<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>On some d-dual hyperovals in $PG($d$+3)/2,2) (Group Theory and Related Topics)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Taniguchi, Hiroaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2007), 1564: 27-31</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81149</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
On some \(d\)-dual hyperovals in \(PG(d(d + 3)/2, 2)\)

Hiroaki Taniguchi

Takuma National College of Technology

1 Introduction

Let \(d, m\) be integers with \(d \geq 2\) and \(m > d\). Let \(PG(m, 2)\) be an \(n\)-dimensional projective space over the binary field \(GF(2)\).

Definition 1. A family \(S\) of \(d\)-dimensional subspaces of \(PG(m, 2)\) is called a \(d\)-dimensional dual hyperoval in \(PG(m, 2)\) if it satisfies the following conditions;

1. any two distinct members of \(S\) intersect in a projective point,
2. any three mutually distinct members of \(S\) intersect in the empty projective set,
3. all members of \(S\) generate \(PG(m, 2)\), and
4. there are exactly \(2^{d+1}\) members of \(S\).

Known dual hyperovals in \(PG(d(d + 3)/2, 2)\) are Huybrechts' dual hyperovals ([3]), Veronesean dual hyperovals ([4]), and Characteristic dual hyperovals ([2]). Huybrechts' dual hyperovals and Characteristic dual hyperovals satisfy the Property \((T)\): for any distinct members \(X, Y\) and \(Z\) of \(S\), the intersection \(\langle X, Y \rangle \cap Z\) is a line, where \(\langle X, Y \rangle\) is the projective subspace spanned by \(X\) and \(Y\). On the other hand, Veronesean dual hyperovals do not satisfy Property \((T)\). In this note, we show the other construction of \(d\)-dimensional dual hyperovals in \(PG(d(d + 3)/2, 2)\) based on Veronesean dual hyperovals in section 2, which will appear in [1]. These dual hyperovals are not isomorphic to any Veronesean dual hyperoval, and that they do not satisfy the property \((T)\). Hence, we have a new family of dual hyperovals in \(PG(d(d + 3)/2, 2)\). In section 3, we study the automorphism group of \(S\).
2 A construction

Let $n \geq d + 1$ and σ a generator of $Gal(GF(2^n)/GF(2))$. Let H be a $d + 1$-dimensional $GF(2)$-vector subspace of $GF(2^n)$. We may assume that H has a basis $\{e_0, e_1, \ldots, e_d\}$ such that $\{e_i e_j | 0 \leq i \leq j \leq d\}$ are linearly independent over $GF(2)$. Let us denote by \overline{H} the vector space generated by $\{(e_i e_j, e_i^\sigma e_j + e_i e_j^\sigma) | 0 \leq i \leq j \leq d\} \subset GF(2^d) \times GF(2^d)$. For a non-zero vector u of H, its support, denoted as $\text{Supp}(u)$, is the subset M of $\{e_0, e_1, e_2, \ldots, e_d\}$ for which $u = \sum_{e_i \in M} e_i$.

Let $V \subset H$ be a vector subspace generated by $\{e_1, e_2, \ldots, e_d\}$ over $GF(2)$, and let $H \ni s = \sum_{i=0}^{d} \alpha_i e_i \rightarrow \overline{s} = \sum_{i=1}^{d} \alpha_i e_i \in V$ be a natural projection, where $\alpha_i \in GF(2)$ for $0 \leq i \leq d$.

Definition 2. Let $x_{s,t} \in GF(2)$ for $s, t \in H$ which satisfy the following conditions:

1. $x_{s,t} = x_{s,t+e_0} = x_{s+e_0,t} = x_{s+e_0,t+e_0}$,
2. $x_{s,w} = 0$ for $w \in \{0, e_0, e_1, \ldots, e_d\}$,
3. $x_{s,t} = x_{w,t}$ for $w \in \text{Supp}(\overline{s}) \setminus \text{Supp}(\overline{t})$,
4. $x_{s,t} + x_{t,s} = x_{w,s} + x_{w,t}$ for $w \in \text{Supp}(\overline{s}) \cap \text{Supp}(\overline{t})$,
5. $x_{s,s} = x_{w,s}$ for $w \in \text{Supp}(\overline{s})$, and
6. $x_{s,t} + x_{s,s} = x_{s,s+t}$.

