1. **Bouc functors**

1.1. **Notation and Definition.** Let \(G \) and \(H \) be finite groups. An \((H, G)\)-biset, or a biset shortly, is a set with a left \((H \times G^{op})\)-action, i.e., a set \(U \) with a left \(H \)-action and a right \(G \)-action which commute.

If \(K \) is another group, and \(V \) is a \((K, H)\)-biset, then the product \(V \times U \) by the right action of \(H \) given by \((v, u)h = (vh, h^{-1}u)\) for \(v \in V \), \(u \in U \), and \(h \in H \). The class of \((v, u)\) in \(V \times U \) is denoted by \((v, H u)\). The set \(V \times_H U \) is a \((K, G)\)-biset for the action given by

\[
k(v, H u)g = (kv, H ug)
\]

for \(k \in K \), \(g \in G \), \(u \in U \), and \(v \in V \).

Denote by \(\mathcal{C}_p \) the following category:

- The objects of \(\mathcal{C}_p \) are the finite \(p \)-groups.
- If \(P \) and \(Q \) are finite \(p \)-groups, then \(\text{Home}_p(P, Q) = B(Q \times P^{op}) \) is the Burnside group of finite \((Q, P)\)-bisets. An element of this group is called a virtual \((Q, P)\)-biset.
- The composition of morphisms is \(\mathbb{Z} \)-bilinear, and if \(P, Q, R \) are finite \(p \)-groups, if \(U \) is a finite \((Q, P)\)-biset, and \(V \) is a finite \((R, Q)\)-biset, then the composition of the isomorphism classes of \(V \) and \(U \) is the (isomorphism class) of \(V \times_Q U \). The identity morphism \(\text{Id}_P \) of the \(p \)-group \(P \) is the class of the set \(P \), with left and right action by multiplication.

Let \(\mathcal{T}_p \) denote the category of additive functors from \(\mathcal{C}_p \) to the category \(\mathbb{Z} \)-Mod of abelian groups. An object of \(\mathcal{T}_p \) is called a **Bouc functor** (defined over \(p \)-groups, with values in \(\mathbb{Z} \)-Mod) (see [Th06], [Bo06]).

1.2. **Notation.** The Bouc functor of **Burnside group** will denote by \(B \). The Bouc functor of **rational representations** will denote by \(R_Q \). The \(G \)-poset of the family of all subgroups of a finite group \(G \) will denote by \(\mathcal{S}(G) \). If \(X \) is a \(G \)-set, denote by \(G\backslash X \) a family of \(G \)-orbits, and by \([G\backslash X] \) a set of representatives of \(G\backslash X \).

2. **The Dade group**

2.1. **Some known Dade groups:** The structure of \(D(P) \) is known for any \(2 \)-group \(P \) of normal 2-rank 1: when \(P \) is generalized quaternion, the result is due to Dade, and the other cases have been solved by Carlson and Thévenaz:

Theorem 2.2. (Dade [Da78a], Carlson-Thévenaz [CT00])

1. \(D(C_{2^n}) \cong (\mathbb{Z}/2\mathbb{Z})^{n-1} \), and \(D(C_{p^n}) \cong (\mathbb{Z}/2\mathbb{Z})^n \), if \(p \geq 3 \).
2. \(D(D_{2^n}) \cong \mathbb{Z}^{2n-3} \).
3. \(D(SD_{2^n}) \cong \mathbb{Z}^{2n-4} \oplus \mathbb{Z}/2\mathbb{Z} \).
4. \(D(Q_{2^n}) \cong \mathbb{Z}^{2n-5} \oplus \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \), for \(n \geq 4 \).
5. \(D(Q_8) \cong \mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \), if the ground field contains all cubic roots of unity, and \(D(Q_8) \cong \mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z} \), otherwise.

The ingredient of the present note is

Theorem 2.3. (Bouc-Thévenaz [BT00] Theorem 10.4) There is an exact sequence of functors

\[
0 \rightarrow QD \overset{\alpha}{\rightarrow} QB \overset{\epsilon}{\rightarrow} QR_Q \rightarrow 0
\]

where \(\epsilon(P) : QB(P) \rightarrow QR_Q(P) \) is the morphism mapping a \(P \)-set to the corresponding permutation module over \(Q \).
We could determine the difference \(\text{rank} B^c(P) - \text{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) \) by using a result as follows:

Theorem 2.4. (Bouc-Thévenaz [BT00] Theorem A) The torsion-free rank of the Dade group \(D(P) \) is equal to the number of conjugacy classes of non-cyclic subgroups of \(P \).

3. THE CROSSED BURNSIDE RING AND THE RATIONAL REPRESENTATIONS OF DRINFELD'S DOUBLE

3.1. **Definition.** Let \(M \) be one of the Bouc functors \(\mathbb{Q}D \), \(\mathbb{Q}B \) and \(\mathbb{Q}R_{\mathbb{Q}} \). We use a construction of Dress for Mackey functors for obtaining a module from \(M \). Let \(P \) be a \(p \)-group. Now we set

\[
M(X) = \left(\bigoplus_{x \in X} M(P_x) \right)^P
\]

where \(P_x \) is the stabilizer of \(x \) in \(P \).

