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The L? boundedness of wave operators for
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1 Introduction

Let H = —A + V be the Schrédinger operator on R™, m > 1, with real
valued potential V(z) such that |V (z)| < C(z)™° for some § > 2, where
{z) = (1 4+ z2)1/2. Then, it is well known that

(1) H is selfadjoint in the Hilbert space H = L?(R™) with domain D(H )
H?*(R™) and C°(R™) is a core;

(2) the spectrum o(H) of H consists of an absolutely continuous part
[0,00), and at most a finite number of non-posmve eigenvalues {)\;}
of finite multlphcmes

(3) the singular continuous spectrum and positive eigenvalues are absent
from o(H).

We denote the point and the absolutely continuous spectral subspaces of H
for H by H, and H,. respectively, and the orthogonal projections in H onto
the respective subspaces by P, and P,,. We write Hy = —A for the free
Schrddinger operator.
(4) The wave operators W defined by the following limits in H:
Wy = s-lim e*H ¢~#tHo

t—too

exist and are complete in the sense that Image Wi = Hye.

(5) Wy satisfy the so called intertwining property and the absolutely con-
tinuous part of H is unitarily equivalent to Hy via W,: For Borel
functions f on R, we have

f(H)Poo(H) = Wy f(Ho)WY. (1.1)
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It follows from the intertwining property (1.1) that, if X and Y are Banch
spaces such that L2(R™)N X and L?(R™)NY are dense in X and Y respec-
tively, then,

|f(H) Pac(H)|lB(x,Y)
< Wil Il f (Ho)llsx ) IWillsx) = Cll f (Ho)llB(x,1)-

Here it is important that the constant C = ||W4||g)||WillB(x) is indepen-
dent of the function f. Thus, the mapping property of f(H)P,,(H) from
X to Y may be deduced from that of f(H,), once we know that W, are
bounded in X and in Y. Note that the solutions u(t) of the Cauchy problem
for the Schrodinger equation

(1.2)

iOu=(—A+V)u, u(0)=
and v(t) of the wave equation
Bv=(A-V)v, v(0)=¢, v0)=y
are given in terms of the functions of H, respectively by

sin(tvH )
—VE

It folllows that, if W are bounded in Lebegue spaces LP(R™) for 1 < p < oo
and if the initial states ¢ and v belong to the continuos spectral subspace
H.(H), then the LP-L? estimates for the propagators of the respective equa-
tions may be deduced from the well known LP-L? estimates for the free
propagators e~ or cos(tv/Hp) and sin(tv/Hy)/v/Hp (if ¢ and ¢ are eigen-
functions of H, the behavior of u(t) and v(t) are trivial). In particular, we
have the so called dispersive estimates for the Schrodinger equation

le™*# Po(H)plleo < CltI™% Nl

In this lecture we would like to briefly survery the current status of the
study of the mapping property of Wy in Lebesgue spaces L?(R™). We say
that O is a resonance of H, if there is a solution ¢ of (—A + V(z))¢(z) =0
such that |p(z)] < C(x)*™™ but ¢ ¢ H and call such a solution ¢(z) a
resonance function of H; H is of generic type, if 0 is neither an eigenvalue
nor a resonance of H, otherwise of exceptional type. Note that there is
no zero resonance if m > 5. We shall see that the mapping property of
Wy in LP(R™) spaces is fairely well understood when H is of generic type
although the conditions on potentials for the LP-boundedness of W.. are far

u(t) = e "y, and o(t) = cos(tVH) p + ———=
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from optimal and the end point problem, viz. the problem for the case
p = 1 and p = oo is not settled completely in the cases m = 1 and m = 2.
On the other hand, if H is of exceptional type, the situation is much less
satisfactory: We have essentially no results when m = 2 and only a partial
result for m = 4; when dimensions m = 3 or m > 5, we know that W, are
bounded in LP(R™) for p between m/m — 2 and m/2, however, we have only
partial answers for what happens for p outside this interval. We should also
emphasize that these results are obtained only for operators —A + V() and,
the problem is completely open when magnetic fields are present or when the
metric of the space is not flat.

