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Abstract

In this paper, some definite applications of the theory of reproduc-
ing kernels to the Tikhonov regularization representing the extremaJ
functions in the regularization are introduced with typical examples.

1 Introduction
Let $E$ be an arbitrary set, and let $H_{K}$ be the reproducing kemel Hilbert
space (RKHS) admitting a reproducing kemel $K(p, q)$ on $E$ . For any Hilbert
space $\mathcal{H}$ we consider a bounded linear operator $L$ from $H_{K}$ into $\mathcal{H}$ . We shall
consider the best approximate problem

$\inf_{f\in\kappa}\Vert Lf-b\Vert_{\mathcal{H}}$ (1)

for a vector $b$ in $\mathcal{H}$ . Then, we have
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Proposition 1.1 $([1,1^{\wedge}\prime J)$ For a vector $b$ in $\mathcal{H}$ , there exists a function $f$ in
$H_{K}$ such that

$\inf_{f\in H_{K}}\Vert Lf-b\Vert_{\mathcal{H}}=\Vert Lf-b\Vert_{\mathcal{H}}$ (2)

if and only if, for the RKHS $H_{k}$ admitting the reproducing kemel defined by

$k(p, q)=(L^{*}LK(\cdot, q),$ $L^{*}LK(\cdot,p))_{H_{K}}$ , (3)

$L^{*}b\in H_{k}$ . (4)

Furthermore, \’if the best approximation $f$ satisfying (2) erzsts, then there
exists a unique extremal function $f_{b}$ with the minimum norm in $H_{K}$ , and
the function $f_{b}$ is expressible in the form

$f_{b}(p)=(L^{*}b, L^{*}LK(\cdot,p))_{H_{k}}$ on E. (5)

In Proposition 1.1, note that

$(L^{*}b)(p)=(L^{*}b, K(\cdot,p))_{H_{K}}=(b, LK(\cdot,p))_{\mathcal{H}}$ ; (6)

that is, $L^{*}b$ is expressible in terms of the known $b,$ $L,$ $K(p, q)$ and $\mathcal{H}$ . $f_{b}$

in (5) is the Moore-Penrose generalized inverse solution $L\dagger b$ of the equation
$Lf=b$. Therefore, Proposition 1.1 gives a necessary and sufficient condition
for the existence of the Moore-Penrose generalized inverse. Proposition 1.1
is rigid and is not practical in practical applications, because, practical data
contain noise or errors and the criteria (4) is not suitable. So, we shall
consider the Tikhonov regularization and we shall establish a good relation
between the Tikhonov regularization and the theory of reproducing kernels.
For the Tikhonov regularization, see, for example, $[3,4]$ .

2 Spectral theory

In order to discuss operator equations for general bounded linear operators
$L,$ $followi\dot{n}g[3]$ we shall fix the well-established theory among spectral theory,
the Moore-Penrose generalized inverse and the Tikhonov regularization. See
[4] for the corresponding results for compact operators $L$ .
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Let $\{E_{\lambda}\}$ be a spectral family for the self-adjoint operator $L^{*}L$ . If $L^{*}L$ is
continuously invertible, then

$(L^{*}L)^{-1}= \int\frac{1}{\lambda}dE_{\lambda}$ .

In this case, the Moore-Penrose generalized inverse (5) can be represented
by the Gaussian normal equation

$f_{b}(p)= \int\frac{1}{\lambda}dE_{\lambda}L^{*}b$. (7)

If $\mathcal{R}(L)$ is non-closed and $b\not\in \mathcal{D}(L^{\uparrow})$ , i.e. if the equation $Lf=b$ is
ill-posed, then the integral in (7) does not exist. Then, we shall define, for
any fixed positive $\alpha>0$

$f_{b_{\alpha}}(p)= \int\frac{1}{\lambda+\alpha}dE_{\lambda}L^{*}b$ . (8)

By construction, the operator on the right-hand side of (8) acting on $b$

is continuous, so that, for noisy data $b^{\delta}$ with 11 $b-b^{\delta}||_{\mathcal{H}}\leq\delta$ , we can bound
the error between $f_{b,\alpha}$ and

$f_{b_{\alpha}}^{\delta}(p)= \int\frac{1}{\lambda+\alpha}dE_{\lambda}L^{*}b^{\delta}$ (9)

as follows:

Proposition 2.1 ($[5]_{f}$ pages 71-73) For any $b\in D(L^{\uparrow})$ ,

$\lim_{\alphaarrow 0}\frac{1}{L^{*}L+\alpha I}L^{*}b=\lim_{\alphaarrow 0}f_{b_{\alpha}}=f_{b}$ . (10)

hrthermore,
$||Lf_{b_{\alpha}}-Lf_{b_{\alpha}}^{\delta}||_{\mathcal{H}}\leq\delta$ (11)

and
$||f_{b_{\alpha}},-f_{b_{\alpha}}^{\delta}||_{H_{K}} \leq\frac{\delta}{\sqrt{\alpha}}$ (12)

