<table>
<thead>
<tr>
<th>Title</th>
<th>On some d-dual hyperovals in $PG($d$($d$+3) /2,2)(Group Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Taniguchi, Hiroaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 808: 27-31</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81149</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On some d-dual hyperovals in $PG(d(d + 3)/2, 2)$

Hiroaki Taniguchi
Takuma National College of Technology

1 Introduction

Let d, m be integers with $d \geq 2$ and $m > d$. Let $PG(m, 2)$ be an n-dimensional projective space over the binary field $GF(2)$.

Definition 1. A family S of d-dimensional subspaces of $PG(m, 2)$ is called a d-dimensional dual hyperoval in $PG(m, 2)$ if it satisfies the following conditions:

1. any two distinct members of S intersect in a projective point,
2. any three mutually distinct members of S intersect in the empty projective set,
3. all members of S generate $PG(m, 2)$, and
4. there are exactly 2^{d+1} members of S.

Known dual hyperovals in $PG(d(d + 3)/2, 2)$ are Huybrechts' dual hyperovals ([3]), Veronesean dual hyperovals ([4]), and Characteristic dual hyperovals ([2]). Huybrechts' dual hyperovals and Characteristic dual hyperovals satisfy the Property (T): for any distinct members X, Y and Z of S, the intersection $\langle X, Y \rangle \cap Z$ is a line, where $\langle X, Y \rangle$ is the projective subspace spanned by X and Y. On the other hand, Veronesean dual hyperovals do not satisfy Property (T). In this note, we show the other construction of d-dimensional dual hyperovals in $PG(d(d + 3)/2, 2)$ based on Veronesean dual hyperovals in section 2, which will appear in [1]. These dual hyperovals are not isomorphic to any Veronesean dual hyperoval, and that they do not satisfy the property (T). Hence, we have a new family of dual hyperovals in $PG(d(d + 3)/2, 2)$. In section 3, we study the automorphism group of S.
2 A construction

Let \(n \geq d + 1 \) and \(\sigma \) a generator of \(\text{Gal}(GF(2^n)/GF(2)) \). Let \(H \) be a \(d + 1 \)-dimensional \(GF(2) \)-vector subspace of \(GF(2^n) \). We may assume that \(H \) has a basis \(\{e_0, e_1, \ldots, e_d\} \) such that \(\{e_i e_j | 0 \leq i \leq j \leq d\} \) are linearly independent over \(GF(2) \). Let us denote by \(\overline{H} \) the vector space generated by \(\{(e_i e_j, e_i^\sigma e_j + e_i e_j^\sigma) | 0 \leq i \leq j \leq d\} \subset GF(2^d) \times GF(2^d) \).

Definition 2. Let \(x_{s,t} \in GF(2) \) for \(s, t \in H \) which satisfy the following conditions:

1. \(x_{s,t} = x_{s,t+e_0} = x_{s+e_0,t} = x_{s+e_0,t+e_0} \),
2. \(x_{s,w} = 0 \) for \(w \in \{0, e_0, e_1, \ldots, e_d\} \),
3. \(x_{s,t} = x_{w,t} \) for \(w \in \text{Supp}(s) \setminus \text{Supp}(t) \),
4. \(x_{s,t} + x_{t,s} = x_{w,s} + x_{w,t} \) for \(w \in \text{Supp}(s) \cap \text{Supp}(t) \),
5. \(x_{s,s} = x_{w,s} \) for \(w \in \text{Supp}(s) \), and
6. \(x_{s,t} + x_{s,s} = x_{s,s+t} \).

Using this \(\{x_{s,t}\} \), we define \(b(s, t) \) for \(s, t \in H \setminus \{0\} \) as follows:

Definition 3. In \(GF(2^n) \times GF(2^n) \), let us define \(b(s, t) \) for \(s, t \in H \setminus \{0\} \) as

\[
b(s, t) = (st, s^\sigma t + st^\sigma) + \sum_{w \in \text{Supp}(s)} (we_0 + w^2, w^\sigma e_0 + we_0^\sigma) + \sum_{w \in \text{Supp}(t)} x_{w,s}(we_0 + w^2, w^\sigma e_0 + we_0^\sigma).
\]

We are able to show that \(b(s, t) \neq 0 \) for \(s, t \in H \setminus \{0\} \). So we may regard that \(b(s, t) \in PG(2n - 1, 2) = GF(2^n) \times GF(2^n) \setminus \{(0, 0)\} \) for \(s, t \in H \setminus \{0\} \). We prove the following \((b1)-(b6)\) for \(b(s, t) \) with \(s, t \in H \setminus \{0\} \) in [1].
(b1) $b(s, s) = (s^2, 0)$,
(b2) $b(s, t) = b(t, s)$ for any s, t,
(b3) $b(s, t) \neq 0$,
(b4) $b(s, t) = b(s', t')$ if and only if $\{s, t\} = \{s', t'\}$,
(b5) $\{b(s, t)|t \in H \setminus \{0\}\} \cup \{0\}$ is a vector space over $GF(2)$,
(b6) $b(w, w') = (ww', w^\sigma w' + w w'^\sigma)$ for $w, w' \in \{e_0, e_1, \ldots, e_d\}$.

