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Abstract

We give a sufficient condition for the exponential decay of the tail probability of a non-
negative random variable. We consider the Laplace-Stieltjes transform of the probability dis-
tribution function of the random variable. We present a theorem, according to which if the
abscissa of convergence of the LS transform is negative finite and the real point on the axis
of convergence is a pole of the LS transform, then the tail probability decays exponentially.
For the proof of the theorem, we extend and apply so-called a finite form of Ikehara’s complex
Tauberian theorem by Graham-Vaaler. We will discuss in the appendix the heavy tailed random
variable and the LS transform of its probability distribution function.

Keywords: Tail probability of random variable; Exponential decay; Laplace transform; Com-
plex Tauberian theorem; Graham-Vaaler’s finite form

1 Introduction

The purpose of this paper is to give a sufficient condition for the exponential decay of the tail
probability of a non-negative random variable. For a non-negative random variable X, P(X > z)
is called the tail probability of X. The tail probability decays exponentially if the limit

.1
Jim ~log P(X > z) (1)
exists and is a negative finite value.

For the random variable X, the probability distribution function of X is denoted by F(z) =
P(X < z) and the Laplace-Stieltjes transform of F(x) is denoted by ¢(s) = [~ e~**dF(z). We
will give a sufficient condition for the exponential decay of the tail probability P(X > z) based on
analytic properties of ¢(s).

In {11], we obtained a result that the exponential decay of the tail probability P(X > z) is
determined by the singularities of ((8) on its axis of convergence. In this paper, we investigate
the case where ©(s) has a pole at the real point of the axis of convergence, and reveal the relation
between analytic properties of ¢(s) and the exponential decay of P(X > z).
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The results obtained in this paper will be applied to queueing analysis. In general, there are
two main performance measures of queueing analysis, one is the number of customers @ in the
system and the other is the sojourn time W in the system. Q is a discrete random variable and
W is a continuous one. It is important to evaluate the tail probabilities P(Q > ¢) and P(W > w)
for designing the buffer size or link capacity in communication networks. Even in the case that the
probability distribution functions P(Q < ¢) or P(W < w) cannot be calculated explicitly, their
generating functions Q(z) = 322, P(Q = ¢)2? or W(s) = [;*e™*"dP(W < w) can be obtained
explicitly in many queues. Particularly, in M/G/1 queue, Q(z) and W (s) are given explicitly by
Pollaczek-Khinchin formula [7]. So, in this paper, we assume that we have the explicit form of a
generating function and then investigate the exponential decay of the tail probability based on the
analytic properties of the generating function.

Such kind of researches have been studied motivated by a requirement for evaluating a packet
loss probability of a light tailed traffic in the packet switched network.

An approach by the complex analysis is seen in [3]. A sufficient condition is given in [3] for the
decay of the stationary probability of an M/G/1 type Markov chain with boundary modification
and the result is applied to MAP/G/1 queue. Let 7 = (7,,) denote the stationary probability of
an M/G/1 type Markov chain with boundary modification, and 7(2) = }_, mn2™ the probability
generating function of = with the radius of convergence r > 0. In [3], they proved a theorem that
if z = r is a pole of order 1 and is the only singularity on the circle of convergence |z| = r, then
there exists K > 0, # > r such that m, = Kr~" 4+ O(7"). Our Theorem 1 below is an extension
of this theorem in [3].

In [2], for the stationary queue length Q of a queueing system which satisfies some large devia-
tions conditions, it is shown that the P(Q > n) decays as P(Q > n) ~ ¢ exp(—6n) with a positive
constants 1 and 6. In [4], it is shown that the stationary waiting time W and queue length Q
decay exponentially for a broad class of queues with stationary input and service. In [14],[15], the
stationary distribution of M/G/1 or G/M/1 type Markov chains are deeply studied. In [17], the
tail of the waiting time in PH/PH/c queue is investigated. In [9], a sufficient condition is given for
the stationary probability of a Markov chain of GI/G/1 type to be light tailed.

This paper is organized as follows. In section 2, an application of our results to queueing analysis
is presented. In section 3, an example of a random variable is given whose tail probability does not
decay exponentially. In section 4, some Tauberian theorems are introduced and the relation to our
problems is stated. In section 5, some lemmas are given and our main theorem is proved in the case
of a pole of order 2. In section 6, the statement of lemmas and theorems are presented for a pole
of arbitrary order. We summarize out results in section 7. Finally, we will discuss in the appendix
the heavy tailed random variable and the LS transform of its probability distribution function.