3



Proposition 2.2 ($/3J_{f}$ pages 117-118) For any $b\in \mathcal{D}(L^{\uparrow})$ with 11 $b-b^{\delta}||_{\mathcal{H}}\leq$

$\delta$ , the function $f_{b_{\alpha}}^{\delta}$ defined by (9) is the unique minimizer of the Tikhonov

functional

$\inf_{f\in\kappa}\{\alpha||f\Vert_{H_{K}}^{2}+||b^{\delta}-Lf||_{\mathcal{H}}^{2}\}$ . (13)

$lf\alpha=\alpha(\delta)$ is such that
$\lim\alpha(\delta)=0$
$\deltaarrow 0$

and
$\delta^{2}$

$\lim_{arrow 0\overline{\alpha(\delta)}}=0$
,

then

$\lim_{\deltaarrow 0}f_{b_{\alpha}}^{\delta}=f_{b}=L^{\dagger}(b)$ . (14)

Since practical data contain noise and errors, these results are very important.

3 Representation of the extremal functions
in Tikhonov regularization

Our $ma\dot{i}$ purpose here is to give an effective representation of the extremal
functions $f_{b_{\alpha}}$ or $f_{b_{\alpha}}^{\delta}$ in the Tikhonov regularization, since the representation
by spectral theory is abstract, in many practical problems.

We set, for any fixed positive $\alpha>0$

$K_{L}( \cdot,p;\alpha)=\frac{1}{L^{r}L+\alpha I}K(\cdot,p)$ .

Then, by introducing the inner product,

$(f, g)_{H_{K}(L;\alpha)}=\alpha(f, g)_{H_{K}}+(Lf, Lg)_{\mathcal{H}}$ , (15)

we shall construct the Hilbert space $H_{K}(L;\alpha)$ comprising functions of $H_{K}$ .
This space, of course, admits a reproducing kernel. Furthermore, we obtain,
directly
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Proposition 3.1 ([19]) The extremal function $f_{b_{\alpha}}(p)$ in the Tikhonov reg-
ularization

$\inf_{f\in H_{K}}$ { $\alpha\Vert f\Vert_{H_{K}}^{2}+\Vert$b–Lf $\Vert_{\mathcal{H}}^{2}$ } (16)

is represented in terms of the kemel $K_{L}(p, q;\alpha)$ as follows:

$f_{b_{a}}(p)=(b, LK_{L}(\cdot,p;\alpha))_{\mathcal{H}}$ (17)

where the kemel $K_{L}(p, q;\alpha)$ is the reproducing kemel for the Hilbert space
$H_{K}(L;\alpha)$ and it is determined as the unique solution $\tilde{K}(p, q;\alpha)$ of the equa-
tion:

$\tilde{K}(p, q;\alpha)+\frac{1}{\alpha}(L\tilde{K}_{q}, LK_{p})_{\mathcal{H}}=\frac{1}{\alpha}K(p, q)$ (18)

with
$\tilde{K}_{q}=\tilde{K}(\cdot, q;\alpha)\in H_{K}$ for $q\in E$ , (19)

and
$K_{p}=K(\cdot,p)\in H_{K}$ for $p\in E$ .

In (17), when $b$ contains errors or noise, we need its error estimate. For
this, we can obtain the general result:

Theorem 3.1 $([14], /\delta])$ . In (17), we obtain the estimate

$|f_{b_{\alpha}}(p)| \leq\frac{1}{\sqrt{\alpha}}\sqrt{K(p,p)}\Vert b||_{\mathcal{H}}$ .

For many concrete applications of these general theorems, see, for exam-
ple, [5, 8-16,18-26].
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4 Discretization
In several concrete examples, we consider as the reproducing kernel Hilbert
space $H_{K}$ the Sobolev Hilbert spaces on the whole spaces which admit con-
crete reproducing kernels and as the Hilbert space $\mathcal{H}$ the Hilbert spaces $L_{2}$ on
the whole spaces. Then the related reproducing kernels $K_{L}(p, q;\alpha)$ and the
extremal functions $f_{b_{\alpha}}$ can be determined concretely in terms of the Fourier
integrals from the general equation (18). See, [8-11,13,19-21]. Here, we shall
propose a new algorithm to solve numerically the equation (18) which is, in
general, an integral equation of Fredholm of the second kind. Our algorithm
will give a new type discretization whose effectivity was proved by examples
([8]), since to solve the equation (18) is decisively important to obtain the
concrete representation (17).

