The L^p boundedness of wave operators for Schrödinger operators (Spectral and Scattering Theory and Related Topics)

Author(s)
Yajima, Kenji

Citation
数理解析研究所講究録 数理解析研究所講究録

Issue Date
2007-06

URL
http://hdl.handle.net/2433/81129

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
The L^p boundedness of wave operators for Schrödinger operators

Kenji Yajima
Department of Mathematics, Gakushuin University
1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

1 Introduction

Let $H = -\Delta + V$ be the Schrödinger operator on \mathbb{R}^m, $m \geq 1$, with real valued potential $V(x)$ such that $|V(x)| \leq C \langle x \rangle^{-\delta}$ for some $\delta > 2$, where $\langle x \rangle = (1 + x^2)^{1/2}$. Then, it is well known that

(1) H is selfadjoint in the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^m)$ with domain $D(H) = H^2(\mathbb{R}^m)$ and $C_0^\infty(\mathbb{R}^m)$ is a core;

(2) the spectrum $\sigma(H)$ of H consists of an absolutely continuous part $[0, \infty)$, and at most a finite number of non-positive eigenvalues $\{\lambda_j\}$ of finite multiplicities;

(3) the singular continuous spectrum and positive eigenvalues are absent from $\sigma(H)$.

We denote the point and the absolutely continuous spectral subspaces of \mathcal{H} for H by \mathcal{H}_p and \mathcal{H}_{ac} respectively, and the orthogonal projections in \mathcal{H} onto the respective subspaces by P_p and P_{ac}. We write $H_0 = -\Delta$ for the free Schrōdinger operator.

(4) The wave operators W_\pm defined by the following limits in \mathcal{H}:

$$W_\pm = \lim_{t \to \pm \infty} e^{itH} e^{-itH_0}$$

exist and are complete in the sense that $\text{Image } W_\pm = \mathcal{H}_{ac}$.

(5) W_\pm satisfy the so called intertwining property and the absolutely continuous part of H is unitarily equivalent to H_0 via W_\pm: For Borel functions f on \mathbb{R}, we have

$$f(H) P_{ac}(H) = W_\pm f(H_0) W_\pm^*.$$ (1.1)
It follows from the intertwining property (1.1) that, if X and Y are Banach spaces such that $L^2(\mathbb{R}^m) \cap X$ and $L^2(\mathbb{R}^m) \cap Y$ are dense in X and Y respectively, then,

$$
\|f(H)P_{ac}(H)\|_{B(X,Y)} \leq \|W_\pm\|_{B(Y)} \|f(H_0)\|_{B(X,Y)} \|W_\pm^*\|_{B(X)} = C \|f(H_0)\|_{B(X,Y)}.
$$

(1.2)

Here it is important that the constant $C = \|W_\pm\|_{B(Y)} \|W_\pm^*\|_{B(X)}$ is independent of the function f. Thus, the mapping property of $f(H)P_{ac}(H)$ from X to Y may be deduced from that of $f(H_0)$, once we know that W_\pm are bounded in X and in Y. Note that the solutions $u(t)$ of the Cauchy problem for the Schrödinger equation

$$
\text{i} \partial_t u = (-\Delta + V)u, \quad u(0) = \varphi
$$

and $v(t)$ of the wave equation

$$
\partial_t^2 v = (\Delta - V)v, \quad v(0) = \varphi, \quad \partial_t v(0) = \psi
$$

are given in terms of the functions of H, respectively by

$$
u(t) = e^{-itH} \varphi, \quad \text{and} \quad v(t) = \cos(t\sqrt{H}) \varphi + \frac{\sin(t\sqrt{H})}{\sqrt{H}} \psi.$$

It follows that, if W_\pm are bounded in Lebesgue spaces $L^p(\mathbb{R}^m)$ for $1 \leq p \leq \infty$ and if the initial states φ and ψ belong to the continuos spectral subspace $\mathcal{H}_c(H)$, then the L^p-L^q estimates for the propagators of the respective equations may be deduced from the well known L^p-L^q estimates for the free propagators e^{-itH_0} or $\cos(t\sqrt{H_0})$ and $\sin(t\sqrt{H_0})/\sqrt{H_0}$ (if φ and ψ are eigen-functions of H, the behavior of $u(t)$ and $v(t)$ are trivial). In particular, we have the so called dispersive estimates for the Schrödinger equation