Throughout this paper, we use the following symbols. C, R, Z, N*, R denote the set of
complex numbers, real numbers, integers, positive integers and the real part of a complex number,
respectively.
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2 Application to Queueing Analysis

The author already had results on the exponential decay of the tail probability for a discrete random
variable [10], and those for a general random variable [11]. The main theorem in [10] is as follows.

Theorem 1 [10] Let X be a random variable taking non-negative integral values, and f(z) be
the probability generating function of X. The radius of convergence of f(z) is denoted by r and
1 < r < o0 is assumed. If the singularities of f(z) on the circle of convergence |z| = r are only a
finite number of poles, then

1 _
nl_l*ngo - log P(X > n) = —logr. (2

We can apply Theorem 1 to queueing analysis as follows.

Consider, for example, the number of customers Q in the steady state of M/D/1 queue with
traffic intensity p. The probability generating function Q(z) = Ef;io P(Q = g)2? of Q is given by
Pollaczek-Khinchin formula [7):

_ (1=p)(z = 1 exp(p(z = 1))
Q(z) = ez -1) _ 3)
The radius of convergence of Q(z) is equal to the unique solution 2 = r > 1 of the equation
z —exp(p(z — 1)) = 0. Since Q(z) is meromorphic in the whole finite complex plane |z| < oo, in
particular, the singularities of Q(z) on the circle of convergence |z| = r are only a finite number of
poles. Therefore, by Theorem 1, we know that the tail probability P(Q > q) decays exponentially
as g — oo.
Next, in [11], the exponential decay of the tail probability P(X > z) is investigated for a general
non-negative real valued random variable X. The main theorem in [11] is as follows.

Theorem 2 [11] Let X be a non-negative random variable, and (s) be the Laplace-Stieltjes trans-
form of the probability distribution function of X. The abscissa of convergence of ¢(s) is denoted
by oo and —o0 < 0g < 0 is assumed. If the singularities of ©(s) on the azis of convergence Rs = o9
are only a finite number of poles, then we have

lim L log P(X > z) = 0q. 4)
00 r

Let us apply Theorem 2 to queueing analysis. In this case, however, the situation is somewhat
different from that in the case of discrete random variable.

Consider the sojourn time W in M/D/1 queue with traffic intensity p. Writing W(s) as the
Laplace-Stieltjes transform of the probability distribution function P(W < w) of W, we have [7]

_ (1= psexp(=e)
Wie) == p+ pexp(—8)’ )

The abscissa of convergence of W (s) is the unique negative solution s = o of the equation s — p+
pexp(—s) = 0. We can see that the singularity of W (s) on the axis of convergence Rs = oy is only



42

100 L) L L L ¥ T

°
°
80F % -
)
o
°

40

Ll
[ ]
L

N
o
L)
®
1

T oF - : ° -

Figure 1: The poles of W(3) in (5) with p = 0.5, s =0 +i7

a simple pole s = op [12]. In fact, the location of the poles of W(s) are shown in Figure 1. The
abscissa of convergence is 09 = —1.26 for p = 0.5. Though, it is not easy to prove that s = op is the
only singularity of W (s) on the axis of convergence. In order to prove it, we need some theorems
such as Rouché’s theorem.

The statement of Theorem 1 and 2 are formally quite the same, but to verify that the assumption
in Theorem 2 holds is more difficult than Theorem 1. This is because of the difference of the
convergence regions. In Theorem 1, the boundary of the convergence region of a power series is a
circle, which is a compact set, so if the probability generating function is meromorphic, then the
singularities on the circle of convergence are necessarily a finite number of poles. On the other
hand, in Theorem 2, the axis of convergence is not a compact set, so we need some verification to
see that the singularities on the axis of convergence are a finite number of poles. We want some
simple sufficient condition to guarantee the exponential decay of the tail probability. We see, in
fact, that the conclusion of Theorem 2 is really stronger than desired, so it may be possible to relax
the assumption that the number of poles on the axis of convergence is finite.

We have the following theorem. This is the main theorem in this paper.

