<table>
<thead>
<tr>
<th>Title</th>
<th>Quantifier Elimination for Products of Ordered Abelian Groups (Model theoretic aspects of the notion of independence and dimension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ibuka, Shingo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2007), 1555: 18-22</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/80993</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Quantifier Elimination for Products of Ordered Abelian Groups

Shingo Ibuka,
Graduate School of Science and Technology, Kobe University

Introduction

Komori [1] and Weispfenning [2] gave an axiomatization for $Z \times Q$ in the language of Presburger, $\{+,-,0,1,\equiv_{n}|n \geq 1\}$, and showed quantifier elimination, where $x \equiv_{n} y$ is interpreted as $\exists z(x - y = nz)$, and 1 as $(1,0)$.

If H is an ordered abelian group with extra relations and constants, the lexicographic product $H \times Q$ can be naturally viewed as a structure for the language of H. Suzuki [3] generalized Komori’s result and proved that when H admits quantifier elimination, so $H \times Q$ does, by adding another relation $I = [0] \times Q$ to $H \times Q$.

Adapting their argument, we show quantifier elimination for $H \times Z$ in the extended language by $I = [0] \times Z$ and the language of Presburger.

1 Preliminaries

We write N^+ for the natural numbers greater than 0, and \bar{x} for the sequence of variables (x_1, x_2, \cdots, x_n). Let $L_{og} = \{+,-,0,<\}$, the language of the ordered abelian groups, and $L_{Pr} = L_{og} \cup \{1\} \cup \{\equiv_{n}|n \in N^+\}$, the language of Presburger Arithmetic, where 1 is a constant symbol and \equiv_{n} are binary relation symbols. The notation nx stands for the term $x + \cdots + x$ (n times) for each $n \in N^+$.

Let H be an ordered abelian group as an L_{og}-structure and have an additional interpretation of L_{RC}, where L_{RC} consists of relation and constant symbols. For simplicity, we define $L_{og+} = L_{og} \cup L_{RC} \cup \{I\}$ and $L_{Pr+} = L_{Pr} \cup L_{RC} \cup \{I\}$, where I is a unary relation symbol which does not appear in $L_{Pr} \cup L_{RC}$.

Here, we give a structure expanding the direct sum of two structures.

Definition 1.1 (Product interpretation) Suppose that K is an ordered abelian group as an L_{og}-structure (resp., a model of Presburger arithmetic as an L_{Pr}-structure). We call G the structure with the product interpretation of H and K for L_{og+} (resp., L_{Pr+}) if G is the direct product of H and K with the following interpretation of L_{og+} (resp., L_{Pr+}):

(1) $+, -$ are calculated coordinatewise,
(2) $0^G := (0^H, 0^K),$
(3) $(x_1, y_1) <^G (x_2, y_2)$ if and only if $x_1 <^H x_2$ or $(x_1 = x_2$ and $y_1 <^K y_2),$
(4) $c^G := (c^H, 0^K)$ for each constant symbol $c \in L_{RC},$
(5) $((x_1, y_1), \cdots, (x_n, y_n)) \in R^G$ if and only if $(x_1, \cdots, x_n) \in R^H$ for each relation symbol $R \in L_{RC}$, and
(6) $I^G := \{0^H\} \times K.$

The rest clauses (7), (8) are additional for the product interpretation for L_{Pr+}:

(7) $\forall x (0 < x \rightarrow 1 \leq x),$
(8) $\forall xy(x \equiv y \leftrightarrow \exists z(x - y = nz))$ for each $n \in N^+$.
2 Quantifier Elimination for the Product Structure with a Presburger Arithmetic

Suzuki[3] showed the fact below.

Fact 2.1 (Suzuki) Suppose that H is an ordered abelian group in L_{og} and admits quantifier elimination in $L_{og} \cup L_{RC}$. If G is the structure with the product interpretation of $H \times \mathbb{Q}$ for L_{og+}, then G admits quantifier elimination.

Tanaka and Yokoyama [4] gave a simpler proof for Fact 2.1. We prove quantifier elimination for structures with the product interpretation with \mathbb{Z} in a similar way.

Lemma 2.2 For any quantifier-free $L_{og} \cup L_{RC}$-formula ψ, there exists a quantifier-free L_{og+}-formula ψ' such that for all $g \in H \times \mathbb{Z}$, $H \models \psi(g) \iff H \times \mathbb{Z} \models \psi'(g)$

Proof. To obtain ψ', replace all the occurrences of $0 < t$ with $0 < t \land \neg I(t)$, and $t = 0$ with $I(t)$. \qed

Definition 2.3 For each term t, t^1 denotes the term obtained from t by replacing 1 with 0, and t^2 by replacing c with 0 for each constant symbol c in L_{RC}.

Theorem 2.4 Suppose that H is an ordered abelian group in L_{og} and admits quantifier elimination in $L_{og} \cup L_{RC}$. If G is the structure with the product interpretation of H and \mathbb{Z} for L_{Pr+}, then G admits quantifier elimination.