Using (b1)–(b6), we are able to prove the following theorem.

Theorem 1. Inside $PG(2n-1, 2) = GF(2^n) \times GF(2^n) \setminus \{(0, 0)\}$, let $X(s) := \{b(s, t)|t \in H \setminus \{0\}\}$ and $X(\infty) := \{b(s, s)|s \in H \setminus \{0\}\}$. Then $X(s)$ for $s \in H \setminus \{0\}$ and $X(\infty)$ are d-dimensional subspaces of $PG(2n-1, 2)$. Moreover, we have that $S := \{X(s)|s \in H \setminus \{0\}\} \cup \{X(\infty)\}$ is a d-dimensional dual hyperoval in $PG(d(d+3)/2, 2)$.

Let χ be the characteristic function of $V \setminus \{0\}$, that is, χ is a map from V to $GF(2)$ defined by $\chi(v) = 0$ or 1 according to whether $v = 0$ or not. We use the symbol $J(u)$ for $u \in H$ to denote $\{0\}$ if $\overline{u} = 0$, or $Supp(\overline{u})$ if $\overline{u} \neq 0$. With the above convention, we consider the following function from $H \times H$ to $GF(2)$: $x_{s,t} := \chi(\overline{s}+t^-) + \sum_{w \in J(t)} \chi(\overline{s}+w)$. Then we have the following Theorem.

Theorem 2. $\{x_{s,t}\}$ defined above satisfies (1)–(6). Moreover, if S is a dual hyperoval in Theorem 1 defined by $\{x_{s,t}\}$ above, we have that

(1) S is not isomorphic to the Veronesean dual hyperoval, and

(2) S does not satisfy Property (T).

As a consequence of Theorem 2, we have a new family of dual hyperoval S in $PG(d(d+3)/2, 2)$.

We define $\alpha\{s, t_1, t_2\} \in GF(2)$ as: $\alpha\{s, t_1, t_2\} := x_{s,t_1} + x_{s,t_2} + x_{s,s} + x_{s,s+t_1+t_2}$. Then we see the following proposition.

Proposition 1. Let $s, t_1, t_2 \in H \setminus \{0\}$. Assume that $t_1 \neq t_2$. Then, we have $b(s, t_1) + b(s, t_2) = b(s, t_1 + t_2 + \alpha\{s, t_1, t_2\}(s+e_0))$, where $\alpha\{s, t_1, t_2\} = \chi(\overline{s}+\overline{t}_1) + \chi(\overline{s}+\overline{t}_2) + \chi(\overline{t}_1 + \overline{t}_2)$ if $\overline{t}_1 \neq 0, \overline{t}_2 \neq 0$ and $\overline{s} \neq \overline{t}_1 + \overline{t}_2$. Otherwise, we have $\alpha\{s, t_1, t_2\} = 0$.
3 The automorphism group

Theorem 3. The automorphism group of S is $2^d : GL(d, 2)$.

We recall that a automorphism of S is an element Φ of $PGL(d(d+3)/2, 2)$ which permute the members of S in $PG(d(d+3)/2, 2)$, which means, for any automorphism Φ, there exists a one-to-one mapping ρ from $H \setminus \{0\} \cup \{\infty\}$ onto itself such that Φ sends any member $X(s)$ to $X(\rho(s))$. We note that, by the definition of dual hyperoval, for any automorphism Φ, there exists only one ρ which satisfies that Φ sends any member $X(s)$ to $X(\rho(s))$. So, to prove Theorem 3, it is sufficient to prove that ρ is a linear mapping of H which fixes e_0, and that any such mapping ρ defines an automorphism Φ, because the group consists of linear mappings of H which fixes e_0 is $2^d : GL(d, 2)$.

In this note, we only prove that, for any linear mapping ρ from H onto itself which fixes e_0, there exists an automorphism Φ which maps $X(t)$ to $X(\rho(t))$ for $t \in H \setminus \{0\}$ and fixes $X(\infty)$.