$$
\|e^{-itH} P_c(H)\|_{L^p} \leq C |t|^{-\frac{m}{2}} \|\varphi\|_{L^1}.
$$

In this lecture we would like to briefly survey the current status of the study of the mapping property of W_\pm in Lebesgue spaces $L^p(\mathbb{R}^m)$. We say that 0 is a resonance of H, if there is a solution φ of $(-\Delta + V(x))\varphi(x) = 0$ such that $|\varphi(x)| \leq C(x)^{2-m}$ but $\varphi \not\in \mathcal{H}$ and call such a solution $\varphi(x)$ a resonance function of H; H is of generic type, if 0 is neither an eigenvalue nor a resonance of H, otherwise of exceptional type. Note that there is no zero resonance if $m \geq 5$. We shall see that the mapping property of W_\pm in $L^p(\mathbb{R}^m)$ spaces is fairly well understood when H is of generic type although the conditions on potentials for the L^p-boundedness of W_\pm are far from being optimal.
from optimal and the end point problem, viz. the problem for the case $p = 1$ and $p = \infty$ is not settled completely in the cases $m = 1$ and $m = 2$. On the other hand, if H is of exceptional type, the situation is much less satisfactory: We have essentially no results when $m = 2$ and only a partial result for $m = 4$; when dimensions $m = 3$ or $m \geq 5$, we know that W_\pm are bounded in $L^p(\mathbb{R}^m)$ for p between $m/m - 2$ and $m/2$, however, we have only partial answers for what happens for p outside this interval. We should also emphasize that these results are obtained only for operators $-\Delta + V(x)$ and, the problem is completely open when magnetic fields are present or when the metric of the space is not flat.

The general reference are as follows: For one dimension $m = 1$ see [3]; [17] and [8] for $m = 2$, [16] and [9] for $m = 4$, [15] and [19] for odd $m \geq 3$, and [16] and [5] for even $m \geq 6$.

2 One dimensional case

In one dimension we have the fairly satisfactory result. The following result is due to D'Ancona and Fanelli ([3], see [14, 1] for earlier results).

Theorem 2.1. (1) Suppose $\langle x \rangle^2 V(x) \in L^1(\mathbb{R}^1)$. Then, W_\pm are bounded in L^p for all $1 < p < \infty$.

(2) Suppose $\langle x \rangle V(x) \in L^1(\mathbb{R}^1)$ and H is of generic type, then W_\pm are bounded in L^p for all $1 < p < \infty$.

Remark 2.2. We believe that W_\pm are not bounded in L^1 nor in L^∞ and that W_\pm are bounded from Hardy space H^1 into L^1 and L^∞ into BMO. However, we do not know the definite answer yet.

The proof of Theorem 2.1 employs the expression of W_\pm in terms of the scattering eigenfunctions $\varphi_\pm(x, \xi)$ of H:

$$W_\pm u(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \varphi_\pm(x, \xi) \hat{u}(\xi) d\xi$$

as in earlier works [14, 1]) and uses some detailed properties of $\varphi_\pm(x, \xi)$. The functions $\varphi_\pm(x, \xi)$ are obtained by solving the Lippmann-Schwinger equation

$$\varphi_\pm(x, \xi) = e^{ix\xi} + \frac{1}{2i\xi} \int_{-\infty}^{\infty} e^{\pm i(x-y)\xi} V(y) \varphi_\pm(y, \xi) dy$$

and it can be expressed in terms of Jost functions. We refer [3] for the details.
3 Higher dimensional case $m \geq 2$

In higher dimensions $m \geq 2$, the situation is not as satisfactory as in the one dimensional case: We believe that the conditions on the potentials in the following theorems are far from optimal.

When $m \geq 2$, the problem has been studied by using the stationary representation formula of wave operators which expresses W_{\pm} in terms of the boundary values of the resolvent. We write

$$G(\lambda) = (H - \lambda^{2})^{-1}, \quad G_{0}(\lambda) = (H_{0} - \lambda^{2})^{-1}.$$

where $\mathbb{C}^{+} = \{z \in \mathbb{C} : \Im z > 0\}$ is the upper half plane. We write

$$\mathcal{H}_{s} = L^{2}_{s}(\mathbb{R}^{m}) = L^{2}(\mathbb{R}^{m}, \langle x\rangle^{2s}dx)$$

for the weighted L^{2} spaces. We recall the well known limiting absorption principle (LAP) for $G_{0}(\lambda)$ and $G(\lambda)$ due to Agmon and Kuroda (see [11]). For Banach spaces $X, Y,$ $B_{\infty}(X, Y)$ is the space of compact operators from X to Y; a_{-} for $a \in \mathbb{R}$ stands for an arbitrary number smaller than a.

Lemma 3.1. (1) Let $1/2 < \sigma$. Then, $G_{0}(\lambda)$ is a $B_{\infty}(\mathcal{H}_{\sigma}, \mathcal{H}_{-\sigma})$ valued function of $\lambda \in \mathcal{C}^{+}\setminus \{0\}$ of class $C^{(\sigma - \frac{1}{2})-}$. For non-negative integers $0 \leq j < \sigma - \frac{1}{2}$,

$$\|G_{0}^{(j)}(\lambda)\|_{B(\mathcal{H}_{\sigma}, \mathcal{H}_{-\sigma})} \leq C_{j\sigma} |\lambda|^{-1}, \quad |\lambda| \geq 1. \quad (3.1)$$

(2) Let $\frac{1}{2} < \sigma, \tau < m - \frac{3}{2}$ satisfy $\sigma + \tau > 2$. Then, $G_{0}(\lambda)$ is a $B_{\infty}(\mathcal{H}_{\sigma}, \mathcal{H}_{-\tau})$-valued function of $\lambda \in \mathcal{C}^{+}$ of class $C^{\rho_{*-}}$, $\rho_{*} = \min(\tau + \sigma - 2, \tau - 1/2, \sigma - 1/2)$.

