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1 Introduction

Invariance under (semantical) operations tells us the expressive power of the logic
under consideration from the semantical viewpoint, e.g., in Birkhoff Variety The-
orem for universal algebra and in the series of works for capturing the expressivity
of first-order logic, due to Kochen [9], Keisler [8] and Shelah [14] (or, [4, Corol-
lary 6.1.16]), in first-order model theory. This invariance approach have been
applied also to the modal (propositional) languages [7]. Goldblatt-Thomason the-
orem [3, Theorem 3.19] states that: For any elementary class F of frames, F is
modally definable in the unimodal propositional language (roughly, expressible
by modal formulas) iff F is closed under disjoint unions, generated subframes and
bounded morphic images, and F, the complement of F, is closed under ultrafilter
extensions.

Goldblatt-Thomason theorem teaches us the limitations of modal expressiv-
ity of first-order properties. For example, we cannot express irreflexivity of the
accessibility relation by any modal formulas. This is because irreflexivity is not
preserved under bounded morphic images [3, Example 3.15]. In order to over-
come such a lack of expressivity, various extensions with additional modal oper-
ators have been proposed, e.g., the difference operator D (e.g., [5]) and the global
modality E (e.g., [6]), etc.. The author and SATO Kentaro [12] have adopted
the modal-model-theoretic approach taken in [2] and proved the general version
of Goldblatt-Thomason theorem for almost all of the extended modal languages
with modal operators (see Table 1).

There are, however, other extended modal languages with a new kind of propo-
sitional variables, called nominals. Such extensions are called hybrid logics [1].
In his PhD thesis [15], ten Cate introduced the two notion of definability: hybrid
definability (roughly, expressivity by arbitrary formulas of a hybrid language) and
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Table 1: Additional Modalities

pure definability (roughly, expressivity by pure formulas, i.e., formulas that do not
contain the ordinary propositional variables but may contain nominals). He gave
Goldblatt-Thomason-style characterizations for these two definability of three hy-
brid languages: 7 (modal logic extended with the nominals alone), H(@) (H
extended with the satisfaction operators @;), H(E) (H extended with the global
modality E). However, he did not consider the general extended languages as we
did for modal languages [12]. Thus, we adopt the approach taken in [12] and try
to generalize ten Cate’s characterization to the general extended hybrid language
with any additional operators. In this paper, we will report current progress of this
project (see Table 2 in the final section).

Let us explain the contents briefly. Section 2 defines the basic notions of hy-
brid logics including the notion of frames, models, modal satisfaction relation,
and validity, and then introduces the relation between models called bisimula-
tions. In Section 3, we briefly mention basic frame constructions preserving the
validity on frames and introduce some properties (the notion of absolute, trivial-
ize) for them. In Section 4, we define another frame construction called witrafil-
ter morphic images, which is a typical frame construction of hybrid logics, and
prove the Goldblatt-Thomason-style Characterizations for the hybrid definability
of the general extended languages with and without the satisfaction operators @;.
Finally, Section 5 introduces a new frame construction called images of bisimu-
lation system, which preserves the validity of pure formulas, and then gives the
characterizations for pure definability similarly to Section 4. |

2 Preliminaries

2.1 Syntax and Semantical Notions

The hybrid language H(Mod) (or, H simply) consists of (i) Boolean connectives:
A, =, (ii) an arbitrary set Mod of modal operators: 0 € Mod, (iii) proposition
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letters: Prop = {p,q,r,...}, (iv) nominal variables: Nom = {i, j,k,...}. The
hybrid language H(Mod, @) (or H(@) simply) consists of the vocabulary of H
and the satisfaction operators @; (i € Nom). The formulas of, e.g., H(@), are
defined as:
=plil=ple A y|0p| @sp.

We denote formulas by ¢, ¢, 6, etc. and sets of formulas by I', A, etc.. We
define the Boolean connectives —, V, etc. and the modal connective ¢ as usual
abbreviations (e.g., Oy := ~O-y). ¢ is called pure if it contains no proposition
letters.

A (multimodal) frame § = ( W, { R }oemod ) 1S @ pair consisting of a nonempty
set W and a family of binary relation R, on W (O € Mod). 4 (multimodal) model
M= (g, V) is apair consisting of a frame F = ( W, { Ry }oemoa ) and a valuation V' :
Prop UNom — P(W) satisfying |V (i)l = 1 for any i € Nom. We denote the unique
element of V(i) by i¥. | M| (or | &) means the domain of a model M (or, a frame
&, respectively). For any binary relation R on W, R[w] denotes {x € W|wRx}.
Then, the satisfaction relation #, e.g., for H(@), is defined inductively as:

M, x - p e xeV(p).
Mxriex=i.
WM, x b+ —p &> M, x K.
Mxkg Ay = M x I @and M, x - y.
DM,x - 0p & (Vye W)[xRyy = M,y I ¢]
(= Ry[x]c{ye WD yr¢))
M, x - @ip = M,i’ .