Using this $\{x_{s,t}\}$, we define $b(s, t)$ for $s, t \in H \setminus \{0\}$ as follows:

Definition 3. In $GF(2^n) \times GF(2^n)$, let us define $b(s, t)$ for $s, t \in H \setminus \{0\}$ as

$$b(s, t) = (st, s^\sigma t + st^\sigma) + x_{s,t} \sum_{w \in \text{Supp}(s)} (we_0 + w^2, w^\sigma e_0 + we_0^\sigma) + \sum_{w \in \text{Supp}(t)} x_{w,s} (we_0 + w^2, w^\sigma e_0 + we_0^\sigma).$$

We are able to show that $b(s, t) \neq 0$ for $s, t \in H \setminus \{0\}$. So we may regard that $b(s, t) \in PG(2n - 1, 2) = GF(2^n) \times GF(2^n) \setminus \{(0, 0)\}$ for $s, t \in H \setminus \{0\}$. We prove the following $(b1)$–$(b6)$ for $b(s, t)$ with $s, t \in H \setminus \{0\}$ in [1].
(b1) \(b(s, s) = (s^2, 0)\),
(b2) \(b(s, t) = b(t, s)\) for any \(s, t\),
(b3) \(b(s, t) \neq 0\),
(b4) \(b(s, t) = b(s', t')\) if and only if \(\{s, t\} = \{s', t'\}\),
(b5) \(\{b(s, t) | t \in H \setminus \{0\}\} \cup \{0\}\) is a vector space over \(GF(2)\),
(b6) \(b(w, w') = (ww', w^\sigma w' + ww'^\sigma)\) for \(w, w' \in \{e_0, e_1, \ldots, e_d\}\).

Using (b1)–(b6), we are able to prove the following theorem.

Theorem 1. Inside \(PG(2n-1, 2) = GF(2^n) \times GF(2^n) \setminus \{(0, 0)\}\), let \(X(s) := \{b(s, t) | t \in H \setminus \{0\}\}\) for \(s \in H \setminus \{0\}\) and \(X(\infty) := \{b(s, s) | s \in H \setminus \{0\}\}\). Then \(X(s)\) for \(s \in H \setminus \{0\}\) and \(X(\infty)\) are \(d\)-dimensional subspaces of \(PG(2n-1, 2)\). Moreover, we have that \(S := \{X(s) | s \in H \setminus \{0\}\} \cup \{X(\infty)\}\) is a \(d\)-dimensional dual hyperoval in \(PG(d(d+3)/2, 2)\).

Let \(\chi\) be the characteristic function of \(V \setminus \{0\}\), that is, \(\chi\) is a map from \(V\) to \(GF(2)\) defined by \(\chi(v) = 0\) or 1 according to whether \(v = 0\) or not. We use the symbol \(J(u)\) for \(u \in H\) to denote \(\{0\}\) if \(\overline{u} = 0\), or \(Supp(\overline{u})\) if \(\overline{u} \neq 0\). With the above convention, we consider the following function from \(H \times H\) to \(GF(2)\): \(x_{s,t} := \chi(s + t) + \sum_{w \in J(t)} \chi(s + w)\). Then we have the following Theorem.

Theorem 2. \(\{x_{s,t}\}\) defined above satisfies (1)–(6). Moreover, if \(S\) is a dual hyperoval in Theorem 1 defined by \(\{x_{s,t}\}\) above, we have that

1. \(S\) is not isomorphic to the Veronesean dual hyperoval, and
2. \(S\) does not satisfy Property (T).

As a consequence of Theorem 2, we have a new family of dual hyperoval \(S\) in \(PG(d(d+3)/2, 2)\).

We define \(\alpha\{s, t_1, t_2\} \in GF(2)\) as: \(\alpha\{s, t_1, t_2\} := x_{s,t_1} + x_{s,t_2} + x_{s,s} + x_{s,s+t_1+t_2}\). Then we see the following proposition.

Proposition 1. Let \(s, t_1, t_2 \in H \setminus \{0\}\). Assume that \(t_1 \neq t_2\). Then, we have \(b(s, t_1) + b(s, t_2) = b(s, t_1 + t_2 + \alpha\{s, t_1, t_2\}(s + e_0))\), where \(\alpha\{s, t_1, t_2\} = \chi(s + \tilde{t}_1) + \chi(s + \tilde{t}_2) + \chi(\tilde{t}_1 + \tilde{t}_2)\) if \(\tilde{t}_1 \neq 0, \tilde{t}_2 \neq 0\) and \(s \neq \tilde{t}_1 + \tilde{t}_2\). Otherwise, we have \(\alpha\{s, t_1, t_2\} = 0\).
3 The automorphism group

Theorem 3. The automorphism group of S is $2^d : GL(d, 2)$.

We recall that a automorphism of S is an element Φ of $PGL(d(d+3)/2, 2)$ which permutate the members of S in $PG(d(d+3)/2, 2)$, which means, for any automorphism Φ, there exists a one-to-one mapping ρ from $H\backslash\{0\} \cup \{\infty\}$ onto itself such that Φ sends any member $X(s)$ to $X(\rho(s))$. We note that, by the definition of dual hyperoval, for any automorphism Φ, there exists only one ρ which satisfies that Φ sends any member $X(s)$ to $X(\rho(s))$. So, to prove Theorem 3, it is sufficient to prove that ρ is a linear mapping of H which fixes e_0, and that any such mapping ρ defines an automorphism Φ, because the group consists of linear mappings of H which fixes e_0 is $2^d : GL(d, 2)$.