The general reference are as follows: For one dimension m = 1 see [3];
[17] and [8] for m = 2, [16] and [9] for m = 4, [15] and [19] for odd m > 3,
and [16] and [5] for even m > 6.

2 One dimensional case

In one dimension we have the fairly satisfactory result. The following result
is due to D’Ancona and Fanelli ([3], see [14, 1] for eariler results).

Theorem 2.1. (1) Suppose (z)°V(z) € L'(R'). Then, Wy are bounded
in L? for all1 < p < 0.

(2) Suppose {x)V(z) € L*(R!') and H is of generic type, then Wy are
bounded in LP for all 1 < p < oo.

Remark 2.2. We believe that Wy are not bounded in L! nor in L* and that
W, are bounded from Hardy space H! into L' and L*™ into BMO. However,
we do not know the definite answer yet.

The proof of Theorem 2.1 employs the expression of Wy in terms of the
scattering eigenfunctions 4 (z, &) of H:

Wau(z) = \/—12=7r [ ps(a )06

as in earlier works [14, 1]) and uses some detailed properties of p+(z,&). The
functions @4 (z, £) are obtained by solving the Lippmann-Schwinger equation

ps(z,8) = ™ + -2—12 /_ : eF4==V (y) o1 (v, €)dy

and it can be expressed in terms of Jost functions. We refer [3] for the details.



3 Higher dimensional case m > 2

In higher dimensions m > 2, the stituation is not as satisfactory as in the
one dimensional case: We believe that the conditions on the potentials in the
following theorems are far from optimal.

When m > 2, the probem has been studied by using the stationary
representation formula of wave operators which expresses W in terms of the
boundary values of the resolvent. We write

G(\) = (H - M) Go(M) = (Ho = M)t xecCt
where C* = {z € C: Sz > 0} is the upper half plane. We write
H, = LX(R™) = L*(R™, (z)dz)

for the weighted L? spaces. We recall the well known limiting absorption
principle (LAP) for Go()\) and G()\) due to Agmon and Kuroda (see [11]).
For Banach spaces X,Y, B (X,Y) is the space of compact operators from
X toY; a_ for a € R stands for an arbitrary number smaller than a.

Lemma 3.1. (1) Let 1/2 < 0. Then, Go(}) is @ Bo(Hs, H-o) valued
function of A € ' \ {0} of class C°~%)-. For non-negative integers

j <0o-— %r
ICE MliBgeer-n) < CialAY, A 2 1. (3.1)

(2) Let < o,7 <m—3 satisfyoc+7 > 2. Then, Go(}) is a Boo(Ho, H-r)-
valued function of A € ct of class C?*~, p, = min(t+0-2,7—-1/2,0—
1/2). .

Lemma 3.2. (1) Assume |V (z)| < C(z)™° for some 6 > 1. Let L <y <

§— 1. Then, G()) is a Boo(H,, H_) valued function of X € T \ {0}
of class CO~3)-, For0< j <7 -1,
IGD M IBry -y S CinlA™Y 1A 2 1. (3:2)
(2) Assume |V (z)| < C{z)™° for some § > 2 and that H is of generic type.
Let 1 < v < § —1. Then G()\) is a Boo(H., H-) valued function of
X € C' of class CO-D-,

Using the boundary values of the resolvents on the real line, wave opera-
tors may be written in the following form (see [10]):

Wiu =u— -7:—2 /0 " GENV(Go(2) = Go(= ) AudA (3.3)

In what follows, we shall deal with W_ only and we denote it by W for
brevity.



