Residuated mapping and CPS-translation
– Extended abstract –

Ken-etsu Fujita (藤田 憲悦)
Gunma University (群馬大学)
fujita@cs.gunma-u.ac.jp

Abstract
We provide a call-by-name CPS-translation from polymorphic \(\lambda \)-calculus \(\lambda^2 \) into existential \(\lambda \)-calculus \(\lambda^\exists \). Then we prove that the CPS-translation is a residuated mapping from the preordered set of \(\lambda^2 \)-terms to that of \(\lambda^\exists \)-terms. From the inductive proof, its residual (inverse translation) can be extracted, which constitutes the so-called Galois connection. It is also obtained that given the CPS-translation the existence of its inverse is unique.

1 Preliminaries

By a preordered set \(\langle A, \sqsubseteq \rangle \), we mean a set \(A \) on which there is defined a preorder, i.e., a reflexive and transitive relation \(\sqsubseteq \). If \(\langle A_1, \sqsubseteq_1 \rangle \) and \(\langle A_2, \sqsubseteq_2 \rangle \) are preordered sets, then we say that a mapping \(f : A_1 \to A_2 \) is monotone, if \(x \sqsubseteq_1 y \) implies \(f(x) \sqsubseteq_2 f(y) \) for any \(x, y \in A_1 \). A direct image under \(f \) is denoted by \(f[X] \) for every \(X \subseteq A_1 \), and an inverse image is denoted by \(f^{-1}[Y] \) for every \(Y \subseteq A_2 \). A subset \(B \subseteq A \) is a down-set of a preordered set \(\langle A, \sqsubseteq \rangle \), if \(y \sqsubseteq x \) together with \(y \in A \) and \(x \in B \) implies \(y \in B \). By a principal down-set, we mean a down-set of the form \(\{ y \in A \mid y \sqsubseteq x \} \), which is denoted by \(\downarrow x \).

Definition 1 (Residuated mapping) A mapping \(f : A \to B \) that satisfies the following condition is said to be residuated: The inverse image under \(f \) of every principal down-set of \(B \) is a principal down-set of \(A \).

2 Source calculus: \(\lambda^2 \)

We introduce our source calculus of 2nd order \(\lambda \)-calculus (Girard-Reynolds), denoted by \(\lambda^2 \). For simplicity, we adopt its domain-free style.

Definition 2 (Types)
\[A ::= X \mid A \to A \mid \forall X.A \]

Definition 3 ((Pseudo)\(\lambda^2 \)-terms)
\[\lambda^2 \exists M ::= x \mid \lambda x.M \mid MM \mid \lambda X.M \mid MA \]
4 (Reduction rules)
(β) $(\lambda x. M_1) M_2 \rightarrow M_1[x := M_2]$

(η) $\lambda x. M x \rightarrow M$, if $x \not\in FV(M)$

(β_t) $(\lambda X. M) A \rightarrow M[X := A]$

(η_t) $\lambda X. M X \rightarrow M$, if $X \not\in FV(M)$

$FV(M)$ denotes a set of free variables in M.

We write $\rightarrow_{\lambda 2}$ for the compatible relation obtained from the reflexive and transitive closure of the one step reduction relation, and $\rightarrow^{+}_{\lambda 2}$ for that from the transitive closure. In particular, \rightarrow_{R} denotes the subrelation of \rightarrow restricted to the reduction rules $R \subseteq \{\beta, \eta, \beta_t, \eta_t\}$. We may write simply (β) for either (β) or (β_t), and (η) for either (η) or (η_t), if clear from the context. We employ the notation \equiv to indicate the syntactic identity under renaming of bound variables.

3 Target calculus: λ^3

We next define our target calculus denoted by λ^3, which is logically a subsystem of minimal logic consisting of constant \bot, negation, conjunction and 2nd order existential quantification\footnote{For further introduction of the CPS target calculus λ^3 with let-expressions, see also [5].}.