Proof. Recall that the vectors $b(w, w') = (ww', w\sigma w' + w\sigma w')$ form a basis of the underlying vector space of the ambient space \overline{H} for $w, w' \in \{e_0, e_1, \ldots, e_d\}$. We define a map Φ from \overline{H} to itself on this basis as follows; $\Phi(b(w, w')) = b(\rho(w), \rho(w'))$ for $w, w' \in \{e_0, e_1, \ldots, e_d\}$. This map is uniquely extended to a linear map on \overline{H}, which we also denote by Φ. We have to show that, for every $u, v \in H$,

$$\Phi(b(u, v)) = b(\rho(u), \rho(v)). \quad (1)$$

If $u = v$, it is easy to see that $\Phi(b(u, u)) = b(\rho(u), \rho(u))$. From now on, we consider the case that $u \neq v$. We note that a subspace $X(u) = \{b(u, v) | v \in H \setminus \{0\} \}$ is generated by the vectors $b(u, w)$ for $u \in \{e_0, e_1, \ldots, e_d\}$, since

$$b(u, v) = \sum_{w \in \text{Supp}(u)} b(u, w) + x_{u,v}(b(u, u) + b(u, e_0)).$$

Let $m(u, v)$ be the minimal number m such that $b(u, v) = \sum_{i=1}^{m} b(u, w_i)$ for some distinct elements $w_i (i = 1, \ldots, m)$ in $\{e_0, e_1, \ldots, e_d\}$. Any such expression with $m = m(u, v)$ is called a minimal expression of $b(u, v)$. We prove claim (1) by induction on $m(u, v)$.

Step 1: Assume first that $u \in \{e_0, e_1, \ldots, e_d\}$. If $m(u, v) = 1$, then $b(u, v)$ is one of the basis vectors $b(w, w') (w, w' \in \{e_0, \ldots, e_d\})$ of \overline{H}, and hence claim (1) follows from the definition of Φ. Assume $m(u, v) > 1$ and that the claim holds for every $v' \in H$ with $m(u, v') < m(u, v)$. Let $b(u, v) = \sum_{i=1}^{m} b(u, w_i)$ with $m := m(u, v)$ be minimal expression of $b(u, v)$. Since $X(u) \cup \{0\} = \{b(u, h) | h \in H \}$ is a subspace with a bijection $H \ni h \mapsto b(u, h) \in X(u)$, there
exists a unique $v_1 \in H$ such that $b(u, v_1) = \sum_{i=1}^{m-1} b(u, w_i)$. We have $b(u, v) = b(u, v_1) + b(u, w_m)$. In particular, we have $v = v_1 + w_m + \alpha\{u, v_1, w_m\}(u + e_0)$, and hence we have $\rho(v) = \rho(v_1) + \rho(w_m) + \alpha\{\rho(u), \rho(v_1), \rho(w_m)\}(\rho(u) + e_0)$. Now, since $u \in \{e_0, \ldots, e_d\}$, we have $\Phi(b(u, w_i)) = b(\rho(u), \rho(w_i))$ by definition. As $m(u, v_1) \leq m - 1$, we have $\Phi(b(u, v_1)) = b(\rho(u), \rho(v_1))$ by the induction hypothesis. Combining these remarks, it follows the linearity of Φ that $\Phi(b(u, v)) = \Phi(b(u, v_1)) + \Phi(b(u, w_m))$. Note that $b(\rho(u), \rho(v_1)) + b(\rho(u), \rho(w_m)) = b(\rho(u), \rho(v_1) + \rho(w_m) + \alpha\{\rho(u), \rho(v_1), \rho(w_m)\}(\rho(u) + e_0))$.

Hence we have $\Phi(b(u, v)) = b(\rho(u), \rho(v))$. Thus, the claim is verified.

Step 2: Next, we prove (1) for $u \in H$ with $wt(u) \geq 2$ by induction on $m(u, v)$. The starting point in this case is a minimum number $m(u, v)$ for $u \in H$. Remark that with fixed $u \in H$, the minimality of $m(u, v)$ implies that $v \in \{u, e_0, \ldots, e_d\}$. Then, claim (1) has already been established in Step 1. Then, the verbatim repetition of the proof above goes through, except at one point where we claim $\Phi(b(u, w_m)) = (b(\rho(u), \rho(w_m)))$. In these case when $wt(u) \geq 2$, this claim holds from the conclusion of Step 1, replacing (u, v) by (w_m, u). Hence we have claim (1) for every $u, v \in H$.

Since ρ is a bijection on H, the vectors $b(\rho(u), \rho(v))$ for $u, v \in H$ generate \overline{H}. Thus claim (1) implies that the linear map Φ is surjective, and hence bijective on \overline{H}. Furthermore, claim (1) shows that Φ maps each member $X(u)$ isomorphically onto a member $X(\rho(u))$. Thus we conclude that Φ is an automorphism with associated bijection ρ. \square

References