We take a complete orthonormal system $\{e_{j}\}_{j=1}^{\infty}$ of the Hilbert space $\mathcal{H}$ .
For fixed $\{\lambda_{j}\}_{j=1}^{\infty}(\lambda_{j}>0)$ , we consider the general extremal problem for

(16)

$\inf_{f\in H_{K}}\{\alpha||f||_{H_{K}}^{2}+\sum_{j=1}^{\infty}\lambda_{j}|(b-Lf, e_{j})_{\mathcal{H}}|^{2}\}$ . (20)

That is,
$\Vert b-Lf||_{\mathcal{H}}^{2}$

is replaced by

$\sum_{j=1}^{\infty}\lambda_{j}|(b, e_{j})_{\mathcal{H}}-(Lf, e_{j})_{\mathcal{H}}|^{2}$ .

Then, we shall give an algorithm constructing the reproducing kernel $K_{\alpha,\lambda_{j}}(p, q)$

of the Hilbert space $H_{K_{\alpha,\lambda_{j}}}$ with the norm square

$\alpha||f||_{H_{K}}^{2}+\sum_{j=1}^{\infty}\lambda_{j}|(Lf, e_{j})_{\mathcal{H}}|^{2}$. (21)

Here, of course, we assume that (21) converges for $\{\lambda_{j}\}_{j=1}^{\infty}(\lambda_{j}>0)$ . However,
in a practical application, of course, we consider only finite terms in (21) and
by finite terms we can give a good approximation of (21).

We shall start with the first step. The reproducing kernel $K^{(1)}(p, q)$ of
the Hilbert space with the norm square
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$\alpha||f||_{H_{K}}^{2}+\sum_{j=1}^{1}\lambda_{j}|(Lf, e_{j})_{\mathcal{H}}|^{2}$ (22)

is given by

$K^{(1)}(p, q)=K^{(0)}(p, q)- \frac{\lambda_{1}(e_{1},LK_{p}^{(0)})_{\mathcal{H}}(LK_{q}^{(0)},e_{1})_{\mathcal{H}}}{1+\lambda_{1}(L(e_{1},LK_{q}^{(0)})_{\mathcal{H}},e_{1})_{\mathcal{H}}}$, (23)

for
$K^{(0)}(p, q)= \frac{1}{\alpha}K(p, q)$ .

For the second step, the reproducing kernel $K^{(2)}(p, q)$ of the Hilbert space
with the norm square

$\alpha\Vert f||_{H_{K}}^{2}+\sum_{j=1}^{2}\lambda_{j}|(Lf, e_{j})_{\mathcal{H}}|^{2}$ (24)

is given by

$K^{(2)}(p, q)=K^{(1)}(p, q)- \frac{\lambda_{2}(e_{2},LK_{p}^{(1)})_{\mathcal{H}}(LK_{q}^{(1)},e_{2})_{\mathcal{H}}}{1+\lambda_{2}(L(e_{2},LK_{q}^{(1)})_{\mathcal{H}},e_{2})_{\mathcal{H}}}$, (25)

by using the reproducing kernel $K^{(1)}(p, q)$ . In this way, we can obtain the
desired representation of $K_{\alpha,\lambda_{j}}(p, q)=K^{(\infty)}(p, q)$ . Then, we obtain

Proposition4.1 For any $b\in \mathcal{H}$ , the extremal function $f_{\alpha,\lambda}b$ in the ex-
tremal problem (20) is given by

$f_{\alpha,\lambda}b(p)= \sum_{j=1}^{\infty}\lambda_{j}(b, e_{j})_{\mathcal{H}}(e_{j}, LK_{\alpha,\lambda_{j}}(\cdot,p))_{\mathcal{H}}$, (26)

where we assume that (21) converges on $E$ .

We consider a general extremal problem in (20) by considering a general
weight $\{\lambda_{j}\}$ . This means that for a larger $\lambda_{jo}$ , the speed of the convergence

$(Lf, e_{j_{0}})_{\mathcal{H}}arrow(b, e_{j_{0}})_{\mathcal{H}}$

is higher. This technique is a very important for practical applications. For
examples, see [10].
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5 Error estimate
In the representation of (26), when the data $(b, e_{j})_{\mathcal{H}}$ contain errors or noise,
we need its error estimate. For this we obtain the good result, which is
corresponding to Proposition 2.2:

Theorem 5.1 In (26), we obtain the estimate

$|f_{\alpha,\lambda,b}(p)|$

$\leq\frac{1}{\sqrt{\alpha}}(\sum_{j=1}^{\infty}(\lambda_{j}|(b, e_{j})_{\mathcal{H}}|^{2}))^{1’2}\sqrt{K(p,p)}$ . (27)

6 Discrete point data case
As a very general algorithm, we shall consider the discrete point data case
such that: In (16), we shall consider the corresponding problem:

(28)$\inf_{f\in H_{K}}\{\alpha||f||_{H_{K}}^{2}+\sum_{j=1}^{\infty}\lambda_{j}|f(p_{j})-b_{j}|^{2}\}$ ,

for fixed discrete points $\{p_{j}\}_{j}$ of the set $E$ and for given values $\{b_{j}\}_{j}$ . Then,

the corresponding kemels for (23) and (25) are given similarly

$K^{(1)}(p, q; \{p_{1}\})=K^{(0)}(p, q)-\frac{\lambda_{1}K^{(0)}(p,p_{1})K^{(0)}(p_{1},q)}{1+\lambda_{1}K^{(0)}(p_{1},p_{1})}$ , (29)

and

$K^{(2)}(p, q; \{p_{1},p_{2}\})=K^{(1)}(p, q;\{p_{1}\})-\frac{\lambda_{2}K^{(1)}(p,p_{2};\{p_{1}\})K^{(1)}(q,p_{2};\{p_{1}\})}{1+\lambda_{2}K^{(1)}(p_{2},p_{2};\{p_{1}\})}$ .
(30)

In this way, we obtain the reproducing kernel $K_{\alpha,\lambda_{j}}(p, q;\{p_{j}\})$ and the cor-
responding results:

Theorem 6.1 For any $\{b_{j}\}$ , the extremal function $f_{a,\lambda,\{b_{j}\}}$ in the extremal
problem (28) is given by
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$f_{\alpha,\lambda,\{b_{j}\}}(p)= \sum_{j=1}^{\infty}\lambda_{j}b_{j}K_{\alpha,\lambda_{j}}(\cdot,p;\{p_{j}\})$ , (31)

where we assume that $(Sl)$ converges on E. Furthermore, we obtain the
estimate

$|f_{\alpha,\lambda,\{b_{j}\}}(p)|$

$\leq\frac{1}{\sqrt{\alpha}}(\sum_{j=1}^{\infty}(\lambda_{j}|b_{j}|^{2}))^{1/2}\sqrt{K(p,p)}$ . (32)

The most prototype application of the general theory of this paper is a
simple construction of the Moore-Penrose generalized inverse for any matrix:

A Construction of a Natural Inverse of Any Matrix by Using
the Theory of Reproducing Kernels by K. Iwamura, T. Matsuura and
S. Saitoh (PAJMS Vol. 1 no: 2 (December 2005)).

7 A typical example for the inversIon of the
heat conduction

We shall give simple approximate real inversion formulas for the Gaussian
convolution (the Weierstrass transform)

$u_{F}(x,t)=(L_{t}F)(x)= \frac{1}{(4\pi t)^{n/2}}\int_{R^{n}}F(\xi)\exp\{-\frac{|\xi-x|^{2}}{4t}\}$ ae (33)

for the functions of $L_{2}(R^{n})$ . This integral transform which represents the
solution $u(x, t)$ of the heat equation

$u_{t}(x,t)=u_{xx}(x,t)$ on $R^{n}\cross\{t>0\}$

$satis\theta ing$ the initial condition

$u(x,0)=F(x)$ on $R^{n}$ ,

is very fundamental and has many applications to mathematical sciences.
Over twenty years ago, in the one dimensional case $n=1$ , the author [17]

gave a surprise characterization of the image $u_{F}(x, t)$ of (33) for $L_{2}(R)=$
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$L_{2}(R, dx)$ functions in terms of an analytic function and established a very
simple complex inversion formula. The paper created a new method and
many applications to general integral transforms in the framework of Hilbert
spaces and analytic extension formulas. See, for example [17] and [27], and
their many references. However, in particular, its real inversion formulas are
very involved, for example, recall that:

For a bounded and continuous function $F(x)$ and for $t=1$ , for the
differential operator $D= \frac{d}{dx}$

$e^{-D^{2}}[(L_{1}F)(x)]=F(x)$ pointwisely on $R$

([29]). So, one might think that its real inversion formulas will be essentially
involved for catching “ analyticity” in terms of the data on the real line as in
the real inversion formulas of the Laplace transform. See also $[6,7]$ for recent
related articles.

Indeed, this inverse problem is very famous as a typical ill-posed problem
that is very difficult.

In those papers $[22,13]$ , however we were able to obtain simple and prac-
tical approximate real inversion formulas by the method in Section 6 using
the Sobolev reproducing Hilbert spaces. IMrthermore, we illustrated their
numerical experiments by using computers and we can realize that we were
able to obtain practical real inversion formulas.

In [14], we applied the Paley-Wiener spaces as the reproducing kernel
Hilbert spaces in the above theory and we got an improved numerical inver-
sion.

