Title: On quasi-minimal \(\omega \)-stable groups
(Model theoretic aspects of the notion of independence and dimension)

Author(s): MAESONO, Hisatomo

Citation: 数理解析研究所講究録 (2007), 1555: 70-72

Issue Date: 2007-05

URL: http://hdl.handle.net/2433/80985

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
On quasi-minimal ω-stable groups

前園 久智 (Hisatomo MAESONO)
早稲田大学メディアネットワークセンター
(Media Network Center, Waseda University)

Abstract
Itai and Wakai investigated some group as an example of quasi-minimal structures [1]. We try to characterize such groups more.

1 Quasi-minimal structures and groups

We recall the definition of quasi-minimality. The notion of quasi-minimality is a generalization of that of strong minimality.

Definition 1 An uncountable structure M is called quasi-minimal if every definable subset of M with parameters is at most countable or co-countable.

Itai, Tsuboi and Wakai investigated quasi-minimal structures [2]. After that Itai and Wakai showed an example of such structures [1]. They characterized the group $(Q^\omega, +, \sigma, 0)$ where Q is the set of rational numbers and σ is the shift function.

Definition 2 A function σ is a shift function if $\sigma : Q^\omega \rightarrow Q^\omega$ and for $\bar{x} = (x_0, x_1, x_2, \cdots) \in Q^\omega$, $\sigma(\bar{x}) = (x_1, x_2, x_3, \cdots) \in Q^\omega$.

They showed that the theory $\text{Th}(Q^\omega, +, \sigma, 0)$ is ω-stable and has the elimination of quantifiers. Thus I tried to characterize structural properties of quasi-minimal ω-stable groups.

2 Quasi-minimal ω-stable groups

$(Q^\omega, +)$ is a divisible abelian group. And it is known that its theory is strongly minimal. So I wondered whether quasi-minimal groups are abelian. By using known Facts about stable groups, it is shown that quasi-minimal nonabelian groups have the strict order property substantially.
Definition 3 A formula \(\varphi(x, y) \) has the strict order property if there are \(a_i \) (\(i < \omega \)) such that for any \(i, j < \omega \), \(\models \exists x [\neg \varphi(x, a_i) \land \varphi(x, a_j)] \iff i < j \). A theory \(T \) has the strict order property if some formula \(\varphi(x, y) \) has the strict order property.

Proposition 4 Let \(G \) be a quasi-minimal group. And let \(Z \) be the center of \(G \). If \(G/Z \) is not abelian, then \(Th(G) \) has the strict order property.

Proof. Suppose that \(G/Z \) is nonabelian. As \(Z \) is definable subgroup of \(G \), \(|Z|\) is countable. For \(a \in G - Z \), let \(C_a = \{g \in G | a^g = g^{-1}ag = a\} \). Since \(C_a \) is definable subgroup of \(G \), \(|C_a|\) is countable. Thus the orbit of \(a \), denoted by \(O(a) \), is uncountable set. As orbits are definable equivalence classes, \(G \) has only one infinite orbit. In the following, let \(G \) be \(G/Z \) for convenience of notation. Hence now \(G \) has only one nontrivial orbit. So there is \(a \in G \) with \(a \neq a^{-1} \). As \(a^{-1} \in O(a) \), there is \(b \in G \) such that \(a^b = a^{-1} \). Let \(C_G(b) = \{g \in G | g^b = g\} \). Since \(a^{b^2} = a \) and \(a^b \neq a \), \(C_G(b^2) \supsetneq C_G(b) \). As \(b \in O(a) \), \(b^2 \neq 1 \) and there is \(c \in G \) such that \(b^c = b^2 \). Then we get \(C_G(b) < C_G(b^c) < C_G(b^{2c}) < \cdots \cdots \) .

Thus we can see that quasi-minimal simple (in stability theoretic meaning) groups are abelian essentially. However, strongly minimal groups and \(\omega \)-stable abelian groups were characterized completely.

Theorem 5 (Reineke [3]) Let \(G \) be a group. Then the followings are equivalent:
(1) \(G \) is strongly minimal.
(2) \(G \) is minimal.
(3) \(G \) is abelian and has the form \(G = \oplus_{\alpha} Q \oplus \oplus_{\gamma} Z_{p^\infty}^{\beta_{p}} \) where \(\alpha \geq 0 \), \(\beta_{p} \) is finite, or the form \(G = \oplus_{\gamma} Z_{p} \) where \(\gamma \) is infinite.

Theorem 6 (Macintyre [4]) Let \(G \) be an abelian group. Then \(Th(G) \) is totally transcendental if and only if \(G \) is of the form \(D \oplus H \) where \(D \) is divisible and \(H \) is of bounded order.

And by the following facts about infinite abelian groups, we can see that \(\omega \)-stable abelian groups are direct sums of strongly minimal groups. (These facts are well known, see e.g. [5]. In them, groups means abelian groups.)

Fact 7 Let \(G \) be a group. Then \(G \) has the maximal divisible direct summand.

Fact 8 Let \(G \) be a divisible group. Then \(G \) has the form \(G = \oplus_{\alpha} Q \oplus \oplus_{\gamma} Z_{p^\infty}^{\beta_{p}} \).
Fact 9 Let G be a group of bounded order. Then G is a direct sum of cyclic groups.

But we can easily check that ω-stable abelian groups $G = D \oplus H$ in which H has infinitely many summands are not quasi-minimal. Then

Conclusion

Quasi-minimal ω-stable pure groups (i.e. groups reduced to the group language) are strongly minimal substantially.

Thus we should put the next problem last.

Problem

Find quasi-minimal non-ω-stable groups.

References

[1] M.Itai and K.Wakai, ω-saturated quasi-minimal models of $Th(Q^\omega, +, \sigma, 0)$, Math. Log. Quart, vol. 51 (2005) pp. 258-262