M, w and N, v are modally equivalent (written M, w e« N, V) if [M,w I ¢ &=
N, v I @] for any formula . M, w and N, v are purely equivalent (written M, w e,
N, v) if M, w and N, v are modally equivalent with respect to the pure formulas.

Our main interest is in unimodal frames and models. We can deal with them
in the framework of first-order languages. The first-order (unimodal) frame lan-
guage L/ is the first-order language that has the identity symbol ~ together with
the binary predicate symbol R. We denote L™ as the first-order (unimodal) model
language which is the expanded language of £/ with the unary predicates P,
(p € Prop) and the constant symbol ¢; (i € Nom). We write a(x) or 8(vi, ;) to
denote a formula a with at most one free variable x or two distinct free variables
V1, W2, Tespectively.

Note that a unimodal model M = ( W, R, V') can be seen as the .C"'-structure
defined as follows: || = W, R® = R, P,™ = V(p) (p € Prop) and ¢, = i¥ (i €
Nom). A unimodal frame & can be seen as the L -structure defined similarly. M =
o[d] whered ={(a,...,a,)isa n-tuple from | M |, means the usual satisfaction
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relation (for details, see, e.g., [4, Ch.1]). Notice that | is different from the modal
satisfaction relation symbol . In this paper, we use some notions from first-
order model theory, e.g., submodel, elementary embedding, w-saturatedness. The
reader unfamiliar with them can refer to, e.g., [4].

For any family § = {85 |0 € Mod } of formulas of £/, H([3]) (or H((B], @))
is the hybrid language H (or H(@), respectively) where the accessibility relation
Ry for O € Mod is defined by the formula 8. Thus, in H([3]), we usually denote
o(e Mod) by [B5]. From now on, we will use the following notational convention:
E.g., we denote D by [-x = y] (or [#] simply) and m by [xRy A —x ~ y] (or
[RN #] simply) (see Table 1), etc.. A frame § is called an H([B])-frame if, for
any O € Mod, B, defines R;. A model M = (F, V') is called an H ([ﬁ])-model if
& is an H([B])-frame. Observe that an H([])-frame ( 7, { Ra }uemos ) (OF -model)
is determined by the unimodal frame ( W, R ) (or model, respectively). Therefore,
we often regard ( W, R ) as ‘H ([B'])-ﬁ'ame (W, { Ry }ueMod )- Multimodal frames and
models are only for the technical purposes, not of our original interest.

A formula ¢ is valid in a model M (written M - ¢) if M, w + ¢ for any w
in M. ¢ is valid in a frame F (written F + ) if (F, V') + ¢ for any valuation
V . Prop UNom — P(&). ¢ is satisfiable in a model M (or a frame §) if
M ¥ - (or F ¥ —, respectively). ¢ is valid in a class F of frames (written
F  ¢) if it is valid in every § € F. For a set of formulas, these notions are
defined similarly. I is satisfiable in F if (&, V ),w # I for some § € F, some V
and some w € |§|. I is finitely satisfiable in F if, for any I'" Cg, T I” (or A", the
conjunction of all elements of I') is satisfiable in F. A set I" of formulas defines
a class F of frames if, for all frames §, & F T’ &= & € F. A class F of frames
is L-definable (or, purely L-definable) if there is some set of formulas (or, pure
formulas, respectively) of £ that defines F, where .L is a hybrid language. For any
class F of frames, we define Th(F) = {¢|F + ¢} and PTh(F) = { ¢: pure|F ¥ ¢}.

Standard Translation ST,: H(@) — L™ is defined as:

STx(p) :=Ppx
ST, () =x=¢
STx(=p) := ~STx(¢p)
STx(p AY) :=STp) AST(Y)
STy(Op) := Vy(xRy = ST,(¢)) (»: a fresh variable)
ST (@ip) := (¥ =~ ¢;&ST,(¢) (»: a fresh variable)

For H([B]) (or H([B], @), we define ST,(Oy) := Vy (Ba(x,y) = ST,(¢)). We
can easily prove that M, w + ¢ & M E ST, (¢)[w]. If we extend L™ to the
second-order language, then, we have: § ¢ & § | (VB)(V & (Y x)ST(p).
Thus, ¢ is a pure formula, then ¢ defines the elementary property of frames, i.e.,
(Y& (VY x) STx(p). For example, i — —~¢i defines the irreflexivity of Ry.
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2.2 Bisimulations

Definition 1. A bisimulation between frames § = ( W, { Ru }oemod ) and ® = ( W, { S5 Joemod )
is a binary relation Z ¢ W x W’ satisfying the following conditions (written

Z : § < 6): For any O € Mod, |

(Zig) wZv and wRyw' = for some v € W’ [W'ZV and vSoV'].

(Zag) wZv and vS v = for some w € W [w'Zv and wRw'].

An H-bisimulation between models M = (F, V) and N = ( G, V) is a bisim-
ulation Z between § and ® satisfying the following conditions:

(Atom) If wZv, then [w € V(a) < v € V’(a)] for all a € Prop U Nom.
An H(@)-bisimulation is an HH-bisimulation Z satisfying in addition:
(Nom) for any i € Nom, i¥Zi"".