Definition 5 (Types)

$$A ::= \bot | X | \neg A | A \land A | \exists X. A$$

Definition 6 ((Pseudo)λ^3-terms)

$$\Lambda^3 \ni M ::= x | \lambda x. M | MM | \langle M, M \rangle | \text{let } \langle x, x \rangle = M \text{ in } M$$

$$| \langle A, M \rangle | \text{let } \langle X, x \rangle = M \text{ in } M$$

Definition 7 (Reduction rules)
(β) $(\lambda x. M_1) M_2 \rightarrow M_1[x := M_2]$

(η) $\lambda x. M x \rightarrow M$, if $x \not\in FV(M)$

(\text{let}_\lambda) \text{let } \langle x_1, x_2 \rangle = \langle M_1, M_2 \rangle \text{ in } M \rightarrow M[x_1 := M_1, x_2 := M_2]$

(\text{let}_{\land}) \text{let } \langle x_1, x_2 \rangle = M_1 \text{ in } M[z := \langle x_1, x_2 \rangle] \rightarrow M[z := M_1], \quad \text{if } x_1, x_2 \not\in FV(M)$

(\text{let}_\exists) \text{let } \langle X, x \rangle = \langle A, M_1 \rangle \text{ in } M \rightarrow M[X := A, x := M_1]$

(\text{let}_{\exists}) \text{let } \langle X, x \rangle = M_1 \text{ in } M[z := \langle X, x \rangle] \rightarrow M_2[z := M_1], \quad \text{if } X, x \not\in FV(M_2)$

We also write simply (\text{let}) for either (\text{let}_\lambda) or (\text{let}_\exists), and (\text{let}_\eta) for (\text{let}_{\land}) or (\text{let}_{\exists_\eta}). Similarly we write $\rightarrow_{\lambda 3}$ and $\rightarrow^{+}_{\lambda 3}$ as done for $\lambda 2$.

4 CPS-translation * from Λ^2 into Λ^3

We define a translation, so-called modified CPS-translation * from pseudo λ^2-terms into pseudo λ^3-terms. In each case, a fresh and free variable a is introduced, which is called a continuation variable.

Definition 8

1. $x^* = xa$
2. $(\lambda x.M)^* = \text{let} \langle x, a \rangle = a \text{ in } M^*$
3. $(M_1 M_2)^* = \begin{cases} M_1^*[a := \langle x, a \rangle] & \text{for } M_2 \equiv x \\ M_1^*[a := \langle \lambda a.M_2^*, a \rangle] & \text{otherwise} \end{cases}$
4. $(\lambda X.M)^* = \text{let} \langle X, a \rangle = a \text{ in } M^*$
5. $(MA)^* = M^*[a := \langle A^*, a \rangle]$
6. $X^* = X$; $(A_1 \Rightarrow A_2)^* = \neg A_1^* \land A_2^*$; $(\forall X.A)^* = \exists X.A^*$

Remarked that M^* contains exactly one free occurrence of a continuation variable a, and M^* has neither β-redex nor η-redex. Let $\lambda X.M$ have type $\forall X.A$. Then, under the translation, the parametric polymorphic function $\lambda X.M$ with respect to X becomes an abstract data type $(\lambda X.M)^*$ for X, which is waiting for an implementation a with type $\exists X.A^*$ together with an interface (a signature) with type A^*, i.e., $(\lambda X.M)^*$ is

\begin{align*}
\text{abstype } X \text{ with } a:A^* \text{ is } a \text{ in } M^*
\end{align*}
in a familiar notation.

Lemma 1 (Monotone *) If we have $M_1 \rightarrow_{\lambda^2} M_2$, then $M_1^* \rightarrow_{\lambda^3} M_2^*$ holds. In particular, if $M_1 \rightarrow_{\beta} M_2$, then $M_1^* \rightarrow_{\beta} M_2^*$. And if $M_1 \rightarrow_{\eta} M_2$, then $M_1^* \rightarrow_{\eta} M_2^*$.