Proof. It suffices to eliminate each existential quantifier from the following two formulas with parameters \vec{y}:

Form 1:

$$\exists x \left\{ \begin{array}{l}
\neg s(g) < mx < t(g) \\
\land \bigwedge_{i \in \text{Pos}} mx =_{n_i} t_i(g) \land \bigwedge_{i \in \text{Neg}} mx \neq_{n_i} t_i(g) \\
\land \bigwedge_{i} R(mix + t_i(g)) \land \bigwedge_{i} \neg R(mix + t_i(g)) \\
\land \bigwedge_{i} I(mx + t_i(g)) \land \bigwedge_{i} \neg I(mx + t_i(g))
\end{array} \right. $$

Form 2:

$$\exists x \left\{ \begin{array}{l}
\neg s(g) = mx \\
\land \bigwedge_{i \in \text{Pos}} mx =_{n_i} t_i(g) \land \bigwedge_{i \in \text{Neg}} mx \neq_{n_i} t_i(g) \\
\land \bigwedge_{i} R(mix + t_i(g)) \land \bigwedge_{i} \neg R(mix + t_i(g)) \\
\land \bigwedge_{i} I(mx + t_i(g)) \land \bigwedge_{i} \neg I(mx + t_i(g))
\end{array} \right. $$

where $s(g)$, $t(g)$ and $t_i(g)$ are L_{Pr+}-terms with parameters \vec{y} and m, m_i and n_i are in \mathbb{N}^+ in the respective formulas. For taking some coefficients commonly, use that

- $x = 0 \iff mx = 0$,
- $x \equiv_{n} 0 \iff mx \equiv_{mn} 0$ and
- $I(x) \iff I(mx)$

for each $m,n \in \mathbb{N}^+$.

Henceforth we argue over form 1, because Form 2 can also be dealt in the same way. Considering that

$$t^G(g) = (t_1^H(g^1), t_2^Z(g^2))$$

and
\(G \models t(\overline{y}) \equiv_{n} 0 \) iff \(H \models t^{1H}(\overline{y}^{1}) \equiv_{n} 0 \) and \(\mathbb{Z} \models t^{2Z}(\overline{y}^{2}) \equiv_{n} 0 \),

\(G \models (\text{Form} 1) \) is equivalent to the disjunction of (a)-(d).

(a) \(G \models I(s(\overline{y}) - t(\overline{y})) \) and

\[
\begin{align*}
H & \models \exists x \left(s^{1}(\overline{y}) = mx = t^{1}(\overline{y}) \land \bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{1}(\overline{y}) \land \bigwedge_{i \in \text{Neg} \setminus S} mx \neq n_{i} t_{i}^{1}(\overline{y}) \right) \\
S\text{CNeg} & \models \exists x \left(\bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{1}(\overline{y}) \land \bigwedge_{i \in \text{Neg} \setminus S} mx \neq n_{i} t_{i}^{1}(\overline{y}) \right),
\end{align*}
\]

(b) \(G \models \neg I(s(\overline{y}) - t(\overline{y})) \) and

\[
\begin{align*}
H & \models \exists x \left(s^{1}(\overline{y}) < mx < t^{1}(\overline{y}) \land \bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{1}(\overline{y}) \land \bigwedge_{i \in \text{Neg} \setminus S} mx \neq n_{i} t_{i}^{1}(\overline{y}) \right) \\
S\text{CNeg} & \models \exists x \left(\bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{1}(\overline{y}) \land \bigwedge_{i \in \text{Neg} \setminus S} mx \neq n_{i} t_{i}^{1}(\overline{y}) \right),
\end{align*}
\]

(c) \(G \models \neg I(s(\overline{y}) - t(\overline{y})) \) and

\[
\begin{align*}
H & \models \exists x \left(s^{1}(\overline{y}) = mx < t^{1}(\overline{y}) \land \bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{1}(\overline{y}) \land \bigwedge_{i \in \text{Neg} \setminus S} mx \neq n_{i} t_{i}^{1}(\overline{y}) \right) \\
S\text{CNeg} & \models \exists x \left(\bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{1}(\overline{y}) \land \bigwedge_{i \in \text{Neg} \setminus S} mx \neq n_{i} t_{i}^{1}(\overline{y}) \right),
\end{align*}
\]

(d) \(G \models \neg I(s(\overline{y}) - t(\overline{y})) \) and

\[
\begin{align*}
H & \models \exists x \left(s^{1}(\overline{y}) < mx = t^{1}(\overline{y}) \land \bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{1}(\overline{y}) \land \bigwedge_{i \in \text{Neg} \setminus S} mx \neq n_{i} t_{i}^{1}(\overline{y}) \right) \\
S\text{CNeg} & \models \exists x \left(\bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{1}(\overline{y}) \land \bigwedge_{i \in \text{Neg} \setminus S} mx \neq n_{i} t_{i}^{1}(\overline{y}) \right),
\end{align*}
\]

where \(\varphi_{R}(x, \overline{y}) \) is a quantifier-free formula with predicates \(R \) and \(I \).