Lemma 3.2. (1) Assume $|V(x)| \leq C\langle x\rangle^{-\delta}$ for some $\delta > 1$. Let $\frac{1}{2} < \gamma < \delta - \frac{1}{2}$. Then, $G(\lambda)$ is a $B_{\infty}(\mathcal{H}_{\gamma}, \mathcal{H}_{-\gamma})$ valued function of $\lambda \in \mathcal{C}^{+}\setminus \{0\}$ of class $C^{(\gamma - \frac{1}{2})-}$. For $0 \leq j < \gamma - \frac{1}{2}$,

$$\|G^{(j)}(\lambda)\|_{B(\mathcal{H}_{\gamma}, \mathcal{H}_{-\gamma})} \leq C_{j\gamma} |\lambda|^{-1}, \quad |\lambda| \geq 1. \quad (3.2)$$

(2) Assume $|V(x)| \leq C\langle x\rangle^{-\delta}$ for some $\delta > 2$ and that H is of generic type. Let $1 < \gamma < \delta - 1$. Then $G(\lambda)$ is a $B_{\infty}(\mathcal{H}_{\gamma}, \mathcal{H}_{-\gamma})$ valued function of $\lambda \in \mathcal{C}^{+}$ of class $C^{(\gamma - 1)-}$.

Using the boundary values of the resolvents on the real line, wave operators may be written in the following form (see [10]):

$$W_{\pm}u = u - \frac{1}{\pi i} \int_{0}^{\infty} G(\mp\lambda)V(G_{0}(\lambda) - G_{0}(-\lambda))\lambda ud\lambda \quad (3.3)$$

In what follows, we shall deal with W_{-} only and we denote it by W for brevity.
3.1 Born terms

If we formally expand the second resolvent equation into the series
\[
G(\lambda)V = (1 + G_0(\lambda)V)^{-1}G_0(\lambda)V = \sum_{n=1}^{\infty}(-1)^{n-1}(G_0(\lambda)V)^n
\]
and substitute the right side for \(G(\lambda)V\) in the stationary formula (3.3), then we have the formal expansion of \(W\):
\[
W = 1 - \Omega_1 + \Omega_2 - \cdots
\]
(3.4)
where for \(n = 1, 2, \ldots\),
\[
\Omega_n u = \frac{1}{\pi i} \int_0^\infty (G_0(\lambda)V)^n(G_0(\lambda) - G_0(-\lambda))u\lambda d\lambda.
\]
This is called the Born expansion of the wave operator, the sum
\[
I - \Omega_1 + \cdots + (-1)^n\Omega_n
\]
the \(n\)-th Born approximation of \(W_\text{-}\) and the individual \(\Omega_n\) the \(n\)-th Born term. The Born terms \(\Omega_n\) may be computed more or less explicitly and they can be expressed as superpositions of one dimensional convolution operators: We write \(\Sigma\) for the \((m - 1)\) dimensional unit sphere. Define the function \(K_n(t, \ldots, t_n, \omega, \cdots, \omega_n)\) of \(t_1, \ldots, t_n \in \mathbb{R}\) and \(\omega_1, \ldots, \omega_n \in \Sigma\) by
\[
K_n(t, \ldots, t_n, \omega, \cdots, \omega_n) = C^n \int_{\mathbb{R}_+^n} e^{i(t_1s_1 + \cdots + t_n s_n)/2}(s_1 \ldots s_n)^{m-2} \prod_{j=1}^{n} \hat{V}(s_j \omega_j - s_{j-1} \omega_{j-1})ds_1 \ldots ds_n
\]
(3.5)
where \(s_0 = 0, \mathbb{R}_+ = (0, \infty)\) and \(C\) is an absolute constant. Then \(\Omega_n u(x)\) may be written in the form
\[
\int_{\mathbb{R}_+^{n-1} \times I} \left(\int_{\Sigma^n} K_n(t, \ldots, t_n, \omega, \cdots, \omega_n)f(\overline{x} + \rho)d\omega_1 \ldots d\omega_n \right) dt_1 \cdots dt_n
\]
(3.6)
where \(I = (2x \cdot \omega_n, \infty)\) is the range of integration with respect to \(t_n, \overline{x} = x - 2(\omega_n, x)\omega_n\) is the reflection of \(x\) along the \(\omega_n\) axis and \(\rho = t_1\omega_1 + \cdots + t_n\omega_n\).