Corollary 3.2. Let \(P \) be a \(p \)-group and \(X \) a \(P \)-set. Then there is an exact sequence of \(\mathbb{Q} \)-vector spaces

\[
0 \rightarrow \mathbb{Q}D(X) \xrightarrow{\alpha} \mathbb{Q}B(X) \xrightarrow{\epsilon} \mathbb{Q}R_{\mathbb{Q}}(X) \rightarrow 0.
\]

3.3. **Notation.** We denote by \(B^c(P) \) the crossed Burnside ring of \(P \), i.e. the Grothendieck ring of the category of finite crossed \(P \)-sets over \(P^c \), for relations given by decomposition into disjoint union of crossed \(P \)-sets, the ring structure being induced by the product of crossed \(P \)-sets. Also we denote by \(R_{\mathbb{Q}}(\mathcal{D}(P)) \) the rational representation ring of the Drinfel’d double \(\mathcal{D}(P) = (\mathbb{Q}P)^* \otimes \mathbb{Q}P \) for the group algebra \(\mathbb{Q}P \).

Corollary 3.4. Let \(P \) be a \(p \)-group. Then there is an exact sequence of \(\mathbb{Q} \)-vector spaces

\[
0 \rightarrow \mathbb{Q}D(P^c) \xrightarrow{\alpha} \mathbb{Q}B^c(P) \xrightarrow{\epsilon} \mathbb{Q}R_{\mathbb{Q}}(\mathcal{D}(P)) \rightarrow 0.
\]

In particular, we have

\[
\text{rank} B^c(P) = \text{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) + \dim_{\mathbb{Q}} \mathbb{Q}D(P^c).
\]

Corollary 3.5. Let \(P \) be a \(p \)-group. Then the following numbers are equal:

1. \(\text{rank} B^c(P) \).
2. \(\text{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) + \sum_{g \in [P \setminus P^c]} \dim_{\mathbb{Q}} \mathbb{Q}D(C_P(g)) \).
3. \(\sum_{Q \in [P \setminus S(P)]} \frac{|C_P(Q)|}{|N_P(Q)|} \cdot |Q| \left(\sum_{x \in Q/Q'} \frac{1}{|x|} \right) \).
4. \(\sum_{Q \in [P \setminus S(P)]} |N_P(Q) \setminus C_P(Q)| \).
5. \(\sum_{g \in [P \setminus P^c]} |C_P(g) \setminus S(C_P(g))| \).

Corollary 3.6. Let \(P \) be a \(p \)-group. Then

\[
\text{rank} B^c(P) = \text{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) + \sum_{g \in [P \setminus P^c]} |C_P(g) \setminus S_{\text{non}}(C_P(g))|,
\]

where \(S_{\text{non}}(C_P(g)) \) is the \(C_P(g) \)-poset of non-cyclic subgroups of \(C_P(g) \) with \(C_P(g) \)-action defined by conjugation.

Corollary 3.7. Let \(P \) be a cyclic \(p \)-group. Then

\[
\text{rank} B^c(P) = \text{rank} R_{\mathbb{Q}}(\mathcal{D}(P)).
\]
3.8. Some small 2-groups. We summarize basic facts on the structure of the centralizers of the representative of a conjugacy class of dihedral, semi-dihedral and generalized quaternion 2-groups (see, for instance, III.17 of [Er90]). In the rest of the paper, we always denote by z the central elements of order 2 of the group considered. Suppose that

$$D_{2^n} = \langle x, y | x^{2^{n-1}} = y^2 = 1, y^{-1}xy = x^{-1} \rangle$$

is a dihedral group of order 2^n ($n \geq 2$). Then the centralizers of 1 and z are D_{2^n}. The centralizers of y and xy are Klein four groups. The centralizers of the representative of the other $2^{n-2} - 1$ conjugacy classes are cyclic subgroups ($n \geq 3$). Suppose that

$$SD_{2^n} = \langle x, y | x^{2^{n-1}} = y^2 = 1, y^{-1}xy = x^{-1+2^{n-2}} \rangle$$

is a semi-dihedral group of order 2^n ($n \geq 4$). Then the centralizers of 1 and z are SD_{2^n}. The centralizer of y is a Klein four group. The centralizers of the representative of the other 2^{n-2} conjugacy classes are cyclic subgroups. Suppose that

$$Q_{2^n} = \langle x, y | x^{2^{n-2}} = y^2 = 1, y^{-1}xy = x^{-1+2^{n-2}} \rangle$$

is a generalized quaternion group of order 2^n ($n \geq 3$). Then the centralizers of 1 and z are Q_{2^n}. The centralizers of the representative of the other $2^{n-2} + 1$ conjugacy classes are cyclic subgroups.

Corollary 3.9. Let P be a dihedral group D_{2^n} of order 2^n ($n \geq 2$). Then

$$\text{rank} B^c(P) - \text{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) = 4n - 4.$$

Corollary 3.10. Let P be a semi-dihedral group SD_{2^n} of order 2^n ($n \geq 4$). Then

$$\text{rank} B^c(P) - \text{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) = 4n - 7.$$

Corollary 3.11. Let P be a generalized quaternion group Q_{2^n} of order 2^n ($n \geq 3$). Then

$$\text{rank} B^c(P) - \text{rank} R_{\mathbb{Q}}(\mathcal{D}(P)) = 4n - 10.$$

REFERENCES