We show that (a)-(d) are representable by a quantifier-free formula.

Case (a). First, eliminate the negative part from the formula below appeared in (a).

\[
Z \models \exists x \left(\bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{2}(\overline{y}^{2}) \land \bigwedge_{i \in \text{Neg} \setminus S} mx \neq n_{i} t_{i}^{2}(\overline{y}^{2}) \right) \quad \text{... (1)}
\]

As the negative part is equivalent in \(Z \) to

\[
\bigwedge_{i \in \text{Neg} \setminus S} \bigwedge_{j=1}^{n_{i}} (t_{i} + j)^{2}(\overline{y}^{2}),
\]

(1) can be rewritten by taking a disjunctive normal form as

\[
Z \models \exists x \left(s^{2}(\overline{y}^{2}) < mx < t^{2}(\overline{y}^{2}) \land \bigwedge_{i \in \text{Pos}} mx \equiv_{n_{i}} t_{i}^{2}(\overline{y}^{2}) \right) \quad \text{... (2)}.
\]

Furthermore, we can choose the \(n_{i} \) in (2) relatively prime to each other. Therefore, (a) is equivalent to the following form:
$(a)' G \models I(s(g) - t(ff))$

and

\[s \sigma \bigvee_{Neg} \vee \{ \]

According to S, $H \vdash \exists x(s^{1} \bigwedge_{\wedge} \bigwedge_{i \epsilon Poe}^{(g^{1})} mx \equiv t_{i}^{1}(y^{1}) \wedge =mx_{\hslash_{i}}=t^{1}\overline{y}^{1}) \bigwedge_{i \epsilon S} mx \not\in n_{i}i_{i}^{1}(\overline{y}^{1}))$.

$\mathbb{Z} \vdash \exists x(s^{2}(g^{2})<mx<t^{2}(j^{2}) \wedge \wedge mx\equiv_{n_{i}}t_{i}^{2}())$

Remainder Theorem, there exists a unique solution modulo Πn_{i} to the system

\[\wedge v \equiv n_{i}t_{i}^{2}() \]

Thus, the formula

\[Z \models \exists x(s^{2}(g^{2})<mx<t^{2}(j^{2}) \wedge \wedge mx\equiv_{n_{i}}t_{i}^{2}()) \]

can be replaced with

\[Z \models \bigwedge_{i=1}^{\Pi n_{i}-1} \left(\bigwedge m(s(g) + i) \equiv_{n_{i}}t_{i}(y) \rightarrow s(g) + i < t(y) \right) \]

On the other hand, as H admits quantifier elimination, there exists a quantifier-free $L_{\log} \cup L_{RC}$-formula ψ such that $H \models \psi(g^{1})$ is equivalent to

\[s^{1}(g^{1}) = mx = t^{1}(g^{1}) \]

and

\[\left(\bigwedge_{i \epsilon Poe}^{(g^{1})} mx \equiv_{n_{i}}t_{i}^{1}(g^{1}) \wedge \bigwedge_{i \epsilon S} mx \equiv_{n_{i}}t_{i}^{1}(g^{1}) \right) \]

where $g \in H \times Z$.

By lemma(2.2), we have a formula ψ' such that $H \models \psi'(g^{1})$ is equivalent to $H \times Z \models \psi'(y)$ for $y \in H \times Z$. This completes Case (a). Note that the formula obtained finally is determined uniquely by the theory of H and Z.

Case (b). After eliminating some negative parts by the same procedure, eliminate the quantifier from

\[\bigwedge_{i=1}^{\Pi n_{i}-1} \left(\bigwedge m(s(g) + i) \equiv_{n_{i}}t_{i}(y) \rightarrow s(g) + i < t(y) \right) \]

This case is simple. Because

\[Z \models \exists x(\bigwedge_{i \epsilon S} mx \equiv_{n_{i}}t_{i}^{2}(g^{2})) \]

is always true, (b) is equivalent to a quantifier-free formula by lemma(2.2) and that H has quantifier elimination.

(c), (d) are similar as (b).

As mentioned in the proof of Theorem 2.4, quantifier elimination for $H \times Z$ depends only on the theories of H and Q.

Corollary 2.5 Suppose that $H \equiv H'$ and $K \equiv Z$, and let $\varphi(x, y)$ and $\psi(y)$ be quantifier-free formulas. If $H \times Z \models \forall y(\exists x \varphi(x, y) \leftrightarrow \psi(y))$, then $H' \times K \models \forall y(\exists x \varphi(x, y) \leftrightarrow \psi(y))$.
3 Acknowledgements

I would like to express my gratitude to Prof. Hirotaka Kikyo for giving me these problems and valuable suggestions.

References