3.1 Born terms

If we formally expand the second resolvent equation into the series

GOW = (1+ Gol)V) " Ga(WV = 3 (-1 H(Go(W)V)"

n=1

and substitute the right side for G(A\)V in the stationary formula (3.3), then
we have the formal expansion of W:

W=1-Q+Qy— - (3.4)

where forn=1,2,...,
O = - [ (GO (Go(X) - Gol-X)udix

This is called the Born expansion of the wave operator, the sum
I—Q+-+ (-1)"Q,

the n-th Born approximation of W_ and the individual {2, the n-th Born
term. The Born terms {2, may be computed more or less explicitly and they
can be expressed as superpositions of one dimensional convolution opera-
tors: We write © for the m — 1 dimensional unit sphere. Define the funtion
Kpt,...,th,w ...,wy,) of ty,...,t, € Rand wy,...,wn € L by

Ku(t, ... tp,w, ... ,wp)

n
—_ Cn/ ei(t131+-..+tnsn)/2(sl o sn)m-—2 H V(Sjwj _ sj—le—-l)dsl ...ds,
R? .
+ Jj=1

(3.5)

where s; = 0, R, = (0,00) and C is an absolute constant. Then Q,u(z)
may be written in the form

/ ( Kn(t,...,tn,w,...,w,,)f(5+p)dw1...wn) dty---dt, (3.6)
R}™!xI \Jg» ,

where I = (2z - w,,, 00) is the range of integration with respect to t,, T =
T —2(wp, T)wy, is the reflection of z along the w, axis and p = tjwy +- - - +iwn.

We define m, = (m —1)/(m —2) for m > 3. If m > 3, we have with
o > 1/m, that

1K1l mxsy < CIF (@) VI Zme em)s (3.7)
1Kl 1 mexmy < CPIF(@ VI Emgmmyy 722, (3.8)
(see [15], page 569) and we obtain the following lemma.
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Lemma 3.3. Letm > 3 and o > 1/m,. Then, there exists a constant C > 0
such that for any 1 <p <

Iull, £ CIF () V)| Lme gy ], (3.9)
122l < CMIF (@) V) im @mllull, n=2,.... (3.10)

It follows that the series (3.4)‘ converges in the operator norm of B(LP)

for any 1 < p < 0 if | F({2)*°V)|| s (r) is sufficiently small and we obtain
the following theorem.

Theorem 3.4. Suppose m > 3 and V satisfies F((z)*’V) € L™ (R™) for
some o > 1/m,. Then, there exists a constant C > 0 such that W, are
bounded in LP(R™) for all 1 < p < oo provided that || F((£)*’ V)| Lms@m) <
C. :

Note that that H is of generic type if | F((z)*° V)| Lms@m) is sufficiently
small. We remark that the condition F({(z)’V) € L™ (R™) requires some
smoothness of V if the dimension m becomes larger. Recall that a certain
smoothness condition on V is necessary for W,. to be bounded in L? for all
1 < p < oo by virtue of the counter-example of Golberg-Vissan ([6]) for the
dispersive estimates for dimensions m > 4.

In dimension m = 2, the factor (s;...s;)™ 2 is missing from (3.5) and
it is evident that estimates (3.7) nor (3.8) do not hold. Nonethless, we have
the following result.

Lemma 3.5. Let m = 2. Then, for any s > 1 and 1 < p < 00, we. have
[Qully < Cpsll{z)*Vi2llullp-

If ¥(A\) € C*(R) vanishes near A = 0, then for any s > 2 and 1 < p < oo,
we have

19223 (Ho)ullp < Coall{z)°V[[31lwllp-

3.2 High energy estimate |
We let x € C°(R) and ¥ € C*°(R) be such that

x(A) =1 for |A| < &, x(A) =0 for |A| > 2¢ for some ¢ > 0
and x(A\?) + x(\)? =1 for all A € R.

Then, the high energy part of the wave operator Wx(Hp) may be studied
by a unified method for all m > 2 and we may show that W is bounded in
B(LP(R™)) for all 1 < p < oo when m > 3 and for 1 < p < oo for m = 2:



7

Theorem 3.6. Let V satisfy |V (z)| < C{z)™° for some § > m~+2. Suppose,
in addition, that F((z)°V) € L™ (R™) if m > 4. Then Wyx(Hy) is bounded
in B(LP(R™)) for all1 < p < oo when m > 3 and for 1 < p < oo for m = 2.

