<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>CM-TRIVIALITY AND GEOMETRIC ELIMINATION OF IMAGINARIES (Model theoretic aspects of the notion of independence and dimension)</td>
</tr>
<tr>
<td>著者</td>
<td>YONEDA, IKUO</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 (2007), 1555: 57-60</td>
</tr>
<tr>
<td>発行日</td>
<td>2007-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/80987</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>テキストバージョン</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
CM-TRIVIALITY AND GEOMETRIC ELIMINATION OF IMAGINARIES

東海大学理学部数学科 米田郁生 (IKUO YONEDA)
DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY

1. INTRODUCTION

To show CM-triviality (of generic relational structures), first of all, we showed weak elimination of imaginaries, and then, working in the real sort, we could show CM-triviality. In this note, we show that CM-triviality in the real sort, defined in the second section, implies geometric elimination of imaginaries and CM-triviality (in the real and imaginary sorts). To show this, we give a characterization of geometric elimination of imaginaries in simple theories.

Our notation is standard. Let T be a complete L-theory, and let \mathcal{M} be the big model of T. $\bar{a}, \bar{b}, \ldots \subset \omega \mathcal{M}$ denote finite sequences in \mathcal{M}. We work in \mathcal{M}^{eq}, which consists of \bar{a}_E, the E-class of \bar{a}, for any 0-definable equivalence relation E and $\bar{a} \subset \omega \mathcal{M}$. AB denotes $A \cup B$ for any $A, B \subset \mathcal{M}^{eq}$.

For $a \in \mathcal{M}^{eq}, A \subset \mathcal{M}^{eq}$, we write $a \in \text{dcl}^{eq}(A)$, if a is fixed by any automorphism pointwise fixing A. And we write $a \in \text{acl}^{eq}(A)$, if the orbit of a by automorphisms pointwise fixing A, is finite. We write $\bar{a} \equiv_A \bar{b}$ for $\text{tp}(\bar{a}/A) = \text{tp}(\bar{b}/A)$ in T.

We said that T geometrically eliminates imaginaries (T has GEI), if for any $e \in \mathcal{M}^{eq}$, there exists $\bar{b} \subset \omega \mathcal{M}$ such that $e \in \text{acl}^{eq}(\bar{b})$ and $\bar{b} \in \text{acl}^{eq}(e)$.

2. A CHARACTERIZATION OF GEI IN SIMPLE THEORIES

Let T be a simple theory.

Definition 2.1. We say that T has the independence over intersections (T has IND/I), for any $\bar{a}, A, B \subset \mathcal{M}$ with $\bar{a} \downarrow_A B, \bar{a} \downarrow_B A$, we have $\bar{a} \downarrow_{\text{acl}(A) \cap \text{acl}(B)} AB$.

Proposition 2.2. IND/I implies GEI.

1991 Mathematics Subject Classification. 03C45.
Proof. Fix \(e = \bar{a}_E \in \mathcal{M}^\text{eq} \). Take \(\bar{b}, \bar{c} \models \text{tp}(\bar{a}/e) \) such that \(\bar{b}, \bar{c}, \bar{a} \) are independent over \(e \). Let \(A = \text{acl}(\bar{b}) \cap \text{acl}(\bar{c}) \). Then \(\bar{a} \downarrow_A \bar{b} \bar{c} \) by IND/I. By \(e \in \text{dcl}^\text{eq}(\bar{a}) \cap \text{dcl}^\text{eq}(\bar{b} \bar{c}) \), \(e \in \text{ac1}^\text{eq}(A) \). On the other hand, \(A \subset \text{ac1}^\text{eq}(e) \) follows from \(\bar{b} \downarrow_e \bar{c} \).

\(\square \)

Lemma 2.3. Suppose that \(T \) has GEI. Then, for any \(\text{acl}(A) = A, \text{acl}(B) = B \subset \mathcal{M} \), we have

\[
\text{acl}^\text{eq}(A) \cap \text{acl}^\text{eq}(B) = \text{acl}^\text{eq}(A \cap B).
\]

Proof. Let \(e \in \text{acl}^\text{eq}(A) \cap \text{acl}^\text{eq}(B) \). By GEI, there exists \(\bar{a} \subset \omega \mathcal{M} \) such that \(e \in \text{acl}^\text{eq}(\bar{a}) \) and \(\bar{a} \in \text{acl}^\text{eq}(e) \). As \(\bar{a} \in \text{acl}^\text{eq}(A) \) and \(\bar{a} \in \text{acl}^\text{eq}(B) \), we see \(\bar{a} \subset A \cap B \). Thus, \(e \in \text{acl}^\text{eq}(A \cap B) \).

\(\square \)

From now on, we assume elimination of hyperimaginaries (EHI). Then the converse of Proposition 2.2 follows.

Proposition 2.4. GEI \(\iff \) IND/I

Proof. (\(\Leftarrow \)) by Proposition 2.2. (\(\Rightarrow \)): Suppose that \(\bar{a} \downarrow_A B, \bar{a} \downarrow_B A \) and \(\text{acl}(A) = A, \text{acl}(B) = B \). By the above lemma and EHI, we see \(\text{Cb}(\bar{a}/AB) \subseteq \text{acl}^\text{eq}(A) \cap \text{acl}^\text{eq}(B) = \text{acl}^\text{eq}(A \cap B) \).

\(\square \)

3. MAIN THEOREM

Definition 3.1. We say that \(T \) is CM-trivial in the real sort, if, for any \(\bar{a}, A = \text{acl}(A), B = \text{acl}(B) \subset \mathcal{M}, \bar{a} \downarrow_A B \) implies \(\bar{a} \downarrow_{A \cap \text{acl}(\bar{a}, B)} B \).