Let L be either H or H(@). M, w and R, v are L-bisimilar (written T, w & (RN, v)
if there is an .£-bisimulation between I and N such that wZv.

Proposition 2. Let M, N be models and w € |M|, v € [N]. Let L be either H. ([B'])
ot H([Bl, @). !, w o (N, vimplies M, w v N, v.

Proof. By Induction on ¢ [15, Theorem 4.1.2]. For the modal connectives, see,
e.g., [3, Theorem 2.20]. QED

The converse of Proposition 2 does not hold in general. The following fact [15,
Theorem 4.1.2], however, holds.

Fact 3. Let M, N be models and w € M}, v € [N]|. Let L be either 7-(([3]) or
H ([B], @). If Pt and N are w-saturated as L™-models (-structures) and M, w e~
N, v, then M, w o (N, v.

3 Basic Frame Constructions

Definition 4. A frame © = (W’,{ R }oemod ) IS a generated subframe of § =
(W, { R Juemod ) (written & > &) if W’ < W, R, = Ry N (W')?, and Rq[w] € W
(w € W) for any O € Mod. Let & be a frame and X C ||. The subframe generated
by X (written &x) is the smallest generated subframe of & whose domain contains
X. A point generated subframe of § by x € |§| (written: §,) is §;x), where x is
called the root of the frame.

A model N = (G, V') is a generated model of M = (§F, V') if ® is a generated
subframe of §, i¥ € |®| for any i € Nom, and V’(a) = V(a) N |®| for any a €
Prop UNom. Submodel generated by X and point generated submodel are defined
similarly to the case of frames.
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Definition 5. £ = {8z |0 € Mod } is absolute for generated subframes if, for any
H([A))-frame § = ( W, R), any generated subframe §’ = ( W, { R, }uemod ) Of &,
and any w from W’, the following holds: { W,R) | Ba[W] &= ( W', R’) | Bc[W]
where R = Rn (W")2.

For an H([f])-frame, multimodally generated subframes might differ from
unimodally generated subframes since in the multimodal case the closure under
all associated relations is required.

For example, any combination of the modal operators Table 1 is absolute for
generated subframes since they are all quantifier free. (As for the example that B
is not absolute for generated subframes, see [12]).

Proposition 6. Suppose that B is absolute for generated subframes and § » ®
for H([B])-frames & and G. Then, 6 + ¢ => § ¢ for any ¢ of H([A]) (or,
H((B, @)

Proof. By Proposition 2. For details, see [15, Theorem 4.2.1]. QED
For any binary relation R on W, R* is the reflexive and transitive closure of R.

Definition 7. H trivializes generated subframes if (Upemos Ro)’ = W? for every
frame § = ( W, { Ro }oemod )-

Proposition 8. 7 trivializes generated subframes &= & »» ® implies § = & for
every frame ® and .

Definition 9. A frame © is a hybrid amalgamation of a family {&;|j € J} of
frames if, for any x € |®|, there exists j € J such that (up to isomorphism) G,
§; and [6,] # |§;l.

Definition 10. H trivializes hybrid amalgamations if, for any frame ® and any
family { &;1j € J} of frames, © is not a hybrid amalgamation of { §;|j € J}.

Proposition 11. (1) 7 trivializes generated subframes e=> (2) H trivializes hy-
brid amalgamations.

Proof. [(1) = (2)] We prove the contraposition. Assume that & is a hybrid
amalgamation of { &;|j € J}. Take x € |®|. Then, there exists j € J such that
®, — §; and |G,| # |F,]l, which implies the negation of (1).

[(2) == (1)] For the contraposition, assume that { does not trivialize generated
subframes. Then, § »» ® and § # ©®, for some § and &. Suppose that x € |F]|.
&x ™ & » © holds, which implies |3F,| # |®]. Thus, § is a hybrid amalgamation
of (G }. QED

Let K,y be the class of all frames.
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Proposition 12. (1) {0, ---0,~i|m € w & 0Oy, ...,0, € Mod } is satisfiable in K
& (2) H does not trivialize hybrid amalgamations.

Proof. [(1) = (2)] Suppose that (&, V), x I O, - - - O,~i for any m € w and any
Ox € Mod (1 < k < m). Then, i¥ ¢ |6,| holds. Thus, |®,| ¢ |6|. We conclude that
®, is a hybrid amalgamation of { ® }.

[(2) = (1)] Assume that ® is a hybrid amalgamation of {&;|j€ J} C Ka.
Choose x € |®| # 0. Take &; such that G, — §&; and |®,| # |§,l. We prove that
allO, - - - O,~i (m € w, O; € Mod) are simultaneously satisfiable at x € |§;|. For
some * € |§| \ |®,|, consider a valuation ¥ such that i¥ = *. Then, &, = §;
and |®,] # |&;]. Thus, for any m € w and any O0; € Mod (1 < k < m),
(‘l}j,V),.XI‘ Oy .- -0, QED

Corollary 13. The following are equivalent:

(1) H does not trivialize generated subframes,

(2) H does not trivialize hybrid amalgamations,
B3){o;---O,-ilmew&n,,...,0, € Mod} is satisfiable in K.