In this note, we only prove that, for any linear mapping ρ from H onto itself which fixes e_0, there exists an automorphism Φ which maps $X(t)$ to $X(\rho(t))$ for $t \in H\backslash\{0\}$ and fixes $X(\infty)$.

Proof. Recall that the vectors $b(w, w') = (ww', w^w w' + ww'^w)$ form a basis of the underlying vectorspace of the ambient space \overline{H} for $w, w' \in \{e_0, e_1, \ldots, e_d\}$. We define a map Φ from \overline{H} to itself on this basis as follows; $\Phi(b(w, w')) = b(\rho(w), \rho(w'))$ for $w, w' \in \{e_0, e_1, \ldots, e_d\}$. This map is uniquely extended to a linear map on \overline{H}, which we also denote by Φ. We have to show that, for every $u, v \in H$,

$$\Phi(b(u, v)) = b(\rho(u), \rho(v)).$$

(1)

If $u = v$, it is easy to see that $\Phi(b(u, u)) = b(\rho(u), \rho(u))$. From now on, we consider the case that $u \neq v$. We note that a subspace $X(u) = \{b(u, v) | v \in H\backslash\{0\}\}$ is generated by the vectors $b(u, w)$ for $w \in \{u, e_0, \ldots, e_d\}$, since $b(u, v) = \sum_{w \in \text{Supp}(v)} b(u, w) + x_{u,v} b(u, u) + b(u, e_0)$. Let $m(u, v)$ be the minimal number m such that $b(u, v) = \sum_{i=1}^{m} b(u, w_i)$ for some distinct elements $w_i (i = 1, \ldots, m)$ in $\{u, e_0, e_1, \ldots, e_d\}$. Any such expression with $m = m(u, v)$ is called a minimal expression of $b(u, v)$. We prove claim (1) by induction on $m(u, v)$.

Step 1: Assume first that $u \in \{e_0, e_1, \ldots, e_d\}$. If $m(u, v) = 1$, then $b(u, v)$ is one of the basis vectors $b(w, w') (w, w' \in \{e_0, \ldots, e_d\})$ of \overline{H}, and hence claim (1) follows from the definition of Φ. Assume $m(u, v) > 1$ and that the claim holds for every $v' \in H$ with $m(u, v') < m(u, v)$. Let $b(u, v) = \sum_{i=1}^{m} b(u, w_i)$ with $m := m(u, v)$ be minimal expression of $b(u, v)$. Since $X(u) \cup \{0\} = \{b(u, h) | h \in H\}$ is a subspace with a bijection $H \ni h \mapsto b(u, h) \in X(u)$, there
exists a unique $v_1 \in H$ such that $b(u, v_1) = \sum_{i=1}^{m-1} b(u, w_i)$. We have $b(u, v) = b(u, v_1) + b(u, w_m)$. In particular, we have $v = v_1 + w_m + \alpha\{u, v_1, w_m\}(u + e_0)$, and hence we have $\rho(v) = \rho(v_1) + \rho(w_m) + \alpha\{\rho(u), \rho(v_1), \rho(w_m)\}(\rho(u) + e_0)$. Now, since $u \in \{e_0, \ldots, e_d\}$, we have $\Phi(b(u, w_i)) = b(\rho(u), \rho(w_i))$ by definition. As $m(u, v_1) \leq m - 1$, we have $\Phi(b(u, v_1)) = b(\rho(u), \rho(v_1))$ by the induction hypothesis. Combining these remarks, it follows from the linearity of Φ that $\Phi(b(u, v)) = \Phi(b(u, v_1)) + \Phi(b(u, w_m))$. Hence we have $\Phi(b(u, v)) = b(\rho(u), \rho(v))$. Thus, the claim is verified.

Step 2: Next, we prove (1) for $u \in H$ with $wt(u) \geq 2$ by induction on $m(u, v)$. The starting point in this case is a minimum number $m(u, v)$ for $u \in H$. Remark that with fixed $u \in H$, the minimality of $m(u, v)$ implies that $v \in \{u, e_0, \ldots, e_d\}$. Then, claim (1) has already been established in Step 1. Then, the verbatim repetition of the proof above goes through, except at one point where we claim $\Phi(b(u, w_m)) = b(\rho(u), \rho(w_m))$. In these case when $wt(u) \geq 2$, this claim holds from the conclusion of Step 1, replacing (u, v) by (w_m, u). Hence we have claim (1) for every $u, v \in H$.

Since ρ is a bijection on H, the vectors $b(\rho(u), \rho(v))$ for $u, v \in H$ generate \overline{H}. Thus claim (1) implies that the linear map Φ is surjective, and hence bijective on \overline{H}. Furthermore, claim (1) shows that Φ maps each member $X(u)$ isomorphically onto a member $X(\rho(u))$. Thus we conclude that Φ is an automorphism with associated bijection ρ. \hfill \Box

References