At first we shall fix notations and basic results in the Paley-Wiener spaces
and at the same time we shall show the basic relation of the sampling theory
and the theory of reproducing kernels.

We shall consider the integral transform, for $L_{2}(R^{n}, (-\pi/h, +\pi/h)^{n}),$ $(h>$

$0)$ functions $g$

$f(z)= \frac{1}{(2\pi)^{n}}\int_{R^{n}}\chi_{h}(t)g(t)e^{-iz}{}^{t}dt$ . (34)

Here, $z=(z_{1}, z_{2}, \ldots, z_{n}),t=(t_{1}, t_{2}, \ldots, t_{n}),$ $dt=dt_{1}\cdot dt_{2}\cdots dt_{n},$ $z\cdot t=z_{1}t_{1}+$

. . . $+z_{n}t_{n}$ and

$\chi_{h}(t)=\Pi_{\nu=1}^{n}\chi(t_{\nu}, (-\pi/h, +\pi/h))$ ,
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the characteristic function $\chi$ of $(-\pi/h, +\pi/h)$ . In order to identify the image
space, we form the reproducing kernel

$K_{h}(z, \overline{u})=\frac{1}{(2\pi)^{n}}\int_{R^{n}}\chi_{h}(t)e^{-iz}{}^{t}\overline{e^{-iu}}{}^{t}dt$ (35)

$= \Pi_{\nu}^{n}\frac{1}{\pi(z_{\nu}-\overline{u}_{\nu})}\sin\frac{\pi}{h}(z_{\nu}-\overline{u}_{\nu})$ .

$Comp^{risedofa11ana1yticfunctionsofexponentia1typesatis\theta ing}Theimagespaceof(34)isca11edthePa1ey- WienerspaceW(\frac{\pi}{h}l_{ore,.ach\nu}^{(:=W_{h})}$

,
for some constant $C_{\nu}$ and as $z_{\nu}arrow\infty$

$|f(z_{1}, \ldots, z_{\nu}, z_{\nu+1}, \ldots, z_{n})|\leq C_{\nu}$ exp $( \frac{\pi|z_{\nu}|}{h})$

and
$\int_{R^{n}}|f(x)|^{2}dx<\infty$ .

From the identity, for multi-index $j=(j_{1},j_{2}, \ldots,j_{n})\in \mathcal{Z}^{n}$

$K_{h}(jh,j’h)= \Pi_{\nu=1}^{n}\frac{1}{h}\delta(j_{\nu},j_{\nu}’)$

(the Kronecker’s $\delta$), for each $\nu$ , since $\delta(j_{\nu},j_{\nu}’)$ is the reproducing kernel for the
Hilbert space $\ell^{2}$ , from the Parseval’s identity we have the isometric identities
in (34)

$\frac{1}{(2\pi)^{n}}\int_{R^{n}}|g(t)|^{2}dt=$
$h^{n} \sum_{j}|f(jh)|^{2}$

$\int_{R^{n}}|f(x)|^{2}dx$ .

That is, the reproducing kernel Hilbert space $H_{K_{h}}$ with $K_{h}(z,\overline{u})$ is character-
ized as a space comprising the Paley-Wiener space $W_{h}$ and with the norms
above in the both senses of discrete and continuous versions. Here we used
the well-known result that $\{jh\}_{j}$ is a uniqueness set for the Paley-Wiener
space $W_{h}$ ; that is, $f(jh)=0$ for all $j$ implies $f\equiv 0$ . Then, the reproducing
property of $K_{h}(z,\overline{u})$ states that

$f(x)=(f( \cdot), K_{h}(\cdot, x))_{H_{K_{h}}}=h^{n}\sum_{j}f(jh)K_{h}(jh, x)$
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$= \int_{R^{n}}f(\xi)K_{h}(\xi, x)d\xi$,

in particular, on the real space $x$ . This representation is the sampling theorem
which represents the whole data $f(x)$ in terms of the discrete data $\{f(jh)\}_{j}$ .
For a general theory of sampling and error estimates for some finite points
$\{hj\}_{j}$ , see [17].

Following our general theory, we can obtain the concrete results:

Proposition 7.1 ([14]) For any function $g\in L_{2}(R^{n})$ and for any $\lambda>0$ ,
the best approximate function $F_{t,\lambda,h,g}^{*}$ in the sense

$\inf_{F\in H_{K_{h}}}\{\lambda||F\Vert_{H_{K_{h}}}^{2}+||g-u_{F}(\cdot,t)\Vert_{L_{2}(R^{n})}^{2}\}$

$=\lambda\Vert F_{t,\lambda,h,g}^{*}\Vert_{H_{K_{h}}}^{2}+\Vert g-u_{F_{t\lambda,h,g}}\cdot,(\cdot,t)||_{L_{2}(R^{n})}^{2}$ (36)

exists uniquely and $F_{t,\lambda,h,g}^{*}$ is represented by

$F_{t,\lambda,h,g}^{*}(x)= \int_{R^{n}}g(\xi)Q_{t,\lambda,h}(\xi-x)\not\in$ (37)

for
$Q_{t,\lambda,h}( \xi-x)=\frac{1}{(2\pi)^{n}}\int_{R^{n}}\frac{\chi_{h}(p)e^{-ip\cdot(\xi-x)}dp}{\lambda e^{|p|^{2}t}+e^{-|p|^{2}t}}$ .