Proposition 14. Assume that E is absolute for generated subframes and 7{([,5])
does not trivialize generated subframes. Suppose that 7 ([B])-frame ® is a hybrid
amalgamation of a family { &,|j € J} of ﬂ([ﬁ])-frames. IfE; v forany jeJ,
then G # ¢.

Proof. Suppose for contraposition that { ®, V'), v ¥ ¢. Take the point-generated
subframe ®, of G. By the assumption, there exists j € J such that ®, »» §; and
1B, # |1§,l. Fix x € |§,] \ |®,]. Define a valuation ¥’ on §; as follows: V’(p) =
V(p) N 16,| (p € Prop) and V'(i) = V(i) (if i¥ € |®,| # 0); x (o.w.) (i € Nom).
Consider the identity relation of |®,| as a bisimulation between ® and & iy i.€,Z=
|6,| X |®,| € |G| x|&;|. Then, Z is a bisimulation between ® and & ;. Furthermore,
Z is an H-bisimulation (i.e., H ([ﬁ])- bisimulation) between ( ®, V') and ( §&;, V")
with vZv. Since ( G, V'), v ¥ ¢, we have §; ¥ ¢ by Proposition 2. QED

Definition 15. The disjoint union \¢;c; §; of a family { &;|j € J}, where &=
(W}, { (R;)a }uemoa ), Of pairwise disjoint frames is the pair (consisting) of | ., W;
and { U jes(R)a JoeMod-

Definition 16. 7 is absolute for disjoint unions if, for any family { ;| j € J} of
H([B))-frames and for any O € Mod,

(<a,bYUWR) F Bola, b)) = |, (€2 bYW, R;) I Bela, B]),

where §; = (W;,R;), W = U;,W; and R = ;s R;.
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As a matter of convention, write Rg= = ((Ugemoq Ro) Y =) for any H (18-
frame § = (W,R). If (Re=)* C R* for any H([B])-frame { W, R), then § is ab-
solute for disjoint unions. For example, { xRy, xRy A —x = y} (corresponding to
{[R], [RN#]}) is absolute for disjoint unions but { xRy, =x = y } (corresponding to
{[R],[#]}) is not.

Proposition 17. Suppose that 3 is absolute for generated subframes and disjoint
unions, then H ([B’]) does not trivialize generated subframes.

Proof. Assume that f is absolute for disjoint unions. Take any frame §. Then, §
is a hybrid amalgamation of { &, W &, |w € |&l}. Thus, H ([B’]) does not trivialize
hybrid amalgamations. By Corollary 13, we get the conclusion. QED

By Propositions 14 and 17, we have the following:

Corollary 18. Assume that B is absolute for generated subframes and disjoint
unions. Suppose that an H ([ﬁ])-ﬁame ® is a hybrid amalgamation of a family
(1] € J} of H([B])-frames. If §; I ¢ for any j € J, then G ¥ .

4 Goldblatt-ThomasOn-style Characterizations for the
Hybrid Definability

4.1 Ultrafilter Morphic Images

Definition 19. A mapping 1 : |§| — |®| is a bounded morphism from a frame § =

(W, {Rg }oemoa ) to a frame & = ( W', { S Juemod ) if, for any O € Mod, f satisfies
the following:

(Forth) wRqw = f(W)Sof(W).
(Back) f(w)Sgv=> for some w’ € |§|, [WwRw and f(w) = v].

Note that f is a bounded morphism from F to ® iff Z = {(x, f(x) )| x € |§|} is
a bisimulation between & and ®.

Definition 20. Given a binary relation R on a set W, we define a unary operation
lron P(W): Ir(X) :={w € W|R[w] c X]}. :

The ultrafilter extension ue § of § = ( W, { Rg }oemod ) 18 the frame { W™, { R™ }oemod )
where W*¢ is the set of (principal and non-principal) ultrafilters over W, uR« if,
forany X Cc W, Iz (X) € u implies X € /.

Note that the ultrafilter extension of H([f])-frame § is not necessarily an
H([B])-frame.
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Definition 21. Let & and ® be frames. & is an witrafilter morphic image of § if
there is a surjective bounded morphism f : § — ue ® such that |/ [{u}]| = 1 for
all principal ultrafilters u € [ue G|.

We can apply this notion to the H([B])-frames. If & and G are H ([B))-frames
and @ is an ultrafilter morphic image of &, then, the notion of ultrafilter morphic
images links two H (fB])-frames & and ® viag (multimodal) frame ue ®.

Proposition 22. Let § and & be H([3])-frames. Suppose that  is an ultrafilter
morphic image of §. Then, for any ¢ of H (8 (or, 7-!([[3’], @)), & + ¢ implies
G .

Proof. Similar to [15, Proposition 4.2.6]. QED

Proposition 23. Assume that 3 is absolute for disjoint unions. Let ; and G,
(Ge{l,2DbeH (Lé])-frames. If §; is an ultrafilter morphic image of ®; for any
i€{1,2}, then & ¥ &, is an ultrafilter morphic image of 6, ¥ ®,.