Theorem 8 Let X be a non-negative random variable, and F(x) = P(X < z) be the probability
distribution function of X. Let

o(s) = /0 " e~%dF(z), s=o+ireC (6)

be the Laplace-Stieltjes transform of F(z) and o be the abscissa of convergence of p(s). We assume
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—o0 < 09 < 0. If s =09 is a pole of p(s), then we have

lim 1 log P(X > z) = op. (7

T—0o0

Remark 1 Since F(z) is non-decreasing, s = oo is a singularity of ¢(s) by Widder [18], p.58,
Theorem 5b. We assume tn Theorem 3 that this singularity is a pole.

3 Example of Random Variable whose Tail Probability does not
Decay Exponentially

We show an example of a non-negative random variable whose tail probability does not decay
exponentially, i.e., =1 log P(X > z) does not have a limit [11].
For any positive integer h, define a sequence {c,}32, by

c =0,
{cn=cn_1+h°"-1, n=12.... (8)

We define a function y(z) by
Y(x) =h™, for cn £ T < Cpy1, n=0,1,--. (9)

For arbitrary o9 < 0, put F*(z) = 1 — €7°%~(z), £ > 0. We see that F*(z) is right continuous
and non-decreasing with F*(0) = 0, F*(o0) = 1, hence F*(z) is a distribution function. Let us
define X* as a random variable with probability distribution function F*(z). We write ¢*(s) as
the Laplace-Stieltjes transform of F*(x). The following theorem shows that X* is an example of a
random variable whose tail probability does not decay exponentially.

Theorem 4 (see[11]) Let X*, F*(z) and @*(s) be defined as above. Then, the abscissa of conver-
gence of ¢*(8) is 0o, and we have

N | .
lﬁgleogP(X >z) <og—logh
< 09

= limsup é log P(X* > z).

T-+00

All the points on the axis of convergence Rs = oy are singularities of p(s).

Remark 2 From Widder [18], p.44, Theorem 2.4e, limsup, .,z log P(X > z) = oo holds
under the condition o9 < 0 and no other condition is necessary. Meanwhile, Theorem 4 implies
that some additional condition is required for iminf;—..o z71log P(X > z) = 0¢. In our Theorem
3, the additional condition is the analytic property of o(s). The example X* in Theorem 4 is in a
sense pathological, so we can expect that the exponential decay is guaranteed by some weak condition.
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4 Tauberian Theorems of Laplace Transform

Theorem 3 deals with an issue of how the analytic properties of the Laplace-Stieltjes transform
¢(8) determines the asymptotic behavior of the tail probability P(X > z). ¢(s) converges in the
region Rs > oo and defines an analytic function in this region. According to Widder [18], p.40,
Theorem 2.2b, we see that P(X > z) = 0(e?®) as £ — oo for 09 < ¢ < 0. The main problem
is whether P(X > z) decays as P(X > z) = O(e?°%) as x — oo. So, it is appropriate to apply
Tauberian theorems of Laplace transform to this problem.

In general, the relation between a function f and its transform Tf (such as power series,
Laplace transform, etc.) is investigated by Abelian theorems or Tauberian theorems. In Abelian
theorems, the asymptotic behavior of T f is studied from the asymptotic behavior of f. Conversely,
in Tauberian theorems, the asymptotic behavior of f is studied from that of T'f. In Tauberian
theorems, generally, some additional condition is required for f. Such an additional condition is
called a Tauberian condition. See [8] for the survey of the history and recent developments of
Tauberian theory.

4.1 Ikehara’s Tauberian Theorem

The following is Ikehara’s Tauberian theorem, in which an analytic property of Laplace-Stieltjes
transform is assumed. The Tauberian condition is the non-decreasing property of the function S(¢).