We define \(m_* = (m - 1)/(m - 2)\) for \(m \geq 3\). If \(m \geq 3\), we have with \(\sigma > 1/m_*\) that
\[
\|K_1\|_{L^1(\mathbb{R} \times \Sigma)} \leq C\|\mathcal{F}((x)^\sigma V)\|_{L^{m_*}(\mathbb{R}^m)},
\]
(3.7)
\[
\|K_n\|_{L^1(\mathbb{R}^n \times \Sigma^n)} \leq C^n\|\mathcal{F}((x)^{2\sigma} V)\|_{L^{m_*}(\mathbb{R}^m)}, \quad n \geq 2,
\]
(3.8)
(see [15], page 569) and we obtain the following lemma.
Lemma 3.3. Let $m \geq 3$ and $\sigma > 1/m_*$. Then, there exists a constant $C > 0$ such that for any $1 \leq p \leq \infty$
\begin{align}
\|\Omega_{1}u\|_{p} & \leq C\|\mathcal{F}(\langle x\rangle^{\sigma}V)\|_{L^{m*}(\mathbb{R}^{m})}\|u\|_{p}, \\
\|\Omega_{n}u\|_{p} & \leq C^{n}\|\mathcal{F}(\langle x\rangle^{2\sigma}V)\|_{L^{m*}(\mathbb{R}^{m})}^{n}\|u\|_{p}, \quad n = 2, \ldots
\end{align}

(3.9) \quad (3.10)
It follows that the series (3.4) converges in the operator norm of $B(L^{p})$ for any $1 \leq p \leq \infty$ if $\|\mathcal{F}(\langle x\rangle^{2\sigma}V)\|_{L^{m*}(\mathbb{R}^{m})}$ is sufficiently small and we obtain the following theorem.

Theorem 3.4. Suppose $m \geq 3$ and V satisfies $\mathcal{F}(\langle x\rangle^{2\sigma}V) \in L^{m*}(\mathbb{R}^{m})$ for some $\sigma > 1/m_*$. Then, there exists a constant $C > 0$ such that W_{\pm} are bounded in $L^{p}(\mathbb{R}^{m})$ for all $1 \leq p \leq \infty$ provided that $\|\mathcal{F}(\langle x\rangle^{2\sigma}V)\|_{L^{m*}(\mathbb{R}^{m})} < C$.

Note that that H is of generic type if $\|\mathcal{F}(\langle x\rangle^{2\sigma}V)\|_{L^{m*}(\mathbb{R}^{m})}$ is sufficiently small. We remark that the condition $\mathcal{F}(\langle x\rangle^{\sigma}V) \in L^{m*}(\mathbb{R}^{m})$ requires some smoothness of V if the dimension m becomes larger. Recall that a certain smoothness condition on V is necessary for W_{\pm} to be bounded in L^{p} for all $1 \leq p \leq \infty$ by virtue of the counter-example of Golberg-Vissan ([6]) for the dispersive estimates for dimensions $m \geq 4$.

In dimension $m = 2$, the factor $(s_{1} \ldots s_{n})^{m-2}$ is missing from (3.5) and it is evident that estimates (3.7) nor (3.8) do not hold. Nonetheless, we have the following result.

Lemma 3.5. Let $m = 2$. Then, for any $s > 1$ and $1 < p < \infty$, we have

$$\|\Omega_{1}u\|_{p} \leq C_{ps}\|\langle x\rangle^{s}V\|_{2}\|u\|_{p}.$$

If $\tilde{\chi}(\lambda) \in C^{\infty}(\mathbb{R})$ vanishes near $\lambda = 0$, then for any $s > 2$ and $1 < p < \infty$, we have

$$\|\Omega_{2}\tilde{\chi}(H_{0})u\|_{p} \leq C_{ps}\|\langle x\rangle^{s}V\|_{2}^{2}\|u\|_{p}.$$

3.2 High energy estimate

We let $\chi \in C_{0}^{\infty}(\mathbb{R})$ and $\tilde{\chi} \in C^{\infty}(\mathbb{R})$ be such that $\chi(\lambda) = 1$ for $|\lambda| < \varepsilon$, $\chi(\lambda) = 0$ for $|\lambda| > 2\varepsilon$ for some $\varepsilon > 0$ and $\chi(\lambda^{2}) + \tilde{\chi}(\lambda)^{2} = 1$ for all $\lambda \in \mathbb{R}$.

Then, the high energy part of the wave operator $W_{\tilde{\chi}}(H_{0})$ may be studied by a unified method for all $m \geq 2$ and we may show that W is bounded in $B(L^{p}(\mathbb{R}^{m}))$ for all $1 \leq p \leq \infty$ when $m \geq 3$ and for $1 < p < \infty$ for $m = 2$:
Theorem 3.6. Let V satisfy $|V(x)| \leq C(x)^{-\delta}$ for some $\delta > m + 2$. Suppose, in addition, that $\mathcal{F}((x)^{\sigma}V) \in L^{m_{*}}(\mathbb{R}^{m})$ if $m \geq 4$. Then $W_{\pm}\tilde{\chi}(H_{0})$ is bounded in $\mathbf{B}(L^{p}(\mathbb{R}^{m}))$ for all $1 \leq p \leq \infty$ when $m \geq 3$ and for $1 < p < \infty$ for $m = 2$.