We outline the proof. We write v = (m — 2)/2. Iterating the resolvent
equation, we have

GV =D (=17 HGo(A)VY + Go(A\)Na(N)

where N,(A) = (VGo(A\))" VGV (Go(A)V)™. If we substitute this for
G(A)V in the stationary formula (3.3), we obtain

WR(H)? = (B + 3 (VP OR(E = O, (311
Qs = 3= [ GlOINo(GolN) = Gal(-XNTW A, (312)

where U()\) = Ax()\2)2. The operators %(Hp) and Q1 %x(Ho)?, ... , QenX(Ho)?
are bounded in LP(R™) for any 1 < p< oo ifm >3 andforl <p < o0
if m = 2 by virtue of Lemms 3.3 and Lemma 3.5, since x(Hp) is clearly
bounded in LP(R™) for all 1 < p < 0o and m > 2. We then show that, for
sufficiently large n, an+1 is also bounded in LP(R™) for all 1 < p < oo and
m > 2 by showing that its integral kernel

1

Qoni1(z,y) = p AW(N"(A)(GO(A) ~ Go(—=A))8y, Go(=N)8:) AT2(A?)d),

where d, = §(z — a) is the unit mass at the point £ = a, satisfies the estimate
that

sup /|Q2n+l(x) y)ldy < oo and Sup /'an+1($,y)|d$ < oo. (313)

z€R™ yER™

It is a result of Schur’s lemma that estimates (3.13) imply that Qont1 is
bounded in LP(R™) for all 1 < p < co. Note that [Go(\)d,](z) = Go(A, z—y)
is the integral kernel of Gp(A\) and Gy(], z) is given by | '

eiMlz] = L/t v=3
Go(\, z) = ; / etV (— — z)\|x|) dt. (3.14)
2(2m)**il(v + 3)|z|™2 Jo 2
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As a slight modification of the argument is necessary for the case m = 2,
we restrict ourselves to the case m > 3 and, for definiteness, we assume m is
even in what follows in this subsection. We define

éo(), Z,ZE) = e“i’\“”‘Gg()\, I — Z)

and
Ti()H z, y) = (N‘n(A)éO(:}:A’ *y y)1 éo(—"A, K] .'L')) (315)
so that
- 1 [, . . -
Gania(z,y) = 2 | (eM=H+IDT, (A, z,y) — eXE-IDT_ (A, 7,)) T(A)dA.
(3.16)

We may compute derivatives é((,j)()\, 2, ) with respect to A using Leibniz’s
formula. If we set 9(2,z) = |z — z| — |z|, they are linear combinations over
(a, B) such that a + 8 = j of

. V—l—
eeA¢(z,x)¢(z, z)* /oo e_ttu—% (f. — Az — ZI) i dt
: .
0

|z — 2|m—2-F

Since |¥(z,z)|* < (2)’ for 0 < @ < j and
|z —z| < Csl—;— —iMz —z|| < Ce(t + Az — )

when || > 1, we have for |[A\| > ¢

(Z) Gor=o s@( S *ﬂi)i). (3.17)

|z = 2|™2 |z - 2|5
for j =0,1,2,....

Note that Go()\, z,z) ~ C|z—2|> ™ near z = z and Go(\, z,x) & LE (RT)
for a fixed z if m > 4. However, the LAP (3.1) implies

(z) "G (M) (z) " ||(ae,me+r) < CajylMl, A 2 € (3.18)

foranyy > 1/2,s € Rand j =0,1,... and k times application of Go(M\)V to
Go(}, -, ), k > (m — 2)/2, makes it into a function in L2, (R7) for any v >
1/2. Thus, if we take n = k > (m — 2)/2, Tx(), z,y) are well defined contin-
uous functions of ( z,y) which are (m+2)/2 times continuously differentiable
with respect to A. This, however, produces the increasing factor XF by virtue
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of the increase of the norm of (3.18). We, therefore, take n larger so that
n >m and use the fact (3.1) that ||{z) "GP (A) () " ||lB2.2) < CIA|!
decays as A — £o0o. Then, the decay property of extra factors (ng )(A)V)”"k

cancels this increasing factor and makes T4 (A, z,y) integrable with respect
m=—1

to A. Using also the fact that Go(}, -, z) ~ |z|~™F as |z| — oo, we in this
way obtain the following estimate:

Lemma 3.7. Let 0 < s < ™2, We have

I(fi\) T\ y)l < Coodh ™)™ ()T (3.19)

To obtain the desired estimate for Qy,,1(z,y), we apply integration by
parts 0 < s < (m + 2)/2 times with respect to the variable XA in (3.16):

/0 ePEWDTY (A 2, ) T (N)dA

- m /0 > giMallyl) (%)s (Ti()\, m,y)\if(A)) d)

and estimate the right hand side by using (3.19). We obtain

Qi (e, 9)| < C Y (el £ Jyl)~"F (z) T (y) 7T
+

It is then an easy exercise to show that Q,yi(z,y) satisfies the estimate
(3.13).

3.3 Low energy estimate, generic case

By virtue of the intertwining property we have Wi x(Ho)? = x(H)Wxx(Ho)
and, from (3.3), we may write the low energy part Wix(Hp)? as the sum of
x(H)x(Ho) and
Q= /0 X(H)Go(WV (1 + Go(N)V)HGo(A) — Go(—A))x(Ho) AdA.
(3.20)

Here x(Hp) and x(H) both are integral operators of which the integral kernels
satisfy for any N > 0

X(Ho)(@,9)| < Cxniz—9)™", |x(H)(z.9)| < Cwiz—9)~  (3.21)
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and are, a fortiori, bounded in LP(R™) (see [16]). If H is of generic type and
m > 3 is odd, then (1 + Go(A)V)™! has no singularities at A = 0 and we
may prove that Q is bounded in LP(R™) for all 1 < p < oo by proving that
its integral kernel Q(z,y) satisfies the estimate (3.13) by a method similar
to the one used for the high energy part. The argument is simpler in the
point that we do not have to expand (1 + Go(\)V)~! since the range of
the integration with respect to A in (3.20) is compact and since the integral
kernels of Go(A\)x(Ho) and Go(A)x(H) have no singularalities at the diagonal
set by virtue of (3.21). It is, however, more complicated than in the high
energy case in that the integral kernels of
2 [ XEGMIV (1. + Go)V) GolEA)x(Ho) A,

do not separately satisfy the estimate (3.13) but only their difference does.

If H is of generic type and m is even, then (1 + Go(A\)V)™! or its deriva-
tives contain logarithmic singulaities at A = 0 which are stronger when the
dimensions are lower. Thus, the anaysis becomes more involved than the odd
caseparticularly when m = 2 and m = 4. However, basically the idea as in
the odd dimensional case works and we obtain the following theorem. We
write B(z,1) = {y e R™: |y — z| < 1}.

Theorem 3.8. Suppose that H is of generic type:

(1) Let m = 2. Suppose that V satisfies |V (z)| < C (x) 7% for some e > 0.
Then, W, are bounded in LP for all1 < p < oo.

(2) Let m = 3. Suppose that V satisfies |V (z)| < C (x)7°7¢ for some € > 0.
Then, Wy are bounded in L for all1 < p < oo.

(3) Let m = 4. Suppopse that V satisfies for some q > 2
IVl aaay + IVV [l za(azyy < Clz) ™ °
forr some € > 0. Then, W4 are bounded in L? for all 1 < p < o0.

(4) Let m > 5. Suppose that V satisfies |V (z)| < C{z)™™ > for some
e > 0 in addition to F((z)**V) € L™ (R™) for some o > 1/m.. Then,
W4 are bounded in LP for all1 < p < oo.

