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Stability of Formation of Large Bipolaron
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1 Introduction

This is a brief report on the results in [1].

Let us consider two electrons coupled with longitudinal optical (LO) phonons
in a 3-dimensional crystal now. Then, in general, an electron is dressed in a
phonon cloud because of the electron-phonon interaction. The dressed elec-
tron is the so-called polaron [2, 3]. If the Coulomb repulsion between the two
electrons is strong enough. the two electrons are so far away from each other
that each electron dresses itself in an individual phonon cloud. Thus. there is
no exchange of phonons between the two. On the other hand. if the distance
between the two electrons is so short that a common phonon cloud grasps
both electrons, then the phonon-exchange takes place. In this case, there is a
possibility that attraction appears between them and thus we can expect that
they are bound to each other. The bound two polarons is called a bipolaron
[4. 5. 6. 7, 8. 9]. We consider the tug of war between the two electrons.

The total Hamiltonian Hgp of bipolaron we consider is given by

HBP = Hel-¢] + th + Hel-ph: (11)
where
1 U
Hya = p? + , 1.2
el-el J§2 omtI |1‘] — m2| ( )
Hpy, = Z ﬁwkaZ,ak. (1.3)
k

Hypn=>»_>_ {Vkeik'mmk + v;*e*"‘"ffa.{.}. (1.4)

=12 k _

In Eq.(1.2). x; and p; denote the position and momentum operators of the jth
electron (j = 1.2) of mass m, respectively, so p; = —ihV,,. The symbol U
stands for the strength of the Coulomb repulsion, so U = €2 /¢, for the electric
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charge e and the optic dielectric constant e,.. In Eq.(1.3). a; and aZ are the
annihilation and creation operators, respectively, of the LO phonon with the
momentum hk. Since phonons are bosons. a; and a{ satisfy the canonical
commutation relation. We can set the dispersion relation wy as wp = wro
because the LO phonons can be assumed to be dispersionless. In Eq.(1.4). V}
is defined by Vi := — ihwio (4mar, / k?V)l/ ? for the crystal volume V' and the
free polaron radius r,, = (h/ 2mwyo)’?. The dimensionless electron-phonon
coupling constant is

1 e2/1 1\ 1 .
= e (L 1)1 1.5
@ hwio 2 (eoc 60) r. (1.5)

fp

where ¢ is the static dielectric constant. We define the ionicity n of the crystal
by 1 := €x/€0. 80 0 < n < 1. Then, the strength of the Coulomb repulsion is
rewritten as U = v/2a/(1 —n). We note the wave vector k in 5, runs over the
first Brillouin zone because we consider the two-body system of large polarons.

From now on, we use the natural units i = m = wo = 1 in this report.
Using the well-known conversion of sums to integrals. we estimate 3, |Vi|? at
V2aK/m, where K means the radius of a sphere of the first Brillouin zone.
Using the approximation of the Fourier expansion, V/(4r|z|) = 3, e*7/k2,
we have

O;

n,rk|2€ik-m ~ ) (1())
2 72

We often use this approximation (1.6).

In this report we say Hgp has a ground state if Hge has an eigenvector
of which eigenenergy is the lowest point spectrum of Hyy. We note Hgp has
translation invariance. Thus, to give a possibility that Hgp has a ground state.
we put a device in the interaction Hamiltonian:

He-pn(p) = p(x1 + 72) Z Z {Vkeik'””j ar + Vk*e”“""xﬂ'a»z} .
=12 k
where p(z) is a function satisfying 0 < p(z) < 1. We employ Hei-pn(p) in Hpp
instead of Hej-ph:
HBP = Hel-el + th + Hel-ph(p)-

For instance. we define p(z) so that p(z) = 0 outside the crystal and p(z) =1
inside the crystal. We can also define p(x) by p(x) = po(x). where po(x) := 1
if x =2Q: pg(x) :=0if r # 2Q. For p(r) = 1 the Hamiltonian He-et + Hpn +
He-pn(p) becomes the original Hpgp.
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2 Spatial Localization in Weak-Coupling Regime

We define a positive constant Ey(«v) by
4V2a . 8/2a
K A

T

Ey(a)=4) [Vif*= (2.1)
k
for every a > 0, where A is a wave length defined by A := 27/K.
When Hpp has a ground state Uy, we define the distance dpp(¥g) between
the two electrons in bipolaron by

dBp(\I’o) = <‘I’0I‘I’0>-l<\1’0“3’1 —I2‘|\I/0> (22)

We say that the relative motion of the bipolaron in a bound state VU, is spatially
localized in the closed ball B(r) if dgp(¥g) < 7.

Using and developing Lieb’s idea [10], we can show that the relative motion
of the bipolaron in a ground state is not spatially localized in B(r), provided
that the ground state exists under the condition:

U A
Ey(a) < — (i.e.. 0<1l1—-—< n) . (2.3)
T 8r
3 Bipolaron Formation
We consider the original Hgp (i.e.. in the case p(z) = 1) in the strong-

coupling regime in this section. We derive two effective Hamiltonians from
Hgp by modifying Bogolubovs' method [11]. which is similar to Adamowski's
[5] and ours [12].

