<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>MODULES OVER NON-COMMUTATIVE VALUATION RINGS(Algebras, Languages, Computations and their Applications)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Ueda, Akira</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2007年 1562 号 10-13</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81113</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Abstract. A subring R of a division ring D is said to be an invariant valuation ring if, for any non-zero element d of D, we have $d \in R$ or $d^{-1} \in R$, and $dRd^{-1} = R$. An R-submodule N of a left R-module M is said to be relatively divisible (an RD-module for short) if $aN = N \cap aM$ for any $a \in M$. Every finitely generated left R-module M has an RD-composition series with non-decreasing sequence of annihilators. Any two RD-composition series of M is isomorphic and the length of RD-composition series of M is equal to the number of minimal generators of M.

1 Non-commutative valuation rings

Finitely generated modules over commutative valuation rings have been greatly investigated from 1980's (see [FS1], [SZ], [Z]). In this note, we report some results about finitely generated modules over non-commutative valuation rings.

At first, we introduce some non-commutative valuation rings. We refer to [MMU] for details about non-commutative valuation rings.

Let Q be a simple Artinian ring and let R be an order in Q, that is, R is a subring of Q which satisfies the following conditions;

1. any non zero-divisor of R has its inverse in Q, and
2. for any element q of Q, there exist $a, b, c, d \in R$ with b, d non zero-divisor, such that $q = ab^{-1} = d^{-1}c$.

An order R in a simple Artinian ring Q is called a Dubrovin valuation ring if R is a local Bezout order, that is, if every finitely generated one-sided ideal of R is principal and $R/J(R)$ is simple Artinian, where $J(R)$ is the Jacobson radical of R. There is some characterization of Dubrovin valuation rings (see [MMU, Theorem 5.11]).

1This is an abstract and the paper will appear elsewhere.
A total valuation ring is an order R in a division ring D which satisfies the following condition;

(T) for any non-zero element $d \in D$, we have $d \in R$ or $d^{-1} \in R$.

If an order R satisfies the condition (T) and the following condition (I), R is called an invariant valuation ring;

(I) for any non-zero element d, $dRd^{-1} = R$.

It is clear that an invariant valuation ring is a total valuation ring, and a total valuation ring is a Dubrovin valuation ring (see [MMU, Theorem 5.11]).

Conversely, if a total valuation ring R is integral over its center, then R is an invariant valuation ring (see [MMU, Corollary 8.6]), and a Dubrovin valuation ring R is a total valuation ring if $R/J(R)$ is a division ring (see [MMU, Lemma 8.13]).

2 Modules over non-commutative valuation rings

Throughout this section, let R be an invariant valuation ring in a division ring D, and we consider finitely generated modules over R.

Let M be a left R-module. An R-submodule N of M is said to be relatively divisible (RD-submodule for short) if, for any element $a \in R$, we have $aN = N \cap aM$.

Then we have following theorem:

Theorem 2.1 Let R be an invariant valuation ring and let M be a finitely generated left R-module. Then there exists a sequence

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

of R-submodules of M such that

1. each M_i is an RD-submodule of M, and
2. M_i/M_{i-1} is cyclic ($i = 1, 2, \cdots, n$).

The sequence in Theorem 2.1 is called an RD-composition series of M. Two RD-composition series $0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$ and $0 = N_0 \subset N_1 \subset \cdots \subset N_k = M$ of M are said to be isomorphic if $n = k$ and there is some permutation σ of the number $0, 1, \cdots, n - 1$ such that $M_i/M_{i-1} \cong N_{\sigma(i)}/N_{\sigma(i)-1}$ ($i = 1, 2, \cdots, n$).
For an RD-composition series \(0 = M_0 \subset M_1 \subset \cdots \subset M_n = M \) of \(M \), we set \(A_i \) to be the annihilator of \(M_i/M_{i-1} \), that is,

\[
A_i = \text{Ann}_R(M_i/M_{i-1}) = \{a \in R \mid a(M_i/M_{i-1}) = 0\}.
\]

If \(A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \), then we say that the annihilator sequence \(A_1, A_2, \cdots, A_n \) is non-decreasing. Then

Theorem 2.2 For any RD-composition series of a finitely generated left \(R \)-module \(M \), there exists an isomorphic RD-composition series of \(M \) with non-decreasing annihilator sequence.

In some particular case, \(M \) is a direct sum of cyclic modules:

Theorem 2.3 Let \(0 = M_0 \subset M_1 \subset \cdots \subset M_n = M \) be an RD-composition series. If there is some \(k \) (\(\leq n \)) such that

\[
\text{Ann}_R(M_1) = \text{Ann}_R(M_2/M_1) = \cdots = \text{Ann}_R(M_k/M_{k-1}),
\]

then \(M_k \) is a direct sum of cyclic \(R \)-modules. In particular, if all annihilators are equal, then \(M \) is a direct sum of cyclic \(R \)-modules.

Concerning the length of RD-composition series, we have the following:

Theorem 2.4 The length \(l(M) \) of an RD-composition series of \(M \) is equal to the number of minimal generators of \(M \).

We don't know about the relation between the length \(l(M) \) of a RD-composition series of \(M \) and the Goldie dimension \(g(M) \) of \(M \). But, in commutative case, it is proved that \(g(M) \leq l(M) \) in general, and that \(l(M) = g(M) \) if \(M \) is a direct sum of cyclic modules (see [SZ]).

We note that, about modules over total valuation rings or Dubrovin valuation rings, nothing is known yet.
References