Proof. Similar to [15, Lemma 4.2.13]. QED

Proposition 24. Assume that 3 is absolute for disjoint unions. Let §; and G,
(ie{l,2}) be H ([B])-ﬁames. If &; and ®; are elementarily equivalent for any
i€{l,2}),then & W &, and ®, ¥ G, are elementarily equivalent.

Proof. Similar to [15, Lemma 4.2.14]. QED

4.2 Characterizations for the Hybrid Definability

Theorem 25. Suppose that # is absolute for generated subframes and disjoint
unions. Then, for any elementary family F of ([B])-frames, F is H ({B))-definable
< F is closed under (i) ultrafilter morphic images, (ii) generated subframes, and
(iii) hybrid amalgamations.

Proof. Suppose that 8 is absolute for generated subframes and disjoint unions.
The left-to-right-direction is clear from Propositions 6, 22 and Corollary 18. We
will prove that the right-to-left-direction. It suffices to prove that, for any H (ﬁ])-
frame &, & #+ Th(F) = &€ F. Suppose that § ¥ Th(F).

We divide the proof into two cases: (Case 1) and (Case 2).
(Case 1) Let us assume that § is point generated by w. We can suppose that
Prop = {px| X c|&l} and Nom = {i.|x € |F|} !. Let M = (&, Vo ), where V, is

'+ Th(F) &5 § & (0 of HIBDIF ¥ o) &= & - (¢ of H'(BDIF - o}, where H([A]) and
H'([A)) are alike except that the set of propositional and nominal variables of H’ is { px | X € | JU
{is|x €|}
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the natural valuation with Vo(px) = X and Vo(i;) = { x ). Let A be the set consisting
of the following, forall X, Y ¢ Wand x € | &/,

Dwx © —Px; Pxny € Px A Py; ix © Pix); Prooo < Opx (O € Mod).

Let Ag be the following set:
{i,}u{o,---Ouplop€eAandme wandy,...,0, € Mod}.

It is easy to see that Ag is satisfiable on § at w under the natural valuation Vj.
Then, we can prove the following (for the proof, see, e.g., [15, p.59, Claim 1]):
Ag is satisfiable in ® for some ® € F. 2

By this, we may infer that (®, V'),v & Ag for some valuation ¥ and some
vin ® for some ® € F. It follows that all nominals in the set {i,|x € |&]|} de-
note points in { ®, V') that are reachable from v 3. Thus, we can think of ¥ as a
valuation for the frame ®,. In this way, we can consider the point-generated sub-
model ( G,, V') of ( ®, V'), which implies G, € F by (ii). Then, we can prove that
(6,,V)rAand(6,,V),vir pyforal X C |F|withwe X (. (6, V), v I i,
and iy, © pw); Piw) € Px A Pw) € A).

Let ( ®;, V* ) be an w-saturated elementary extension of ( %,, V'), which im-
plies G € F. It follows that ( G, V" ) I- A and ( &%, V* ),V* I px forall X c | &, |
with w € X where v* is the element corresponding to v, since the satisfaction
relation is elementary.

Cram 1. § is an ultrafilter morphic image of G,

(Proor oF CLam) For any s in 6, {X c |§||(®,V*), s I px} is an ultrafilter.
This defines the mapping f from | ®; | to | ue & |. We can prove that f is a surjective
bounded morphism and satisfies the condition of ultrafilter morphic image (For the
detailed proof of these, see [15, Claim 2 in the proof of Theorem 4.3.4)). <

Thus, we can conclude that § € F from ®; € F by (i).
(Case 2) Assume that § is not point generated. Here, we need the assumption
of absoluteness of disjoint unions and the closure condition (iii). Take any point-
generated subframe §,, of §. In what follows, we will show that &, W §,, € F. It
then follows by (iii) that § € F.

As in (Case 1), we also suppose that Prop = { px | X C |&|} and Nom = {i, | x € |F| JU
{ ip }, where iy is a distinct nominal from { i, | x € |¥|}.

2 (v) We prove that Ag is finitely satisfiable in F. Let A’ Cqy Ag. Since § + Th(F) and
(&, Vo), wr AA’, A is satisfiable in F. By the elementariness of F, Ag is satisfiable in F. Note
that F is closed under ultraproducts by elementariness.

3 This is because {O; - - - Om(ix = ©iy)| for any m € w and 0O; € Mod } expresses the informa-
tion of xRqy. Note that iy — i, is equivalent to i, V Oi, & ¢i,, which is equivalent to
PLxiuini NIy D) © Pz (Miy) € A.
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Let M = ( &y, Vo), where Vj is a natural valuation with Vy(px) = X, i =x
and i:" = € |§| \ I&w]. We define A in the same way as in (Case 1). Let Ag, be
the following set:

{inJu{o;,---OplpeAandmewandy,...,0, € Mod}
u{o;---Op-ipglmewandoy,...,0, € Mod }.

Easily, Ag, is satisfiable on &, at w under a natural valuation. Then, in the
same way as (Case 1), we can prove that (®, ¥ ),v + Ag, for some valuation V
and some v in ® for some G € F.