Theorem (lkehara [6), see also [8]) Let S(t) vanish for t < 0, be non-decreasing, right continuous,
and the integral

(o o] .
e(8) = / e~%dS(t), s=o +ir (10)
, ()} ‘
exist for 0 > 1. There exists a constant A such that the analytic function
A
po(8) = ¢(8) = —, Rs > 1 (11)

converges as o | 1 to the boundary function po(1 + iT) uniformly (or in L) for —A < 7 < X with
any A > 0. Then we have

Jim e~tS(t) = A. (12)

4.2 Finite Form of Ikehara’s Theorem by Graham-Vaaler

In Ikehara’s theorem, since A > 0 is arbitrary, ((s) is assumed to be analytic on the whole axis
of convergence Rs = op except the pole s = 0¢. As mentioned previously, because the axis of ‘
convergence is not compact, it is difficult to check whether o(s) satisfies the theorem assumption
or not. The following extension by Graham-Vaaler [5] solves this difficulty by relaxing the limit
(12) of e~tS(t). This theorem is called a finite form of Ikehara's theorem because A is restricted to
some range of values.

We make preliminary definitions in order to state Graham-Vaaler’s theorem.

For w > 0, define a function E,(t) by

—wt, 120,
B®={5" 120 (13)
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For A > 0, a real function f(z) is of type X if f(z) is the restriction to R of an entire function f(z2)
of exponential type A. An entire function f(z) is of exponential type A [16] if it satisfies

|f(2)] < Cexp(M|2]), z€C, C>0, A>0. (14)

A function f(z) is a majorant for a function g(z) if f(z) > g(z) for any = € R, and f(z) is a
minorant for g(z) if f(z) < g(z) for any = € R.

Theorem (Graham-Vaaler [5], see also [8]) Let S(t) vanish for t < 0, be non-decreasing, right
continuous, and the integral

00
() = / e~*'dS(t), s =0 +ir (15)
0.
exist for o > 1. There exists a constant A such that the analytic function
A
wo(8) = (s) — T Re>1 (16)

converges as o | 1 to the boundary function po(1 + it) uniformly (or in L) for =\ < 7 < X with
some A > 0. Then, for any majorant M(t) for E\(t) of type A and any minorant m(t) for Ey(t) of
type A, we have :

{o o]
A / m(t)dt < lim inf e~ S(z) an
—00 t—o0
o0
< limsupe™*S(t) < A/ M(t)dt. (18)
t—00 -0

5 Main Theorem

We write below our main theorem again. By this theorem, we do not need to check the location
of singularities of the LS transform ¢(s) and if ¢(s) is meromorphic then the assumption of the
theorem is necessarily satisfied.

Theorem 3 Let X be a non-negative random variable, and F(z) = P(X < z) be the probability '
distribution function of X. Let

o(s) = /0 " e dF(z) (19)

be the Laplace-Stieltjes transform of F(x) and oo be the abscissa of convergence of p(s). We assume
—00 < 09 < 0. If s =09 s a pole of ¢(s), then we have

L1
zlinono o log P(X > z) = 0y. (20)
It is possible to give a proof for arbitrary order of poles, but the description becomes very

complicated, so we will prove only for the pole of order 2. A proof for higher order poles is easily
obtained from the proof for the pole of order 2.



5.1 Preliminary Lemmas for the Proof of Main Theorem

For w > 0, we define functions

3

R(v) vER,

T1—ev

R,(v) = R(v +w) — R(w) — R'(w)v — @02, veR.

We have the following lemmas.

Lemma 1 There exists wg > 0 such that for any w 2 wy,
R,(v) 20, v20,
{ m(v)so, v<O.

Proof: See [13].

Lemma 2 For sufficiently large v > 0,

3v?
1—e-?’
6
1—ev’

R'(v) <

R"(v) <
Proof: See [13].

Lemma 3 There exists wo > 0 such that for any w 2 wy,

1
1= e_w'v3, v2>0.

Ru(v) <
Proof: See [13].

Lemma 4 There erists wo > 0 such that for any w > wo,

R" ( w)
t4

0 -~
—/ R, (v)edv < , t>0.
-0

Proof: See [13].
Now, for w > 0, define two functions M, (t), m.(t) as follows.

. 4
M, (t) = -:; (s”;’”) Qu(t), —00 < t < o0,
N 6 6w 3w? wd R(w) R'(w)
Q“”=Z;e {uany'a-nw+u—nﬂ“t—n}+ t +
. 4 .
ma(t) = Ma(t) - 7 _1e_w (s‘frt”t) . —00 < t < oo

46

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

Lemma 5 There exists wy > 0 such that for any w > wp, M, (t) is a majorant for E,(t) of type 47
and [°° M, (t)dt < oo, moreover, my(t) is a minorant for E,(t) of type 4w and 2o Muw(t)dt > 0.