$lf$, for $F\in H_{K_{h}}$ we consider the output $u_{F}(x, t)$ and we take $u_{F}(\xi, t)$ as
$g$, then we have the result: as $\lambdaarrow 0$

$F_{t,\lambda,h,g}^{*}arrow F$, (38)

uniformly.

Here we note the fact that for the Sobolev space case, for $\lambda=0$ the
corresponding representation (37) does not exist ([22],[13]), meanwhile for
the Paley-Wiener space $W( \frac{\pi}{h})$ case of (37), for $\lambda=0$ the representation
(37) is still valid; that is, in Proposition 7.1, the result is valid for even
$\lambda=0$ . Hence, we can consider the results for $\lambda=0$ in the spirit of Tikhonov
regularization in which we are interested in a small $\lambda$ or $\lambda$ tending to zero.
That is, when we use the Paley-Wiener space $W( \frac{\pi}{h})$ , we need not to consider
the Tikhonov regularization. Then,
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$(L_{t}F_{t,0,h,g}^{*})(x)=(g(\cdot), K_{h}(\cdot, x))_{L_{2}(R^{n})}$

as we see from (35). Since the output is the orthogonal projection of $g$ onto

$of_{0}urinverseF_{t,0,h,g}^{*}\bm{t}dgthePa1ey- WienerspaceW(\frac{\pi}{Ch}1_{ear1yas}^{wecan}$
estimate the difference of the output

$\Vert L_{t}F_{t,0,h,g}^{*}-g||_{L_{2}(R^{n})}$

which is the distance from $g$ onto the Paley-Wiener space $W( \frac{\pi}{h})$ . Of course,
$F_{t,0,h,g}^{*}$ is the Moore-Penrose generalized inverse of the operator equation, for
any $g\in L_{2}(R^{n})$ and $F \in W(\frac{\pi}{h})$ ,

$L_{t}F=g$ .

For the Paley-Wiener space $W( \frac{\pi}{h})$ , we need not use Tikhonov regular-
ization and we can look for the Moore-Penrose generalized inverse $F_{t,0,h,g}^{*}$ by
using the theory of reproducing kernels ([17], pp. 178-180). However, we
had better to calculate the extremal functions $F_{t,\lambda,h,g}^{*}$ in the Tikhonov reg-
ularization and to set $\lambda=0$ , because the structure of the Moore-Penrose
generalized inverses is involved.

We consider the heat conduction for the RKHS $H_{K}$ , however, our inver-
stion formula in the sense (36) will show that for a very general function
containing the delta function, our inversion formula is valid, because we are
considering the approximate inversion by the functions $H_{K}$ .

8 Numerical Real Inversion Formulas of the
Laplace Transform

We shall give a very natural and numerical real inversion formula of the
Laplace transform

$( \mathcal{L}F)(p)=f(p)=\int_{0}^{\infty}e^{-pt}F(t)dt$ , $p>0$ (39)

for functions $F$ of some natural function space. This integral transform is,
of course, very fundamental in mathematical science. The inversion of the
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Laplace transform is, in general, given by a complex form, however, we are
interested in and are requested to obtain its real inversion in many practical
problems. However, the real inversion will be very involved and one might
think that its real inversion will be essentially involved, because we must
catch “analyticity” from the real or discrete data. Note that the image
functions of the Laplace transform are analytic on some half complex plane.
For complexity of the real inversion formula of the Laplace transform, we
recall, for example, the following formulas:

$\lim_{narrow\infty}\frac{(-1)^{n}}{n!}(\frac{n}{t})^{n+1}f^{(n)}(\frac{n}{t})=F(t)$

and
$\lim_{narrow\infty}\Pi_{k=1}^{n}$

ノ

$1+ \frac{t}{k}\frac{d}{dt})[\frac{n}{t}f(\frac{n}{t})]=F(t)$ ,

([28,29]). See also the great references [30-31]. The problem may be related
to analytic extension problems, see $[6,7]$ and [17].

8.1 A Natural Situation for Real Inversion Formulas
In order to apply our general theory to the real inversion formula of the
Lapace transform, we shall recall the “natural situation” based on [18].