Let ®, be the subframe of ® generated by v. By the construction of Ag,, G,
is a proper generated subframe of ®. Thus, by (ii) and (iii), 6, & &, € F. It
follows from ( ®, V'), v + Ag, that all nominals in the set { i, | x € | § |} (except ip)
denote points in { ®, V') that are reachable from v. Thus, we can think of V" as a
valuation for the frame ®, by removing iy from our vocabulary. In this way, we
obtain the point-generated submodel { ®,, V') of ( G, ¥'). Then we can prove that
(6,,V)+-Aand(G,,V),vk pyforall Xc |F|withwe X.

In the same way as in (Case 1), we can take an w-saturated elementary ex-
tension { ®;, V* ) of ( 6,, V') and prove that §,, is an ultrafilter morphic image of
G

Thus, we can conclude that &, W §,, is an ultrafilter morphic image of G} ¥ &},
by Proposition 23. By Proposition 24, &} & ®; is elementarily equivalent to &, W
®,, which implies G} w ®; € F. It follows that &, ¥ &, € F by (i). QED

Theorem 26. Suppose that 3 is absolute for generated subframes. Then, for any

elementary family F of H([B])-frames, F is H([§])-definable <> F is closed
under ultrafilter morphic images.

Proof. We can prove this theorem similarly to the proof of Theorem 25. It suffice
to consider (Case 1), i.e., the case where & is point generated, in the proof of the
right-to-left-direction. QED

For H ([B], @), we can prove the following characterization.

Theorem 27. Suppose that ﬁ is absolute for generated subframe and H ([3]) does
not trivializes generated subframes. Then, for any elementary family F of H([5])-
frames, F is H([8], @)-definable &= F is closed under (i) ultrafilter morphic
images and (ii) generated subframes.

Proof. Suppose that § is absolute for generated subframes.

We will prove that the right-to-left-direction. It suffices to prove that, for any
‘7-(([/§])—frame &, & + Th(F) = & € F. Suppose that § + Th(F). We can suppose
that Prop = { px| X c |§|} and Nom = {i, | x € |F|}. Let M = (&, Vo ), where V, is
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the natural valuation with Vo(px) = X and il® = x. We define A in the same way
as in (Case 1) at the proof of Theorem 25. Let Ag be the following set:

{@,0,---Opplve|FlandpeAandmewand Oy,...,0, € Mod }.

It is easy to see that Ag is satisfiable on § at w under the natural valuation. Then
we can prove that ( ®, V') I Ag for some valuation ¥ for some ® € F. Since F is
closed under generated subframes, we may assume that ® is generated by the set
of points that aré named by nominals, i.e., {i’ | x € |§| ). Then, we can prove that
(G, V) IFA.

Let ( ®*, V") be an w-saturated elementary extension of ( ®, V'), which im-
plies " € F. It follows that ( ®*, V")  A. We can prove the following claim in
the same way as in [15, Claim 2 in the proof of Theorem 4.3.4]: & is an ultrafilter
morphic image of &*. Thus, we can conclude that & € F. QED

In the case where 3 is absolute for generated subframes and H([3]) trivializes
generated subframes, we can prove, in the same way as Theorem 27, that for any
elementary family F of H([3])-frames, F is H([3], @)-definable <= F is closed
under ultrafilter morphic images. Thus, in this case, H([3], @) and H([3]) have
the same expressive power with respect to any elementary family of frames.

As corollaries of theorems in this section, we can obtain several semantical
characterizations of the extended hybrid languages whose characterizations were
previously unknown. For example, by Theorem 25 (or 26, 27), we can get the
characterization for the hybrid language whose operators are { [R], [R™'n #]} (or,
{[RN #],[#1}, { [RN #], [R7'N #], [#]}, respectively).

Remark 28. In this remark, let us restrict our interest to the set § of quantifier
free (QF-) formulas of £/. Then, H ([ﬁ]) is absolute for generated subframes. We
can give the general characterization for extended modal languages (the modal
version of H ([[3'])) without assuming the absoluteness for disjoint unions [12]. In
our characterization (Theorems 25 and 26) of this paper, however, we need to
class the hybrid languages H ([E]) under two cases: the case where we assume the
absoluteness for disjoint unions and the case where H ([[3']) trivializes generated
subframes (see Table 2 in the final section). Thus, the range where we apply our
characterizations (Theorems 25 and 26), is smaller than that of [12].

The satisfaction operators @; can change the situation. For H ([B]), we can
give the general characterization (Theorem 27) without assuming the absoluteness
for disjoint unions. Therefore, the range of Theorem 27 is the same as that of [12].
It should be noted that SATO Kentaro [13] gives another Goldblatt-Thomason-
style characterizations of hybrid (not pure) definability for (@-free) H([B]), with-
out assuming the absoluteness for disjoint unions. In order to give characteriza-
tions, he introduces the notion of Kripke frame with designation and defines se-
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mantical operations for it. Thus, together with his results, we have the comparable
characterizations for hybrid definability of H([8]) and H([8], @) to [12].