Remark 3.9. When m = 2, at the end point, the same remark as in the
one dimension applies: We believe W are not bounded in L' nor in L™ at
the end point and they are bounded from Hardy space H! into L! and L*®
to BMO. However, we have no proofs.
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3.4 Low energy estimate, exceptional case

We assume H is of exceptional type in this subsection. Then, (1+Go(A)V)™!
of (3.20) is not invertible at A = 0 and it has singularities at A = 0. As we
have no result when m = 2 and only a partial result when m = 4 which we
mention at the end of this subsection, we assume m = 3 or m > 5 before the
statement of Theorem 3.12. We study the singularities of (1 + Go(A)V)™?
as A — 0 by expanding 1 + Gy()\)V with respect to A around A = 0 and
examining the structure of 1 + Go(0)V. The result is: If m > 3 is odd, we
have

(1+ GoWV)™ = A2BV + A A1 + 1+ Ay(N)

where A_; is a finite rank operator involving 0 eigenfunctions and the reso-
nance function and Ag(A) has no singularities; if m > 6 is even, then

(1 + GQ()\)V)-I = %{' + Z Z Aj(log A)ijk + 1+ Ao()\), (322)

)j=0 k=1

where D, are finite rank operators involving 0 eigenfunctions and Ao(\) has
no singularities. We substitute this expression for (1 + Go(A)V)~! in (3.20).
Then, the operator produced by I + Ag()\) may be treated as in the previous
section for the case when H is of gereric type. The operators produced by
singular terms may be treated by using the machinaries of harmonic analysis,
the wighted inequalities for the Hilbert transform and the Hardy-Littlewood
maximal functions, which is a little too complicated to explain here. In this
way we otain the following theorem. We refer the readers to [19] and [5] for
the proof respectively for odd and even dimensional case.

Theorem 3.10. S’uppose that H is of exceptional type.

(1) Let m > 3 be odd. Suppose that V satisfies |V (z)| < C{x)"™ > for
some e > 0 and F({z)*V) € L™ (R™) in addition for some o > 1/m,.
Then, Wi are bounded in LP(R™) between m/(m — 2) and m/2.

(2) Let m > 6 be even. Suppose that V satisfies |V (z)| < C(z) ™ ¢ if

m 28, |V(z)| < Clz) ™ ¢ ifm = 6 for somee > 0 and F((z)*V) €

L™ (R™) for some o > 1/m, in addition. Then, Wy are bounded in
LP(R™) for m/(m —2) < p < m/2.

Remark 3.11. When H is of exceptional type, the W, are not bounded
in LP(R™) if p > m/2 and m > 5, or if p > 3 and m = 3. This can be
deduced from the results on the decay in time property of the propagator
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e"®7 P, in the weighted L? spaces [12, 7], or in L” spaces [4, 18]. We believe
the same is true for p’s on the other side of the interval given in (b), viz.
1<p<m/(m—-2)ifm>5and 1< p<3/2if m =3, but we have again
no proofs.

In the case when m = 2 or m = 4, and if 0 is a resonance of H, then the
results of [12] and [7] mentioned above imply that the W, are not bounded
in LP(R™) for p > 2 and, though proof is missing, we believe that this is
the case for all p’s except p = 2. However, when m = 4 and if 0 is a pure

eigenvalue of H and not a resonance, the Wy are bounded in LP(R*) for
4/3<p< 4

Theorem 3.12. Let |V (z)| + |VV(z)| < C(z)™° for some § > 7. Suppose
that 0 is an eigenvalue of H, but not a resonance. Then the Wy extend to
bounded operators in the Sobolev spaces W*?P(R*) for any 0 < k < 2 and
4/3 < p < 4:

[Weullwee < Collullwes, u©€ WHP(RH) N LARY). (3.23)
p

We do not explain the proof of this theorem and refer the readres to
the recent preprint [8]. Again, the results of [12, 7] imply that the W, are
unbounded in LP(R*) if p > 4 under the assumption of Theorem 3.12. We

believe that this is the case also for 1 < p < 4/3, though we do not have
proofs.
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