We outline the proof. We write $\nu = (m - 2)/2$. Iterating the resolvent equation, we have

$$G(\lambda)V = \sum_{1}^{2n}(-1)^{j-1}(G_{0}(\lambda)V)^{j} + G_{0}(\lambda)N_{n}(\lambda)$$

where $N_{n}(\lambda) = (VG_{0}(\lambda))^{n-1}VG(\lambda)V(G_{0}(\lambda)V)^{n}$. If we substitute this for $G(\lambda)V$ in the stationary formula (3.3), we obtain

$$W\tilde{\chi}(H_{0})^{2} = \tilde{\chi}(H_{0})^{2} + \sum_{j=1}^{2n}(-1)^{j}\Omega_{j}\tilde{\chi}(H_{0})^{2} - \tilde{\Omega}_{2n+1}, \quad (3.11)$$

$$\tilde{\Omega}_{2n+1} = \frac{1}{i\pi} \int_{0}^{\infty} G_{0}(\lambda)N_{n}(G_{0}(\lambda) - G_{0}(-\lambda))\tilde{\Psi}(\lambda)d\lambda, \quad (3.12)$$

where $\tilde{\Psi}(\lambda) = \lambda\overline{\chi}(\lambda^{2})^{2}$. The operators $\tilde{\chi}(H_{0})$ and $\Omega_{1}\tilde{\chi}(H_{0})^{2}, \ldots, \Omega_{2n}\tilde{\chi}(H_{0})^{2}$ are bounded in $L^{p}(\mathbb{R}^{m})$ for any $1 \leq p \leq \infty$ if $m \geq 3$ and for $1 < p < \infty$ if $m = 2$ by virtue of Lemma 3.3 and Lemma 3.5, since $\tilde{\chi}(H_{0})$ is clearly bounded in $L^{p}(\mathbb{R}^{m})$ for all $1 \leq p \leq \infty$ and $m \geq 2$. We then show that, for sufficiently large n, $\tilde{\Omega}_{2n+1}$ is also bounded in $L^{p}(\mathbb{R}^{m})$ for all $1 \leq p \leq \infty$ and $m \geq 2$ by showing that its integral kernel

$$\tilde{\Omega}_{2n+1}(x, y) = \frac{1}{\pi i} \int_{0}^{\infty} (N_{n}(\lambda)(G_{0}(\lambda) - G_{0}(-\lambda))\delta_{y}, G_{0}(-\lambda)\delta_{x})\lambda\Psi^{2}(\lambda^{2})d\lambda,$$

where $\delta_{a} = \delta(x-a)$ is the unit mass at the point $x = a$, satisfies the estimate that

$$\sup_{x \in \mathbb{R}^{m}} \int |\tilde{\Omega}_{2n+1}(x, y)|dy < \infty \quad \text{and} \quad \sup_{y \in \mathbb{R}^{m}} \int |\tilde{\Omega}_{2n+1}(x, y)|dx < \infty. \quad (3.13)$$

It is a result of Schur's lemma that estimates (3.13) imply that $\tilde{\Omega}_{2n+1}$ is bounded in $L^{p}(\mathbb{R}^{m})$ for all $1 \leq p \leq \infty$. Note that $[G_{0}(\lambda)\delta_{y}](x) = G_{0}(\lambda, x-y)$ is the integral kernel of $G_{0}(\lambda)$ and $G_{0}(\lambda, x)$ is given by

$$G_{0}(\lambda, x) = \frac{e^{i\lambda|x|}}{2(2\pi)^{\nu+\frac{1}{2}}\Gamma(\nu + \frac{1}{2})|x|^{\nu-2}} \int_{0}^{\infty} e^{-t}t^{\nu-\frac{1}{2}} \left(\frac{t}{2} - i\lambda|x| \right)^{\nu-\frac{3}{2}} dt. \quad (3.14)$$
As a slight modification of the argument is necessary for the case $m = 2$, we restrict ourselves to the case $m \geq 3$ and, for definiteness, we assume m is even in what follows in this subsection. We define

$$\tilde{G}_0(\lambda, z, x) = e^{-i\lambda|x|}G_0(\lambda, x - z)$$

and

$$T_{\pm}(\lambda, x, y) = \langle N_n(\lambda)\tilde{G}_0(\pm\lambda, \cdot, y), \tilde{G}_0(-\lambda, \cdot, x) \rangle$$

so that

$$\tilde{\Omega}_{2n+1}(x, y) = \frac{1}{\pi i} \int_0^\infty (e^{i\lambda(|x|+|y|)}T_{+}(\lambda, x, y) - e^{i\lambda(|x|-|y|)}T_{-}(\lambda, x, y)) \tilde{\Psi}(\lambda) d\lambda.$$