S Goldblatt-Thomason-style Characterizations for the
Pure Definability

5.1 Images of Bisimulation System

Definition 29. Given a bisimulation Z between frames § and ®, and a subset X
of |®|, Z respects X if the following two conditions hold for all x € X:

1. (3!w) such that wZx.

2. Forallw € |§| and v € |®|, if wZx and wZv, then x = v.

In other words, Z respects X c |G| if Z~! c |®| x |F| is a function on X and
Z c |F x |G| is a function on Z~'[X]. '

Definition 30. Given a bisimulation Z between & and ®, Z is fotal if (V s € |§])
(Jt€|®))sZt and (Vs € |6]) (31 € |§])1Zs. In other words, Z is total if domZ
= |§land ran Z = |G|.

Definition 31. A bisimulation system from a frame § to a frame G is a function
Z:{X|XCi |6]} = (Z: o B|Z is total }

satisfying that Z(X) respects X. If there exists a bisimulation system Z from a
frame & to a frame ®, then, G is an image of bisimulation system from §.

‘We can also apply this notion to the H (W])-ﬁ'ames. Compared with the notion
of ultrafilter morphic images, notice that there is no need to consider multimodal
frames in order to link two H([3])-frames.

Recall that ¢ is pure if ¢ contains no proposition letters.

Proposition 32. Let § and G be H([5])-frames. S\ippose that ® is an image
of bisimulation system from §. Then, for any pure formula ¢ of H([3]) (o,
H(B). @), & + ¢ implies G  p.

Proof. See [15, Theorem 4.2.10]. , QED

Proposition 33. Assume that B is absolute for disjoint unions. Let §; and ®;
(i € {1,2)) be H([B])-frames. If §, is an image of bisimulation system from ®;
foranyie{1,2},then & W &, is an image of bisimulation system from &, & 6,.

Proof. See[15, Lemma 4.2.15]. QED
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5.2 Characterizations for the Pure Definability

Recall that pure formulas define elementary properties of frames by standard
translation.

Theorem 34. Suppose that B is absolute for generated subframes and disjoint
unions. Then, for any family F of H([B])-frames, F is purely H([5])-definable
& F is elementary and F is closed under (i) images of bisimulation system, (ii)
generated subframes, and (iii) hybrid amalgamations.

Proof. Suppose that f is absolute for generated subframes and disjoint unions.
We prove the right-to-left-direction. It suffices to show that, for all frames &,
& i+ PTh(F) = & € F. Suppose that & - PTh(F).

We divide the proof into two cases: (Case 1) and (Case 2).

(Case 1) Assume that § is point generated by w. We can suppose that Nom =
{ixlx € |F). Let Mt = (&, V'), where V is the natural valuation with i¥ = x.

Let Az = {¢:pure|(§F, V), wi ¢). Clearly, Ag is satisfiable on & under V.
Then, we can prove that Ag is satisfiable in F, similarly to Theorem 25. Let
(®,U),v + Ag for some & € F. Let ®, be the subframe of ® generated by v,
which implies ®, € F by (ii). It follows from ( ®, U ), v I Ag that all nominals in
the set {i, | x € | &} denote points in ( ®, U ) that are reachable from v. Thus, we
can think of U as a valuation for the frame ®,. In this way, we can consider the
point-generated submodel ( ®,, U) of ( 6, U).

We can prove the following [15, Claim 2 in the proof of Theorem 4.4.4].

. CLam 2. For all pure H([B])-formulas ¢, (§, V) I ¢ & (G,, U) F ¢.

Let (§*, V* ) and ( B}, U” ) be w-saturated elementary extensions. By elemen-
tariness, ®; € F. '

In what follows, we will construct a bisimulation system from &) to &*.
Fix wi,...,w, € |&*|, and introduce new nominals j = U1s---»Jn). We will
write (&¥*, V*,wy,...,w,) (or simply ( §*, V*, w)) for the expansion of (F*, V")
in which j,‘c" = wi (1 < k < n). We can prove the following analogous to [15,
Claim 3 in the proof of Theorem 4.4.1].

Cramm 3. There exists ¥ € |®]| such that, for any pure ﬂ([ﬁ])[/"]—formula @,
(F VW) ko= (G, U V).

Define the binary relation Z between |®}| and |&*| such that sZ¢ éi—f# (T, V7, W),s
&, (G5, U, V), ¢ in H (IBDLJ). Then, we can prove that Z is a total bisimulation
between ®; and " respecting { wy, ..., w, } (see, e.g., [15, Claim 4 in the proof of
Theorem 4.4.1]). We have constructed a bisimulation system from G to §*. By
(1), &* € F and then, by elementariness, § € F. '
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(Case 2) Assume that § is not point-generated. Take any point-generated sub-
frame &, of §. In what follows, we will show that &, & &,, € F. It then follows
by (iii) that § € F.