Proof: See [13].
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5.2 Extension of Graham-Vaaler’s Theorem

Substituting t — —%t into E,(t) defined by (13), we have

Eo(=73t) = By (1) (31)

Define A = 27 /w and
My (t) = Mw(—-‘Z—ft), teR, w>0, (32)
Mo (t) = mw(—%t), teR, w>0, (33)

then both M) ,,(t) and my 4,(t) are of type —209A. From Lemma 5, for sufficiently small A > 0,
M) 0,(t) and my o, (t) are majorant and minorant for Eq,(t), respectively.
Based on Lemma 5, we can calculate

fod w % gint\* w 3w? , © gintt
/_wm,,o(t)dt_---——-—--m(l_e_w) /:w (T) - s {1-e—w —R(w)}/ St

T
< 00, (35)

ot w 3w? , % gintt
[t =g {2 - r)} [T Bt (36)
> 0. (37)

We have the following theorem. The proof is an extension of the proof of Graham-Vaaler’s
Tauberian theorem to the case that the pole is of order 2.

Theorem 5 Let X be a non-negative random variable and ¢(s) be the Laplace-Stieltjes transform
of the probability distribution function F(z) of X. The abscissa of convergence of p(8) is denoted
by 00 and —oco < 0g < 0 is assumed. Let s = oo be a pole of p(s) of order 2 and p(s) be analytic
on the interval {8 = 0g + i7| 200\ < T < —200A} for some A > 0 except 8 = g9. Write A2 as the
coefficient of (s — g9)~2 in the Laurent expansion of ¢(s) at s = 0g. Then, we have

o0
A2 / M) g0 (t)dt < liminfz~le™7* P(X > x)
—0 T—00 .

T—=>00

< limsupz~le °*P(X > z)
> .
< A2 / M), o, (t)dt.
—00

Proof: See [13].
Proof of Theorem 3: See [13].
We immediately obtain the following corollaries of Theorem 3.

Corollary 1 Let X be a random variable taking non-negative integral values, and

f(2) = 2520 P(X = n)z" the probability generating function of X. The radius of convergence of
f(2) is denoted by r and 1 < r < oo is assumed. If z = r is a pole of f(z), then the tail probability
P(X > n) decays exponentially.
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Corollary 2 (cf. Cauchy-Hadamard's formula) Let {an}32, be non-negative, non-increasing se-
[ ]

quence and f(z) = Z an2". Letr denote the radius of convergence of f(z). We assume 1 < r < oo.
n=0

If z =1 is a pole of f(z), then we have

lim a}/™ =r71, (38)

n—0o0

6 Lemmas and Theorems for a Pole of Arbitrary Order

In the last section, we proved lemmas and theorems for a pole of order 2. We here provide the
statement of lemmas and theorems for a pole of arbitrary order, corresponding to each lemma and
theorem in the last section.

Let D be the order of the pole s = gg of the Laplace-Stieltjes transform ¢(s). First, define

_ [ D, if D is odd,
K= { D +1, if D is even, (39)
so, K is always odd. Then, define
K
R(v) = —= Y €R, (40)
r(v) = v, veR, (41)
K-1
Rk
R,(v) = R(v +w) — kzo k'(“’) v*, w>0, veR, (42)

where R*¥) denotes the k-th derivative of R.
We show below Lemmas 1*-5* and Theorem 5* corresponding to Lemmas 1-5 and Theorem 5
in the last section, respectively.

Lemma 1* There extsts wp > 0 such that for any w 2 wy,

{ I:'t’w(v) >0, v20, (43)
R,(v) <0, v<O.
Lemma 2* For sufficiently la;rye v >0,
R®)(y) < (”) , k=13, K. (44)
Lemma 3* There exists wo > 0 such that for any w > wg,
Ry() < 7 _16_va , v20. (45)

Lemma 4* There erists wg > 0 such that for any w 2 wo,

/ R,(v)etdv < R; +(:') ), t>0. (46)
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Define two functions M, (¢) and m,(¢) as follows.