Proof. By induction on the derivation. \hfill \square

In order to give an inverse translation, first we provide the mutual inductive definitions, respectively for denotations Univ and continuations C, as follows. Both Univ and C are down-sets in the above sense.

\[
\begin{array}{c}
a \in C \\
\frac{C \in C}{\langle x, C \rangle \in C}
\end{array}
\]
\[
\begin{array}{c}
C \in C \quad P \in \text{Univ} \\
\frac{\langle \lambda a.P, C \rangle \in C}{C \in C}
\end{array}
\]
\[
\begin{array}{c}
C \in C \quad xC \in \text{Univ} \\
\frac{x \in C}{C \in xC}
\end{array}
\]
\[
\begin{array}{c}
C \in C \\
\frac{P \in \text{Univ}}{\text{let} \langle x, a \rangle = C \text{ in } P \in \text{Univ}}
\end{array}
\]
\[
\begin{array}{c}
C \in C \quad P \in \text{Univ} \\
\frac{\langle \lambda a.P \rangle C \in \text{Univ}}{C \in \text{Univ}}
\end{array}
\]
\[
\begin{array}{c}
C \in C \\
\frac{\langle X, a \rangle = C \text{ in } P \in \text{Univ}}{\text{let} \langle X, a \rangle = C \text{ in } P \in \text{Univ}}
\end{array}
\]
We write \(\langle R_1, R_2, \ldots, R_n \rangle \) for \(\langle R_1, \langle R_2, \ldots, R_n \rangle \rangle \) with \(n > 1 \), and \(\langle R_1 \rangle \) for \(R_1 \) with \(n = 1 \). \(C \in \mathcal{C} \) is in the form of \(\langle R_1, \ldots, R_n, a \rangle \) where \(R_i \) (1 \(\leq i \leq n \)) is \(x, \lambda a. P \), or \(A^* \) with \(n \geq 0 \). We explicitly mention that \(C \in \mathcal{C} \) has exactly one occurrence of free variable \(a \) such that \(C \equiv \langle R_1, \ldots, R_n, a \rangle \) with \(n \geq 0 \). \(P \in \text{Univ} \) also has exactly one occurrence of free variable \(a \) such as \(C \) as a proper subterm of \(P \).

The inductively defined sets \(\text{Univ}, \mathcal{C} \subseteq \Lambda^3 \) are down-sets with respect to \(\rightarrow_{\lambda^3} \).

Lemma 2

1. If \(P_1 \in \text{Univ} \) and \(P_1 \rightarrow_{\lambda^3} P_2 \), then \(P_2 \in \text{Univ} \).

2. If \(C_1 \in \mathcal{C} \) and \(C_1 \rightarrow_{\lambda^3} C_2 \), then \(C_2 \in \mathcal{C} \).

Proof.

Let \(P, P_1 \in \text{Univ} \) and \(C, C_1 \in \mathcal{C} \). Then \(P[a := C_1], P[x := \lambda a. P_1], P[X := A^*] \in \text{Univ} \), and \(C[a := C_1], C[x := \lambda a. P_1], C[X := A^*] \in \mathcal{C} \).

Proposition 1

1. \(\text{Univ} \) is strongly normalizing with respect to \(\rightarrow_{\beta\eta} \), i.e., for any \(P \in \text{Univ} \), there is no infinite reduction sequence of \(\rightarrow_{\beta\eta} \) starting with \(P \).

2. \(\text{Univ} \) is Church-Rosser with respect to \(\rightarrow_{\beta\eta} \), i.e., for any \(P, P_1, P_2 \in \text{Univ} \), if we have \(P \rightarrow_{\beta\eta} P_1 \) and \(P \rightarrow_{\beta\eta} P_2 \), then there exists some \(P_3 \in \text{Univ} \) such that \(P_1 \rightarrow_{\beta\eta} P_3 \) and \(P_2 \rightarrow_{\beta\eta} P_3 \).

Proof.

1. Since every \(\lambda \)-abstraction \(\lambda a. P \in \text{Univ} \) is linear, for any \(P_1 \rightarrow_{\beta\eta} P_2 \), the contractum \(P_2 \) has less length than that of \(P_1 \).

2. \(\text{Univ} \) is weak Church-Rosser with respect to \(\rightarrow_{\beta\eta} \), and hence the property of Church-Rosser holds from Newman’s Lemma.