We shall introduce the simple reproducing kernel Hilbert space (RKHS)
$H_{K}$ comprised of absolutely continuous functions $F$ on the positive real line
$R^{+}$ with finite norms

$\{\int_{0}^{\infty}|F’(t)|^{2}\frac{1}{t}e^{t}dt\}^{1/2}$

and $satis\theta ingF(O)=0$ . This Hilbert space admits the reproducing kernel
$K(t, t’)$

$K(t, t’)= \int_{0}^{\min(t,t’)}\xi e^{-\xi}d\xi$ (40)

(see [17], pages 55-56). Then we see that

$\int_{0}^{\infty}|(\mathcal{L}F)(p)p|^{2}dp\leq\frac{1}{2}||F\Vert_{H_{K}}^{2}$ ; (41)

14



that is, the linear operator on $H_{K}$

$(\mathcal{L}F)(p)p$

into $L_{2}(R^{+}, dp)=L_{2}(R^{+})$ is bounded ([18]). For the reproducing kernel
Hilbert spaces $H_{K}$ satisfying (341), we can find some general spaces ([18]).
Therefore, from the general theory, we obtain

Proposition 8.1 ([18]). For any $g\in L_{2}(R^{+})$ and for any $\alpha>0_{f}$ the best
approximation $F_{\alpha,g}^{*}$ in the sense

$\inf_{F\in H_{K}}\{\alpha\int_{0}^{\infty}|F’(t)|^{2}\frac{1}{t}e^{t}dt+\Vert(\mathcal{L}F)(p)p-g||_{L_{2}(R+}^{2})\}$

$= \alpha\int_{0}^{\infty}|F_{\alpha,g}^{*\prime}(t)|^{2}\frac{1}{t}e^{t}dt+\Vert(\mathcal{L}F_{\alpha,g}^{*})(p)p-g\Vert_{L_{2}(R^{+})}^{2}$ (42)

exists uniquely and we obtain the representation

$F_{\alpha,g}^{*}(t)= \int_{0}^{\infty}g(\xi)(\mathcal{L}K_{\alpha}(\cdot, t))(\xi)\xi d\xi$ . (43)

Here, $K_{\alpha}(\cdot, t)$ is determined by the functional equation

$K_{\alpha}(t, t’)= \frac{1}{\alpha}K(t, t’)-\frac{1}{\alpha}((\mathcal{L}K_{\alpha,t’})(p)p, (\mathcal{L}K_{t})(p)p)_{L_{2}(R+})$ (44)

for
$K_{\alpha,t’}=K_{\alpha}(\cdot, t’)$

and
$K_{t}=K(\cdot, t)$

We shall look for the approximate inversion $F_{a,g}^{*}(t)$ by using (43). For this
purpose, we take the Laplace transform of (44) in $t$ and change the variables
$t$ and $t’$ as in

$(\mathcal{L}K_{\alpha}(\cdot, t))(\xi)$

$= \frac{1}{\alpha}(\mathcal{L}K(\cdot, t’))(\xi)-\frac{1}{\alpha}((\mathcal{L}K_{\alpha,t’})(p)p, (\mathcal{L}(\mathcal{L}K_{t})(p)p))(\xi))_{L_{2}(R+})$. (45)

Note that

15



$K(t, t’)=\{\begin{array}{ll}-te^{-t}-e^{-t}+1 for t\leq t’-t’e^{-t’}-e^{-t’}+1 or t\geq t’.\end{array}$

$(\mathcal{L}K(\cdot,t’))(p)$

$=e^{-ip}e^{-t’}[ \frac{-t’}{p(p+1)}+\frac{-1}{p(p+1)^{2}}]+\frac{1}{p(p+1)^{2}}$ . (46)

$\int_{0}^{\infty}e^{-qd}(\mathcal{L}K(\cdot, t’))(p)dt’=\frac{1}{pq(p+q+1)^{2}}$. (47)

Therefore, by setting

$(\mathcal{L}K_{\alpha}(\cdot, t))(\xi)\xi=H_{a}(\xi, t)$ ,

which is needed in (3.11), we obtain the Fredholm integral equation of the
second type

$\alpha H_{\alpha}(\xi, t)+\int_{0}^{\infty}H_{\alpha}(p,t)\frac{1}{(p+\xi+1)^{2}}dp$

$=- \frac{e^{-t\xi}e^{-t}}{\xi+1}(t+\frac{1}{\xi+1})+\frac{1}{(\xi+1)^{2}}$ . (48)

By solving this integral equation, we were able to obtain reasonable nu-
merical real inversion formulas in [16].