We can suppose that Nom = { i, | x € |&| } U {ip } where i is a distinct nominal
from {i.|x € |F}. Let M = (&, V), where V is a natural valuation with i¥ = x and
i:,’ =x € |F|\IFul. Let Ag, ={¢ : pure|( &, V), w i ¢ }. Clearly, Ag, is satisfiable
on §, under V. Then, we can prove that Ag, is satisfiable in F, similarly to
Theorem 25.

Let (®,U),v I Ag, for some ® € F. Let ®, be the subframe of ® generated
by v. By the construction, ®, is a proper generated subframe of ®. Hence, by (ii)
and (iii), ®, ¥ 6, € F.

It follows from ( ®, U ),v  Ag, that all nominals in the set {i;|x € ||}
(except ip) denote points in ( ®, U ) that are reachable from v. Hence we can think
U as a valuation for the frame ®, by removing iy from our vocabulary. In this -
way, we can consider the point-generated submodel ( ®,, U) of ( ®, U ). We can
prove the following as in (Case 1): For all pure H ([B])-formulas @, (Fw V) F @
& (6,U)F . |

Let (&, V") and ( G}, U* ) be w-saturated elementary extensions. By elemen-
tariness, ®; € F. In the same way as (Case 1), we can construct a bisimulation
system from & to &;,. Thus, we can conclude that &, W &, is a image of bisim-
ulation system from ®; & & by Proposition 33. By Proposition 24, 6} v @] is
elementarily equivalent to ®, w ®,, which implies G, W &} € F. It follows that
8w ¥ &w € F by (i). - QED

Theorem 35. Suppose that J is absolute for generated subframes and H ([8)) triv-
ializes generated subframes. Then, for any family F of H ([B))-frames, F is purely

H ([B'])-deﬁnable < F is elementary and F is closed under images of bisimula-
tion system.

Proof. We can prove this theorem similarly to the proof of Theorem 34. It suffice
to consider (Case 1), i.c., the case where § is point generated, in the proof of the
right-to-left-direction. QED

Theorem 36. Suppose that 8 is absolute for generated subframes. Then, for any
family F of H([3])-frames, F is purely H([8], @)-definable <= F is elementary
and F is closed under (i) images of bisimulation system and (ii) generated sub-
frames.

Pmof Suppose that f is absolute for generated subframes. It suffices to show
that for all frames &, & + PTh(F) = & € F. Suppose that § + PTh(F). We

can suppose that Nom = {i,|x € |§¥]|}. Let M = (&, V'), where V is the natural
valuation with i¥ = x.
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Let Ag = { @i, ¢l ¢: pure, and, (&, V'), x I ¢ }. Clearly, Ag is satisfiable on ¥
under V. Then, we can prove that Ag is satisfiable in F, similarly to Theorem 25.
Let (®,U) - Ag for some ® € F. Since F is closed under generated subframes,
we may assume that G is generated by {iV | x € |§|} (= Nom). We can prove the
following [15, Claim 2 in the proof of Theorem 4.4.1]:

Cram 4. For all pure H([B], @)-formulas ¢, (F, V) ¢ & (6, U) I ¢.

Let (&, V") and ( 6*, U* ) be w-saturated elementary extensions. By elemen-
tariness, * € F. In the same way in (Case 1) of the proof of Theorem 34, we
can construct a bisimulation system from 6* to §*. By (i), & € F and hence, by
elementariness, § € F. QED

In the case where § is absolute for generated subframes and # ([A)) trivializes
generated subframes, we can prove, in the same way as Theorem 36, that for any
family F of H([B])-frames, F is purely H([B], @)-definable < F is closed under
images of bisimulation system. Thus, in this case, H([3], @) and H ([B']) have the
same expressive power with respect to an elementary family of frames.

As in the same way in Section 4, we can obtain several semantical charac-
terizations of the extended hybrid languages whose characterizations (for pure
definability) were previously unknown.

6 Conclusion

We can summarize our results as in Table 2. In the table, [Ags] (or [Adu]) means

Languages Assumptions | Hybrid Definability | Pure Definability
H([B]) [Ags], [Adu] | Theorem 25 Theorem 34

E.g. H([R], [RN#]) (um), (gs), (ha) (bs), (g9), (ha), (ele)
H(BD) [Ags], [Tgs] | Theorem 26 Theorem 35

Eg H(RLIW\RD | - (um) (bs), (ele)

H([B], @) [Ags] Theorem 27 | Theorem 36

E.g. H([RN#], @) (um), (gs) (bs), (gs), (ele)

Table 2: Summary of this paper

that 8 = { B | O € Mod } of the generalized hybrid language H([8]) is absolute for
generated subframes (or disjoint unions, respectively). [Tgs] means that H([5])
trivializes generated subframes. (gs) (or, (ha), (um), (bs)) denotes the closure con-
dition under generated subframes (or, hybrid amalgamations, ultrafilter morphic
images, images of bisimulation systems, respectively). (ele) means that a given
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class of frames is elementary. Theorems 27 and 36 cover almost all extensions
of H(@) with modal operators that have been already introduced, e.g., any non-
empty subsets of

([RLIR'L, [P\ R}, [W \ R7'L [RN =)}, [RN#)], [W7], [#]).
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