Any (pseudo) term \(P \in \text{Univ} \) is Church-Rosser and strongly normalizing with respect to \(\beta\eta \)-reductions, and the unique \(\beta\eta \)-normal form is denoted by \(\downarrow_{\beta\eta} P \). The same property naturally holds for \(\mathcal{C} \) as well. A normalization function \(\downarrow_{\beta\eta} \) can be inductively defined as follows:

Definition 9 \((\downarrow_{\beta\eta})\)

1. For \(P \in \text{Univ} \):

 \begin{enumerate}
 \item \(\downarrow_{\beta\eta} (xC) = x(\downarrow_{\beta\eta} C) \)
 \item \(\downarrow_{\beta\eta} (\lambda a. P) C = \downarrow_{\beta\eta} (P[a := C]) \)
 \item \(\downarrow_{\beta\eta} \text{let} \langle \chi, a \rangle = C \text{ in } P = \text{let} \langle \chi, a \rangle = \downarrow_{\beta\eta} C \text{ in } \downarrow_{\beta\eta} P \)
 \end{enumerate}

2. For \(C \equiv \langle R_1, \ldots, R_n, a \rangle \in \mathcal{C} \) with \(n \geq 0 \), where \(R_i \equiv x, \lambda a. P \), or \(A^* \):

 \begin{enumerate}
 \item \(R \equiv x \):
 \(\downarrow_{\beta\eta} x = x \)
 \item \(R \equiv \lambda a. P \):
 \begin{enumerate}
 \item \(\downarrow_{\beta\eta} (\lambda a.xa) = x \), if \(P \equiv xa \);
 \item \(\downarrow_{\beta\eta} (\lambda a. P) = \lambda a.(\downarrow_{\beta\eta} P) \), otherwise;
 \end{enumerate}
 \item \(R \equiv A^* \):
 \(\downarrow_{\beta\eta} A^* = A^* \)
 \end{enumerate}
5 Residuated CPS-translation

Proposition 2 The following conditions are equivalent.

1. $f : A \rightarrow B$ is a residuated mapping.

2. $f : A \rightarrow B$ is monotone and there exists a monotone mapping $g : B \rightarrow A$ such that $A \ni a \subseteq g(f(a))$ and $f(g(b)) \subseteq b \in B$.

Proof. A residuated mapping is monotone in general. On the other hand, from the condition 1, for any $b \in B$ there exists $a \in A$ such that $f^\downarrow b = \downarrow a$ which cannot be empty, whence one has a choice function $g : B \rightarrow A$ by $g(b) = a$. Hence $g(b) \in \downarrow g(b) = f^\downarrow b$ holds true, so that we have $f(g(b)) \subseteq b$. We also have $a \in f^\downarrow f(a) = \downarrow g(f(a))$ by the definition, and hence we have $a \subseteq g(f(a))$.

From the condition 2, we have that $f(a) \subseteq b$ if and only if $a \subseteq g(b)$. Hence, we have $f^\downarrow b = \downarrow g(b)$ for every $b \in B$. \hfill \Box

We write $M \subseteq N$ for $N \leadsto M$, i.e., the contextual and reflexive-transitive closure of one-step reduction \rightarrow.

Lemma 3 For any $P \in \text{Univ}$, there uniquely exists $M \in \Lambda 2$ such that $\downarrow_{\beta\eta} P \equiv M^*$.

Proof. By induction on $P \in \text{Univ}$.

1. Case of $P \equiv xC \equiv x(R_1, \ldots, R_n, a)$ with $n \geq 0$

 (a) If $R_i \equiv x_i$, then we take $N_i \equiv x_i$, whence $\downarrow_{\beta\eta} R_i \equiv x_i \equiv N_i^*$.

 (b) Case of $R_i \equiv \lambda a.P_i$

 If $P_i \equiv x_i a$, then we take $N_i \equiv x_i$, and whence $\downarrow_{\beta\eta} R_i \equiv x_i \equiv N_i^*$.

 Otherwise, from the induction hypothesis for P_i, there uniquely exists N_i such that $\downarrow_{\beta\eta} P_i \equiv N_i^*$. Now we have $\downarrow_{\beta\eta} R_i = \lambda a.(\downarrow_{\beta\eta} P_i) \equiv \lambda a.N_i^*$.