: K+1 .
M, (t) = -1-' (S";"t) * Qu(t), —o0 < t < 00, (47)
K+1 kr(k 1) (=1)kr(;-D(w) K 1)k-1 (k—l)
. K
ma(t) = Ma(t) - 1 _le_w (S‘:t”t) +1, —00 < t < 0. (49)

Lemma 5* There ezists wp > 0 such that for any w > wo, My(t) is a majorant for E,(t) of type
(K + 1)m and f‘;o M, (t)dt < 0o, moreover, m,(t) is a minorant for E,(t) of type (K + 1)x and
J25 mu(t)dt > 0.

Let A = 27 /w and define
ao
o
Moo (t) = mw(-ft), teR. (51)

Both M), 4,(t) and m) 4,(t) are of type ~200A. By Lemma 5*, there exists Ao > 0 such that for
any A < Ao, M) g,(t) is a majorant and m) 4, () is a minorant for E,,(t), respectively.
We can calculate [0 M) o, (t)dt and [%°_m o, (t)dt as follows.

sing ¥*1
J ottt =t [ (5F)

K-1 .
hd 1 rk- )(w) k-1 © ginK+1¢
K log Z nK+2—k { 1—e- — R! )(w) _/: v dat, (52)
- k=2, k:even oo
< 00, (53)

o K-1 (k-1) 00 i K+1
w 1 r*=1(w) k-1 / sin” " ¢
Mg (t)dt = ——— — R*-1(y, dt (54
. A,ao( ) K'O‘o e 2%\,“ 7rl(+2—k { 1—ew ( ) oo tk ( )

> 0. ' (55)

Theorem 5* Let X be a non-negative random variable and ¢(s) be the Laplace-Stieltjes transform
of the probability distribution function F(z) of X. The abscissa of convergence of p(8) is denoted
by 09 and —o0 < g9 < 0 is assumed. Let s = oo be a pole of ¢(s) of order D and ¢(s) be analytic
on the interval {s = 0g + iT | 209\ < T < —209A} for some A > 0 except s = 0g. Write Ap as the
coefficient of (s — 0p) ™D in the Laurent ezpansion of ¢(s) at s = ap. Then, we have

(s o}
AD/ My 0 (t)dt < liminf 2~ P+le=90 P(X > 2)
—o z—00

< limsupz~P*le 9 P(X > z)

—00

00
—00
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7 Conclusion

We investigated a sufficient condition for the exponential decay of the tail probability P(X > z)
of a non-negative random variable X. For the Laplace-Stieltjes transform ¢(s) of the probability
distribution function of X with abscissa of convergence o9, —00 < 09 < 0, we showed that if
s = gy is a pole of ¢(s) then the tail probability decays exponentially. If p(s) is given explicitly,
then this sufficient condition is easy to check. For the proof of our main theorem, we extended
Graham-Vaaler’s Tauberian theorem to the case that the order of the pole of ¢(s) is arbitrary.
Now, I have proved the conjecture that was written in [11].

Appendix
Conjecture on the Heavy Tailed Random Variable

Let X be a non-negative random variable. X is called a heavy tailed random variable, or simply,
heavy tailed if the limit

lim logP(X >x)

z—00 logz - (56)

exists and is a negative finite value.
Now, let us consider an example. Let X be a random variable with the probability distribution
function F(z) =1 - 1/z, £ 2 1. Of course, we have the tail probability of X as

PX>z)= -;—3, 21, (87)

hence the limit of (56) is —1 in this case. The Laplace-Stieltjes transform ¢(s) of F(z) is given by
p(s) = [{° e *®dF(z), Rs > 0. Since p(s) = [, [ e7*2/s3ds2ds1 holds for s > 0, by the analytic
continuation, we have in a neighborhood of s =0

¢(8) = slog s + h(s), (58)

where h(s) is holomorphic at s = 0 with h(0) = 1. .
Based on the observation in the case of exponential decay and the above example, we have the
following conjecture.

Conjecture

Let X be a non-negative random variable and F(x) be the probability distribution function of X.
Let (s) be the Laplace-Stieltjes transform of F(z) and oy be the abscissa of convergence of (s).
We assume o9 = 0. If ¢(s) can be represented in a neighborhood of s = 0 as

p(s) = s"log s + h(s), n € N*, (59)
where h(s) is holomorphic at s = 0 with h(0) = 1, then X is heavy tailed with

lim 18PX>2)
z—00 log x

(60)
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