We may compute derivatives $\tilde{G}_0^{(j)}(\lambda, z, x)$ with respect to λ using Leibniz’s formula. If we set $\psi(z, x) = |x - z| - |x|$, they are linear combinations over (α, β) such that $\alpha + \beta = j$ of

$$\frac{e^{i\lambda\psi(z,x)}\psi(z,x)^{\alpha}}{|x-z|^{m-2-\beta}} \int_0^\infty e^{-t}t^{\nu-\frac{1}{2}}(\frac{t}{2} - i\lambda|x-z|)^{\nu-\beta}dt.$$

Since $|\psi(z,x)|^{\alpha} \leq \langle z \rangle^{j}$ for $0 \leq \alpha \leq j$ and

$$|z - x| \leq C_\epsilon|\frac{t}{2} - i\lambda|z - x|| \leq C_\epsilon(t + |z - x|)$$

when $|\lambda| \geq 1$, we have for $|\lambda| \geq \epsilon$

$$\left| (\frac{\partial}{\partial \lambda})^j \tilde{G}_0(\lambda, z, x) \right| \leq C_j \left(\frac{\langle z \rangle^j}{|x-z|^{m-2}} + \frac{\lambda^{\frac{m-3}{2}}\langle z \rangle^j}{|x-z|^{\frac{m-1}{2}}} \right).$$

for $j = 0, 1, 2, \ldots$

Note that $\tilde{G}_0(\lambda, z, x) \sim C|x-z|^{2-m}$ near $z = x$ and $\tilde{G}_0(\lambda, z, x) \notin L_{\text{loc}}^2(\mathbb{R}_x^m)$ for a fixed x if $m \geq 4$. However, the LAP (3.1) implies

$$\|\langle x \rangle^{-\gamma-j}G_0^{(j)}(\lambda)\langle x \rangle^{-\gamma-j}\|_{B(H^s, H^{s+j})} \leq C_{sj\gamma}|\lambda|, \quad |\lambda| \geq \epsilon$$

for any $\gamma > 1/2$, $s \in \mathbb{R}$ and $j = 0, 1, \ldots$ and k times application of $G_0(\lambda)V$ to $\tilde{G}_0(\lambda, \cdot, x)$, $k > (m - 2)/2$, makes it into a function in $L_{\gamma}^2(\mathbb{R}_x^m)$ for any $\gamma > 1/2$. Thus, if we take $n = k > (m - 2)/2$, $T_{\pm}(\lambda, x, y)$ are well defined continuous functions of (x, y) which are $(m+2)/2$ times continuously differentiable with respect to λ. This, however, produces the increasing factor λ^k by virtue
of the increase of the norm of (3.18). We, therefore, take n larger so that $n > m$ and use the fact (3.1) that $\|\langle x \rangle^{-\gamma-j}G_0^{(j)}(\lambda)\langle x \rangle^{-\gamma-j}\|_{B(L^2, L^2)} \leq C|\lambda|^{-1}$ decays as $\lambda \to \pm \infty$. Then, the decay property of extra factors $(G_0^{(j)}(\lambda)V)^{n-k}$ cancels this increasing factor and makes $T_{\pm}(\lambda, x, y)$ integrable with respect to λ. Using also the fact that $\tilde{G}_0(\lambda, \cdot, x) \sim |x|^{-\frac{m-1}{2}}$ as $|x| \to \infty$, we in this way obtain the following estimate:

Lemma 3.7. Let $0 \leq s \leq \frac{m+2}{2}$. We have

$$\left| \left(\frac{\partial}{\partial \lambda} \right)^s T_{\pm}(\lambda, x, y) \right| \leq C_{ns} \lambda^{-3} \langle x \rangle^{-\frac{m-1}{2}} \langle y \rangle^{-\frac{m-1}{2}}$$

(3.19)

To obtain the desired estimate for $\tilde{\Omega}_{2n+1}(x, y)$, we apply integration by parts $0 \leq s \leq (m+2)/2$ times with respect to the variable λ in (3.16):

$$\int_0^\infty e^{i\lambda(|x|\pm|y|)}T_{\pm}(\lambda, x, y)\tilde{W}(\lambda)d\lambda = \frac{1}{(|x|\pm|y|)^s} \int_0^\infty e^{i\lambda(|x|\pm|y|)} \left(\frac{\partial}{\partial \lambda} \right)^s \left(T_{\pm}(\lambda, x, y)\tilde{W}(\lambda) \right) d\lambda$$

and estimate the right hand side by using (3.19). We obtain

$$|\tilde{\Omega}_{n+1}(x, y)| \leq C \sum_{\pm} \langle |x| \pm |y| \rangle^{-\frac{m+2}{2}} \langle x \rangle^{-\frac{m-1}{2}} \langle y \rangle^{-\frac{m-1}{2}}.$$

It is then an easy exercise to show that $\tilde{\Omega}_{n+1}(x, y)$ satisfies the estimate (3.13).