 (c) If $R_i \equiv A_i^*$, then we take $N_i \equiv A_i$.

Hence, we take $M \equiv xN_1 \ldots N_n$, and then there uniquely exists $M \in \Lambda 2$ such that $\downarrow_{\beta\eta} P$

$= x(\downarrow_{\beta\eta} R_1, \ldots, \downarrow_{\beta\eta} R_n, a)$

$\equiv x(N_1^{*'}, \ldots, N_n^{*'}, a)$

$= M^*$,

where $N_i^{*'} = \lambda a.N_i^*$ if $R_i \equiv \lambda a.P_i$ with no outmost η-redex; otherwise $N_i^{*'} = N_i^*$.

2. Case of $P \equiv (\lambda a.P')C$

 Since a is a linear variable, by the induction hypothesis for $P'[a := C]$, there uniquely exists $M \in \Lambda 2$ such that $\downarrow_{\beta\eta} (P'[a := C]) \equiv M^*$. Therefore, we have a unique $M \in \Lambda 2$ such that $\downarrow_{\beta\eta} P \equiv M^*$.

3. Case of $P \equiv \mathsf{let} (x, a) = C$ in P_1 with $C \equiv (R_1, \ldots, R_n, a)$ and $n \geq 0$
(a) From the induction hypothesis for P_1, there uniquely exists $M_1 \in \Lambda 2$ such that \[\Downarrow_{\beta\eta}P_1 \equiv M_1^* \).

(b) If $R_i \equiv x_i$, then we take $N_i \equiv x_i$, whence $\Downarrow_{\beta\eta}R_i \equiv x_i \equiv N_i^*$.

(c) Case of $R_i \equiv \lambda a.P_i$

\[\text{If } P_i \equiv x_i a, \text{ then we take } N_i \equiv x_i, \text{ and } \Downarrow_{\beta\eta}R_i \equiv x_i \equiv N_i^*. \]

Otherwise, from the induction hypothesis for P_i, there uniquely exists N_i such that $\Downarrow_{\beta\eta}P_i \equiv N_i^*$. Now we have $\Downarrow_{\beta\eta}R_i = \lambda a.(\Downarrow_{\beta\eta}P_i) \equiv \lambda a.N_i^*$.

(d) If $R_i \equiv A_i^*$, then we take $N_i \equiv A_i$.

Hence, we take $M \equiv xN_1 \ldots N_n$, and then there uniquely exists $M \in \Lambda 2$ such that
\[\Downarrow_{\beta\eta}P = \text{let } \langle x, a \rangle = \langle \Downarrow_{\beta\eta}R_1, \ldots, \Downarrow_{\beta\eta}R_n, a \rangle \text{ in } (\Downarrow_{\beta\eta}P_1) \equiv \text{let } \langle x, a \rangle = (N_i^*, \ldots, N_i^*, a) \text{ in } M_1^* \equiv M^*, \]

where $N_i^* = \lambda a.N_i^*$ if $R_i \equiv \lambda a.P_i$ with no outmost η-redex; otherwise $N_i^* = N_i^*$.

4. Case of $P \equiv \text{let } \langle X, a \rangle = C \text{ in } P'$ is handled similarly. \hfill \square

From the inductive proof of Lemma 3 above, an extracted function giving a witness is written down here.

1. $x^\# = x; (\lambda a.P)^\# = P^\#; (A^*)^\# = A$
2. $(x(R_1, \ldots, R_n, a))^\# = xR_1^\# \ldots R_n^\#$
3. $((\lambda a.P)C)^\# = (P[a := C])^\#$
4. $(\text{let } \langle x, a \rangle = \langle R_1, \ldots, R_n, a \rangle \text{ in } P)^\# = (\lambda x.P^\#)R_1^\# \ldots R_n^\#$
5. $(\text{let } \langle X, a \rangle = \langle R_1, \ldots, R_n, a \rangle \text{ in } P)^\# = (\lambda X.P^\#)R_1^\# \ldots R_n^\#$

where the clause 1 is for R_i appeared in $\langle R_1, \ldots, R_n, a \rangle \in C$, and the clause 2 through 5 are for $P \in \text{Univ}$.

