under
permutation,

Theorem 4 Any 2 states 3 neighbors local function fgrr from Table I induces a reversible CA (fgrr, V)
Jor any v, particularly for v # ENB.

Proof: R15 = z + 1, where variables y and z are don’t care, and CA (R15, EN B) is essentially a right
shift by 1 cell. Now, it is seen that (R15, (—k,1,m)) is a right shift by k cells for any integers k, [, m,
which is a reversible CA. Since R51 = y + 1 and R85 = z + 1, we have the same conclusion that they
define reversible CAs for any neighborhood functions. As for R170 = z, R204 = y and R240 = z, we
have the same conclusion. [ |

An analogous result holds for higher dimensional spaces.
Theorem 5 n-dimensional CA (Z",GF(2), ferr,V) is reversible for any v : {0,1,2} — Z".
Proof. As is seen from Table 1, any ERF is a shift in Z™ as well. [

Problem 2 Are there irreversible ECA which become reversible by permuting or changing the neigh-
borhood?

Theorem 6 Reversible 3 states CA (Z, GF(3), f3, EN B) is not always reversible, when the neighbor-
hood is different from ENB.

Proof.

We give a counter example for 3 stats 3 neighbors CA; Among 33" 3 states CA on ENB, 1800 are
reversible. A reversible CA R[270361043509] appearing in p.436 of [9] is proved not reversible when
the neighborhood is changed to (—1, 0, 2) as is shown below;

Injectivity: R[270361043509] on neighborhood (-1, 0, 2) maps both global conﬁguratlons 010and 0110
to 101. So, it is not injective.

Surjectivity: David Sehnal [7], student of the University of Brno (CZ), used a Mathematica program to
show that R[270361043509] is not surjective on (—1, 0, 2). Naonori Tanimoto [8], graduate student of
the Hiroshima University (Japan), also confirmed Sehnal’s conclusion by his C-code computation.

Recently Clemens Lode [2], student of the University of Karlsruhe (Germany), wrote a Java program
called catest103 which checks injectivity and surjectivity of CA for arbitrary neighborhoods. The pro-
gram classifies R[270361043509] as not injective and not surjective on (-1, 0, 2). Moreover, catest103
can test injectivity and surjectivity of arbitrary local functions on all (6) permutations of ENB. Owing to
the program, we see that R[270361043509] is reversible on ENB = (—1,0,1) and (1,0, —1) but not on
the other permutations of ENB. n

Conjecture 1 By use of the above mentioned program by C. Lode we see that the 3 states reversible
CA R[277206003607] in [9] is reversible on all permutations of ENB and on permutations of many other
neighborhoods such as (—1,0,2), (=1, 0, 3) and (-2, 0, 1). From this, we conjecture that R277206003607
is reversible for arbitrary neighborhoods of size 3 in Z.
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7 Concluding Remarks

The new definition of CA using the neighborhood function creates new research of CA. The results
established in this paper are fundamental ones and many interesting problems are being left unsolved.
Apart from those already mentioned, we have the following problems: Is Rule 110 universal for a neigh-
borhood different from ENB? Is there any other ELF which gives a universal CA for a cleverly chosen
neighborhood?

The Java Applet simulator [6] of 1-dimensional CA coded by Christoph Scheben for the Institute of
Informatics, University of Karlsruhe, works for arbitrary local functions, number of states, neighborhood
and initial configuration (including random configurations) up to 1,000 cells with cyclic boundary and
1,000 time steps. The simulator is the first of this kind —arbitrary neighborhoods. It has been well
finished and proved very useful for our research work. ' :
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