3.3 Low energy estimate, generic case

By virtue of the intertwining property we have $W_{\pm}(H_0)^2 = \chi(H)W_{\pm}\chi(H_0)$ and, from (3.3), we may write the low energy part $W_{\pm}(H_0)^2$ as the sum of $\chi(H)\chi(H_0)$ and

$$\Omega = \frac{i}{\pi} \int_0^\infty \chi(H)G_0(\lambda)V(1 + G_0(\lambda)V)^{-1}(G_0(\lambda) - G_0(-\lambda))\chi(H_0) \lambda d\lambda.$$

(3.20)

Here $\chi(H_0)$ and $\chi(H)$ both are integral operators of which the integral kernels satisfy for any $N > 0$

$$|\chi(H_0)(x, y)| \leq C_N |x-y|^{-N}, \quad |\chi(H)(x, y)| \leq C_N |x-y|^{-N}$$

(3.21)
and are, a fortiori, bounded in $L^p(\mathbb{R}^m)$ (see [16]). If H is of generic type and $m \geq 3$ is odd, then $(1 + G_0(\lambda)V)^{-1}$ has no singularities at $\lambda = 0$ and we may prove that Ω is bounded in $L^p(\mathbb{R}^m)$ for all $1 \leq p \leq \infty$ by proving that its integral kernel $\Omega(x, y)$ satisfies the estimate (3.13) by a method similar to the one used for the high energy part. The argument is simpler in the point that we do not have to expand $(1 + G_0(\lambda)V)^{-1}$ since the range of the integration with respect to λ in (3.20) is compact and since the integral kernels of $G_0(\lambda)\chi(H_0)$ and $G_0(\lambda)\chi(H)$ have no singularities at the diagonal set by virtue of (3.21). It is, however, more complicated than in the high energy case in that the integral kernels of

$$
\frac{i}{\pi} \int_0^\infty \chi(H) G_0(\lambda) V(1 + G_0(\lambda)V)^{-1} G_0(\pm\lambda) \chi(H_0) \lambda \, d\lambda,
$$
do not separately satisfy the estimate (3.13) but only their difference does.

If H is of generic type and m is even, then $(1 + G_0(\lambda)V)^{-1}$ or its derivatives contain logarithmic singularities at $\lambda = 0$ which are stronger when the dimensions are lower. Thus, the analysis becomes more involved than the odd case particularly when $m = 2$ and $m = 4$. However, basically the idea as in the odd dimensional case works and we obtain the following theorem. We write $B(x, 1) = \{y \in \mathbb{R}^m : |y - x| < 1\}.$

Theorem 3.8. Suppose that H is of generic type:

1. Let $m = 2$. Suppose that V satisfies $|V(x)| \leq C\langle x\rangle^{-6-\epsilon}$ for some $\epsilon > 0$. Then, W_{\pm} are bounded in L^p for all $1 < p < \infty$.

2. Let $m = 3$. Suppose that V satisfies $|V(x)| \leq C\langle x\rangle^{-5-\epsilon}$ for some $\epsilon > 0$. Then, W_{\pm} are bounded in L^p for all $1 \leq p \leq \infty$.

3. Let $m = 4$. Suppose that V satisfies for some $q > 2$

$$
\|V\|_{L^q(B(x,1))} + \|\nabla V\|_{L^q(B(x,1))} \leq C\langle x\rangle^{-7-\epsilon}
$$

for some $\epsilon > 0$. Then, W_{\pm} are bounded in L^p for all $1 \leq p \leq \infty$.

4. Let $m \geq 5$. Suppose that V satisfies $|V(x)| \leq C\langle x\rangle^{-m-2-\epsilon}$ for some $\epsilon > 0$ in addition to $\mathcal{F}(\langle x\rangle^{2\sigma}V) \in L^{m_*}(\mathbb{R}^m)$ for some $\sigma > 1/m_*$. Then, W_{\pm} are bounded in L^p for all $1 \leq p \leq \infty$.

Remark 3.9. When $m = 2$, at the end point, the same remark as in the one dimension applies: We believe W_{\pm} are not bounded in L^1 nor in L^∞ at the end point and they are bounded from Hardy space H^1 into L^1 and L^∞ to BMO. However, we have no proofs.
3.4 Low energy estimate, exceptional case