Corollary 1 (Composition of $*$ and $\|$)

1. For any $P \in \text{Univ}$, we have $P \rightarrow_{\beta\eta} (P^\#)^*$.

2. For any $M \in \Lambda 2$, we have $(M^*)^\# \equiv M$.

Proof.

1. From Lemma 3, we have $\Downarrow_{\beta\eta}P \equiv (P^\#)^*$ and $P \rightarrow_{\beta\eta} \Downarrow_{\beta\eta}P$. Therefore, $P \rightarrow_{\beta\eta} (P^\#)^*$ holds for any $P \in \text{Univ}$.

2. From the definition of $*$, M^* has neither β- nor η-redex. Hence, $\Downarrow_{\beta\eta} (M^*) \equiv M^*$ holds, and then $(M^*)^\# \equiv M$ for any $M \in \Lambda 2$. \hfill \square

Lemma 4 (Monotone $\|$)
The above mapping $\| : \text{Univ} \rightarrow \Lambda 2$ is monotone.
Proof. By the definition of $\hat{\#}$. In particular, let $P_1, P_2 \in \text{Univ}$, then the following holds.

1. If $P_1 \implies_{\beta\eta} P_2$, then $P_1^\# \equiv P_2^\#$.
2. If $P_1 \implies_{1\text{et}} P_2$, then $P_1^\# \rightarrow_{\beta} P_2^\#$.
3. If $P_1 \implies_{1\cdot t_{\eta}} P_2$, then $P_1^\# \rightarrow_{\eta} P_2^\#$.

\square

6 Residuated CPS-translation

As expected from the previous results, the CPS-translation forms a residuated mapping from $\lambda 2$ to Univ.

Theorem 1 (Residuated CPS-trans.) The CPS-translation $*$ is a residuated mapping from $\lambda 2$ to Univ.

Proof. From Proposition 2, Lemmata 1 and 4, and Corollary 1, the translation $*$ is a residuated mapping. In other words, for any $P \in \text{Univ}$, we have

$$\{M \in \lambda 2 \mid M^* \subseteq P\} = \downarrow P^\#.$$

In fact, from Lemma 1 and Corollary 1, we have $\downarrow P^\# \subseteq \{M \in \lambda 2 \mid M^* \subseteq P\}$. On the other hand, from Lemma 4 and Corollary 1, the inverse direction $\{M \in \lambda 2 \mid M^* \subseteq P\} \subseteq \downarrow P^\#$ holds true.

We summarize results induced from the discussion above.

Corollary 2

1. $\lambda 2$ is strongly normalizing if and only if Univ is strongly normalizing.
2. $\lambda 2$ is weakly normalizing if and only if Univ is weakly normalizing.
3. $\lambda 2$ is Church-Rosser if and only if Univ is Church-Rosser.

We remark that λ^3 itself is not Church-Rosser.

4. Let $\downarrow P$ be $\{Q \mid P \rightarrow_{\lambda^3} Q\}$ for $P \in \text{Univ}$. Then the inverse image under $*$ of $\downarrow P$ is a principal down-set generated by $P^\# \in \lambda 2$.

5. Given the CPS-translation $*$. Then an existence of its residual (inverse translation) is unique.

6. Define $P_1 \sim_{\rho n} P_2$ by $\downarrow_{\rho n} P_1 \equiv \downarrow_{\rho n} P_2$ for $P_1, P_2 \in \text{Univ}$. There exists a bijection $*$ between $\lambda 2$ and $\text{Univ}/ \sim_{\rho n}$. In particular, there exists a one-to-one correspondence between $\lambda 2$-normal forms and Univ-normal forms.

7. Let $\downarrow_{\lambda^3}[\lambda 2]^*$ be the down-set generated by $[\lambda 2]^*$, i.e., $\{P \mid M^* \rightarrow_{\lambda^3} P \text{ for some } M \in \lambda 2\}$. Let $\uparrow_{\rho n}[\lambda 2]^*$ be the up-set generated by $[\lambda 2]^*$, i.e., $\{P \in \text{Univ} \mid P \rightarrow_{\rho n} M^* \text{ for some } M \in \lambda 2\}$.