We find a canonical transformation Uy with the parameter 6 > 0 so that
Hgp(0) := UjHprUs = Heg(0) + Hpn + He-pn(8) + T, where Heg() is an
effective Hamiltonian in quantum mechanics, and Xy a divergent energy as
# — oo. Then. we make the effective Hamiltonian Heg(6) should have an
attractive potential V() from the phonon field as Heg(6) = He-o + V(6). By
the help of this extra attractive potential V' (6). we expect a critical point 6. so
that the Hamiltonian Heg(6) itself or the Hamiltonian H'g(#) for the relative
motion of Heg(#) has a ground state if § > .. On the other hand, it has no
ground state if 6 < 6.

We can show that the approrimation (1.6) yields an effective Hamiltonian
describing balanced state [1] in quantum mechanics:

1. U

1
Heﬁ‘(G) = Hel-el -+ V(G) = —pf =+ 5])2 + |iI‘1 — .TQI (31)

2



89

with

UW%:U-Vﬁwzvﬁa@jw ). (3.2)

Clearly 6. = 1/(1 — n)
Let c. be an arbitrary constant so that 0 < ¢, < 1. We set cgp as:

Cpp i= g (c,., - -é—(l—l_—-a)z (3.3)

Then, the effective Hamiltonian Heg(6) in Eq.(3.1) leads us to an upper bound
to Egp as:

1 K3
Egp < — c5pa?6? + %%‘GK 3>, (3.4)
provided that
1- >n"_ (3.5)

.8
We note that the condition (3.5) prohibits us from taking the limit § — 0 in
the inequality (3.4) because
1 1
T g gy

We can also show that a lower bound to Egp as:

\/§a0

6>

%z@mmpwqu[ (3.6)
¢
where
o) = 1 3. 13, . 2 . 2 2v2  |p(ay, 22))?
Eoly) = 2//dm1d rg[ww(xl.w Ve, o+ g AT

- 2 2
/dg.l']dSTg//dsy d3 |Y(Il’1’2)l 'Y(ylsy‘Z)' (37)
, —1.2 |75 = yy

is an energy functional describing unbalanced state [1] and inf, £(2) < 0.

We can obtain another effective Hamiltonian. The approximation (1.6) yields
another effective Hamiltonian describing unbalanced state [1] in quantum me-
chanics:

eﬁ‘ 9) = 0292 I;Z Z \/§ . (38)

=12 j= 12‘1‘.7! 9(1“"77)'5[‘1—.’['2'
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Then. the transformed total Hamiltonian Hgp[f] is approximated as:
Hgpl] = He(0) + Hpy
+ Z Z {V'k (eik-a{j/aﬁ _ 9) ar + vrk* (e—-ik-l'j/o/() _ 9) (,I,L} + 26~

(3.9)

where H.g(0) is given by Eq.(3.8) and Zg := #Ey(a)/4. Here the approximation
(1.6) breaks the translation invariance in the original Hamiltonian Hgp.

Let Es(a) be
E(a) := (—2———\/5 — —13 — 1) ol - (3.10)

- now. Then. the effective Hamiltonian Heg(6) in Eq.(3.8) has a ground state if
there is an v > 0 so that

-g— < Ei(a). , (3.11)

Then, we have 6. < 1/(2 — v2)(1 — 7). The condition (3.11) puts restrictions
on 6.n and r. The sufficient condition for the inequality (3.11) is:

14+ V2
V26

Rﬁ.'r} -V RBJ)2 —l<r< Rﬂ.n + V RO.T,? -1 (313) ‘

> . (3.12)

and

where

(i.e.. § ~ 00), 0.585 < r/r, < 3.415.

4 Spatial Localization in Strong-Coupling Regime

In this section we deal with the approximated Hyp[6] given in Eq.(3.9). When
a ground state Wy of Hyp[f)] exists. we define the radius ugpe(¥y) of the sphere
in which the two electron lives by '

ugp(¥o) = max {(%o| o)™ (Wol;1|T0) } . (4.1)
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Then. we can show that if the bipolaron has a ground state Vg, then there is a
relation:

| 1 36\ Ee(a)) ™ 1 ) /
ILBP(\II()) Z % {1 -+ (1 + -4—) _—ng } (———6(1 — 77) 2]. (42)

Thus, even if n approaches 1. § > 0 in the strong-coupling regime works to
prevent its size from growing. This is a noticeable difference from the case of
the weak-coupling regime.

5 Positive Binding Energy

We obtain a sufficient condition for the binding energy being positive.
Let & (v7) be the Pekar functional [13, 14, 15, 16, 17] for single polaron. i.e.,

lr — y|

Lieb [15] proved that there is a unique and smooth minimizing y'(x) in cgp =
— infy guy=1 Es(¥) up to translations. Then. according to the estimate of cgp
by Miyake [14] and by Gerlach and Lowen [17],

Cap = 0.108513-- ..

Then. if c.. 6. and n satisfy cgp > 2cep. then the binding energy is positive.
i.€e.,

Epp < 2E¢p (5.1)

for sufficiently large 8 > 0 with the condition (3.5). Thus. we note that 0 <
¢gp < 0.4 and lim., 16— = 0.4 under the condition (3.5).

According to the recent result of study [18], we might be able to choose
— inf, quy=1 () as cpp (e, —cgp = inf,E(p)) so that 2Es — Egp =
— (2¢sp — cgp)a? > O for sufficiently large § > 0, where Egp is the ground
state energy of the single polaron [19].
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