We assume \(H \) is of exceptional type in this subsection. Then, \((1+G_0(\lambda)V)^{-1}\) of (3.20) is not invertible at \(\lambda = 0 \) and it has singularities at \(\lambda = 0 \). As we have no result when \(m = 2 \) and only a partial result when \(m = 4 \) which we mention at the end of this subsection, we assume \(m = 3 \) or \(m \geq 5 \) before the statement of Theorem 3.12. We study the singularities of \((1+G_0(\lambda)V)^{-1}\) as \(\lambda \to 0 \) by expanding \(1 + G_0(\lambda)V \) with respect to \(\lambda \) around \(\lambda = 0 \) and examining the structure of \(1 + G_0(0)V \). The result is: If \(m \geq 3 \) is odd, we have

\[
(1 + G_0(\lambda)V)^{-1} = \lambda^{-2}P_0V + \lambda^{-1}A_{-1} + 1 + A_0(\lambda)
\]

where \(A_{-1} \) is a finite rank operator involving 0 eigenfunctions and the resonance function and \(A_0(\lambda) \) has no singularities; if \(m \geq 6 \) is even, then

\[
(1 + G_0(\lambda)V)^{-1} = \frac{P_0V}{\lambda^2} + \sum_{j=0}^{2} \sum_{k=1}^{2} \lambda^j (\log \lambda)^k D_{jk} + I + A_0(\lambda), \tag{3.22}
\]

where \(D_{jk} \) are finite rank operators involving 0 eigenfunctions and \(A_0(\lambda) \) has no singularities. We substitute this expression for \((1+G_0(\lambda)V)^{-1}\) in (3.20). Then, the operator produced by \(I + A_0(\lambda) \) may be treated as in the previous section for the case when \(H \) is of gereric type. The operators produced by singular terms may be treated by using the machinaries of harmonic analysis, the weighted inequalities for the Hilbert transform and the Hardy-Littlewood maximal functions, which is a little too complicated to explain here. In this way we obtain the following theorem. We refer the readers to [19] and [5] for the proof respectively for odd and even dimensional case.

Theorem 3.10. Suppose that \(H \) is of exceptional type.

1. Let \(m \geq 3 \) be odd. Suppose that \(V \) satisfies \(|V(x)| \leq C\langle x\rangle^{-m-3-\epsilon} \) for some \(\epsilon > 0 \) and \(\mathcal{F}(\langle x\rangle^{2\sigma}V) \in L^{m_\ast}(\mathbb{R}^m) \) in addition for some \(\sigma > 1/m_\ast \). Then, \(W_\pm \) are bounded in \(L^p(\mathbb{R}^m) \) between \(m/(m-2) \) and \(m/2 \).

2. Let \(m \geq 6 \) be even. Suppose that \(V \) satisfies \(|V(x)| \leq C\langle x\rangle^{-m-3-\epsilon} \) if \(m \geq 8 \), \(|V(x)| \leq C\langle x\rangle^{-m-4-\epsilon} \) if \(m = 6 \) for some \(\epsilon > 0 \) and \(\mathcal{F}(\langle x\rangle^{2\sigma}V) \in L^{m_\ast}(\mathbb{R}^m) \) for some \(\sigma > 1/m_\ast \) in addition. Then, \(W_\pm \) are bounded in \(L^p(\mathbb{R}^m) \) for \(m/(m-2) < p < m/2 \).

Remark 3.11. When \(H \) is of exceptional type, the \(W_\pm \) are not bounded in \(L^p(\mathbb{R}^m) \) if \(p > m/2 \) and \(m \geq 5 \), or if \(p > 3 \) and \(m = 3 \). This can be deduced from the results on the decay in time property of the propagator
$e^{-itH}P_{ac}$ in the weighted L^2 spaces [12, 7], or in L^p spaces [4, 18]. We believe the same is true for p's on the other side of the interval given in (b), viz. $1 \leq p \leq m/(m-2)$ if $m \geq 5$ and $1 \leq p \leq 3/2$ if $m = 3$, but we have again no proofs.

In the case when $m = 2$ or $m = 4$, and if 0 is a resonance of H, then the results of [12] and [7] mentioned above imply that the W_{\pm} are not bounded in $L^p(\mathbb{R}^m)$ for $p > 2$ and, though proof is missing, we believe that this is the case for all p's except $p = 2$. However, when $m = 4$ and if 0 is a pure eigenvalue of H and not a resonance, the W_{\pm} are bounded in $L^p(\mathbb{R}^4)$ for $4/3 < p < 4$:

Theorem 3.12. Let $|V(x)| + |\nabla V(x)| \leq C(x)^{-\delta}$ for some $\delta > 7$. Suppose that 0 is an eigenvalue of H, but not a resonance. Then the W_{\pm} extend to bounded operators in the Sobolev spaces $W^{k,p}(\mathbb{R}^4)$ for any $0 \leq k \leq 2$ and $4/3 < p < 4$:

$$\|W_{\pm}u\|_{W^{k,p}} \leq C_p\|u\|_{W^{k,p}}, \quad u \in W^{k,p}(\mathbb{R}^4) \cap L^2(\mathbb{R}^4). \quad (3.23)$$

We do not explain the proof of this theorem and refer the reader to the recent preprint [8]. Again, the results of [12, 7] imply that the W_{\pm} are unbounded in $L^p(\mathbb{R}^4)$ if $p > 4$ under the assumption of Theorem 3.12. We believe that this is the case also for $1 \leq p < 4/3$, though we do not have proofs.

References