Then we have $\downarrow_{\lambda^3}[\lambda 2]^* \subseteq \text{Univ} = \uparrow_{\rho n}[\lambda 2]^*$. We remark that \subseteq is strict. For instance, $xa \in \downarrow_{\lambda^3}[\lambda 2]^*$ and $(\lambda a.xa)a \in \text{Univ}$, but $(\lambda a.xa)a \not\in \downarrow_{\lambda^3}[\lambda 2]^*$.
Proof.

1. If $M_1 \rightarrow_{\lambda_2} M_2$, then we have $M_1^* \rightarrow_{\lambda_3}^{+} M_2^*$ by induction on the derivation. Therefore, strong normalization of Univ implies that of λ_2.

On the other hand, $\rightarrow_{\rho\eta}$ in Univ is strongly normalizing. If Univ has an infinite reduction path of \rightarrow_{λ_3}, then the path should contain an infinite reduction path consisting of $\rightarrow_{\lambda_1 \rightarrow_{\lambda_1} ... \rightarrow_{\lambda_1}}$. Now, from Lemma 4, λ_2 has an infinite reduction path of $\rightarrow_{\rho\eta}$. Hence, strong normalization of λ_2 implies that of Univ.

2. From the monotone translations between $\Lambda 2$ and Univ, and the one-to-one correspondence between λ_2-normal forms and Univ-normal forms.

3. $\Lambda 2$ and Univ form the so-called Galois connection under \star and \sharp.

4. The CPS-translation \star forms a residuated mapping.

5. Suppose we had two inverse translations $\|_1$ and $\|_2$, then $P^{\|_1} \equiv P^{\|_2}$ for any $P \in$ Univ.

Because we have $P \rightarrow_{\rho\eta} P^{\|}$ for any $P \in$ Univ from Corollary 1 (1). Hence, we have $P^{\sharp} \equiv (P^{\|})^\# \equiv P^{\|\#}$ from Lemma 4 (1).

6. Since $\sim_{\beta\eta}$ is an equivalence relation over Univ, we take

$[P]_{\sim_{\beta\eta}} = \{ P' \in$ Univ $| P \sim_{\beta\eta} P' \}$ for $P \in$ Univ.

Then we define $\star(M) = [M^*]_{\sim_{\beta\eta}}$. In other words,

$\star(M) = \uparrow_{\beta\eta}(M^*) = \{ P \in$ Univ $| P \rightarrow_{\beta\eta} M^* \}$.

Then $\star: \Lambda 2 \rightarrow$ Univ$/\sim_{\beta\eta}$ is a bijection. In fact, for any $[P] \in$ Univ$/\sim_{\beta\eta}$, there exists $M \in \Lambda 2$ such that $\star(M) = [P]$. Because we take $M \equiv P^{\#}$, whence $P \rightarrow_{\beta\eta} (P^{\|})^* \star$ and $\star(P^{\#}) = [P]$. On the other hand, suppose $M_1 \neq M_2$. Then $\star(M_1) \neq \star(M_2)$, since M_1^* and M_2^* are distinct $\beta\eta$-normal forms.

7. For any $M \in \Lambda 2$, we have $M^* \in$ Univ, and Univ is a down-set with respect to \rightarrow_{λ_3}.

Then we have $\downarrow_{\lambda_3}[\Lambda 2]^* \subseteq$ Univ.

For any $P \in$ Univ, we have $P^{\sharp} \equiv \Lambda 2$ and $P \rightarrow_{\beta\eta} P^{\|}$ from Lemma 1. Hence, $P \equiv \uparrow_{\beta\eta}[\Lambda 2]^*$ holds true. The inverse direction is clear, and therefore we have Univ $= \uparrow_{\beta\eta}[\Lambda 2]^*$.

It is remarked that instead of pseudo-terms, when we take account of well-typed terms, the binary relations \rightarrow_{λ_2} and \rightarrow_{λ_3} form partial orders on λ-terms.

References