Remark 3.2. The original definition of CM-triviality is as follows: For any \(a, A = \text{acl}^\text{eq}(A), B = \text{acl}^\text{eq}(B) \subset \mathcal{M}^\text{eq}, a \downarrow_A B \) implies \(a \downarrow_{A \cap \text{acl}^\text{eq}(a, B)} B \). Clearly, under assuming GEI, CM-triviality is equivalent to CM-triviality in the real sort. In the next remark, we lay out an example which shows the difference of the definitions.

Theorem 3.3. If \(T \) is CM-trivial in the real sort, then \(T \) has GEI. So CM-triviality in the real sort implies (the original) CM-triviality.

Proof. By Proposition 2.2, we will show that \(T \) has IND/I, i.e. if \(\bar{a}, A = \text{acl}(A), B = \text{acl}(B) \subset \mathcal{M} \) and \(\bar{a} \downarrow_A B, \bar{a} \downarrow_B A \), then \(\bar{a} \downarrow_{A \cap B} AB \). By CM-triviality in the real sort, we have \(\bar{a} \downarrow_{\text{acl}(\bar{a}, B) \cap A} B \). By \(\bar{a} \downarrow_B A \), we see \(\text{acl}(\bar{a}, B) \cap AB = B \). As \(A \cap B \subseteq A \cap \text{acl}(\bar{a}, B) \subseteq AB \cap \text{acl}(\bar{a}, B) = B \), we see

\[
\text{acl}(\bar{a}, B) \cap A = A \cap B.
\]

By \(\bar{a} \downarrow_{\text{acl}(\bar{a}, B) \cap A} B \) and \(\bar{a} \downarrow_B A \), we see \(\bar{a} \downarrow_{A \cap B} AB \).

}\(\square \)
Remark 3.4. (1) Let T be the theory of a simple relational structure with a closure operator $\text{cl}(\ast)$ such that
- $\text{cl}(\text{acl}(A)) = \text{acl}(A) \text{ and } \text{cl}(\text{cl}(A) \cap \text{cl}(B)) = \text{cl}(A) \cap \text{cl}(B)$,
- for any algebraically closed sets $A, B \subseteq \mathcal{M}$, $A \downarrow_{\Lambda\cap B} B \Leftrightarrow "AB = \text{cl}(AB)\text{ and } R^{AB} = R^{A} \cup R^{B}\text{ for any predicate } R"$.

Then T is CM-trivial in the real sort. (Suppose that $\bar{a} \downarrow_{A} B$.
Let $C = \text{acl}(\bar{a}, A), D = \text{acl}(AB)$. As $C \downarrow_{A} B$ and $C \cap B = A$,
$\text{cl}(CB) = CB$ and $R^{CB} = R^{C} \cup R^{B}$ for any predicate R. Let $E = \text{acl}(\bar{a}, B)$. Then $\text{cl}(CB \cap E) = CB \cap E$ and $R^{CB\cap E} = R^{C\cap E} \cup R^{B\cap E}$ for any predicate R. So, we see $C \cap E \downarrow_{A\cap E} B \cap E$.
As $\bar{a} \subset C \cap E, B \subset B \cap E, \bar{a} \downarrow_{A\cap \text{acl}(\bar{a}, B)} B$ follows.) So, by Theorem 3.3, CM-triviality of T follows.

(2) CM-triviality does not imply CM-triviality in the real sort: In [E], Evans gave an ω-categorical CM-trivial structure \mathfrak{C}, defined below, of SU-rank one without WEI.
Here, we check that \mathfrak{C} does not have GEI.
Firstly, he constructed an ω-categorical generic structure M
(coutable binary graph $R(x, y)$ with a predimension $\delta(A) = 2|A| - |R^{A}|$) of SU-rank two such that
- no triangles, no squares in M, and points and adjacent pairs
 of points are closed in M
- $\text{cl}(\ast) = \text{acl}(\ast)$ in M and M is of diameter 3.
Fix $a \in M$. Let C, D be the sets of vertices at distance 1,2
from a. Then we have the canonical structure \mathfrak{C} on C such that $\text{Aut}(\mathfrak{C})$ is homeomorphic to $\text{Aut}(M/a)$, so \mathfrak{C} and (M, a)
are biinterpretable. (See pp.136, 139, 348 in [H].) Then \mathfrak{C} is of SU-rank one.
We see that \mathfrak{C} does not have GEI as follows:
Let $c, c' \in C$ and $d, d' \in D$ be such that $M \models R(a, c) \cap R(a, c') \cap R(c, d) \cap R(c', d')$. As no triangles and squares in M, we have $M \models \neg R(c, c') \cap \neg R(c, d') \cap \neg R(c', d)$. Note that $c \in \text{dcl}(a, d)$
and $acd < acd'c$ or $acd'c$. So, $c', d' \notin \text{cl}(a, d, c) = \text{acl}(a, d, c)$.
Therefore $\text{cl}(a, d) = \text{acl}(a, d) = \{a, c, d\}$ follows. On the other hand, $\text{cl}(a, c) = \{a, c\}$. So, if \mathfrak{C} has GEI, then, as $d \in \mathfrak{C}^{eq}$,
there exist $\bar{c} \subset_{\omega} C$ such that $d \in \text{acl}(a, \bar{c})$ and $\bar{c} \in \text{acl}(a, d)$
in the sense of M. But such \bar{c} must be a singleton $c \in C$
with $M \models R(a, c) \cap R(c, d)$. Since $\text{acl}(a, c) = \{a, c\}$ in M, so $d \notin \text{acl}(a, c)$ in M.

Problem 3.5. In stable theories, is CM-triviality equivalent to CM-triviality in the real sort?
REFERENCES

E-mail address: ikuo.yoneda@s3.dion.ne.jp