9 Inversion formulas for linear physical sys-
tems using reproducing kernels

Inverse problems in mathematics which are expected to be applied to prac-
tical problems will, sometimes, have weak points in the viewpoint that the
background theories are not faithful for practical and physical problems. For
example, equations are the representations of some ideal models and are not
those of faithful models in the real physical world. Sometimes, boundary
conditions for the equations are involved in physical units and sometimes
their physical realizations and observations are very difficult. Here, we shall
give a new inversion formula for a linear system based on physical experimen-
tal data and by using reproducing kernels and the Tikhonov regularization.
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In particular, we will not assume any analytical assumption on the linear
system, but we use physical experimental data for obtaining an approximate
inversion formula for the linear system $L$ .

9.1 Approach looking for the inversion
Physically or by computers we can observe only discrete data, so, as a very
general algorithm, we shall consider the discrete point data case such that:
In (16), we shall consider the corresponding problem:

$\inf_{f\in\kappa}\{\alpha\Vert f||_{H_{K}}^{2}+\sum_{j=1}^{N}|(Lf)(P_{j})-d_{j}|^{2}\}$ , (49)

for fixed discrete points $\{P_{j}\}_{j}$ of the set $E$ and for given values $d=\{d_{j}\}_{j}$ ;
that is, $\mathcal{H}$ is the usual Euclidean space $R^{N}$ .

In order to use the representation (17), we need $LK_{L}(\cdot,p;\alpha))$ and it is
determined by (18). In (18), we operate $L$ as functions in $p$ and we have

$\alpha L_{p}\tilde{K}(p, q;\alpha)+L_{p}(L\tilde{K}_{q}, LK_{p})_{\mathcal{H}}=L_{p}K(p, q)$ . (50)

Here, when we can take $\alpha=0$ in the sense of numerical, we can take, of
course, $\alpha=0$ in those arguments.

However, in order to use our method, we must realize some physical
objects as the $N$ data $d=\{d_{j}\}_{j},$ $N\cross N$ values $L_{p}K(p, q)$ and $N\cross N$ values
$L_{p}LK_{p}$ of real values; that is, $f$ and $d=\{d_{j}\}_{j}$ are numerical representations
of some physical objects in the system $Lf=d$.

Since the reproducing kernel Hilbert space $H_{K}$ is the function space ap-
proximating the solution of the operator equation $Lf=d$, we can take
many simple reproducing kernel Hilbert spaces as in ([17]), however, from
the present situation, the reproducing kernel $K(p, q)$ must be realized as the
physical object for the present system.

9.2 Physical viewpoints
We see in our inversion formula (17), we use a concrete reproducing kernel
$K(p,q)$ through (18), but we do not use any Hilbert space structure of the
reproducing kernel $K(p, q)$ . By the theory of reproducing kernels, for any
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positive matrix there exists a uniuely determined reproducing kernel Hilbert
space; that is, recall the fundamental fact:

We consider any positive matrix $K(p, q)$ on a fixed set $E$ ; that is, for
an abstract set $E$ and for a complex-valued function $K(p, q)$ on $E\cross E$ , it
satisfies that for any finite points $\{p_{j}\}$ of $E$ and for any complex numbers
$\{C_{j}\}$ ,

$\sum_{j}\sum_{j’}C_{j}\overline{C_{j’}}K(p_{j’},p_{j})\geq 0$
. (51)

Then, by the fundamental theorem by Moore-Aronszajn, we have:

Proposition 9.1 $(/1’i])$ For any positive matrix $K(p, q)$ on $E$, there exists
a uniquely determined functional Hilbert space $H_{K}(RKHSH_{K})$ compnsing
functions $\{f\}$ on $E$ and admitting the reproducing kemel $K(p, q)$ satisfying
and charactemzed by

$K(\cdot, q)\in H_{K}$ for any $q\in E$ (52)

and, for any $q\in E$ and for any $f\in H_{K}$

$f(q)=(f(\cdot), K(\cdot, q))_{H_{K}}$ . (53)

Furthermore, in our inversion formula (17), in (16), we are looking for
approximations of the inversion in the function space $H_{K}$ , so, in general,
the space $H_{K}$ is a sufficient large class of functions in the sense that we
can approximate the inverse by the functions in $H_{K}$ . For example, for any
characteristic function on any interval, we can approximate it by the Sobolev
Hilbert space of 1 dimensional uniformly. This will mean that for the input,
we can consider a suitable positive matrix satisfying (51), here, by a suitable
positive matrix, we mean that the positive matrix may be realized as the
physical data and it will also depend on its physical system.

In connection with these points of view, for example, for the 2 dimensional
Sobolev space, we shall use the more simple reproducing kernel

$K(x_{1}, x_{2}, y_{1}, y_{2})= \frac{1}{4}\exp(-|x_{1}-y_{1}|)\exp(-|x_{2}-y_{2}|)$ , (54)

which is the usual product of the 1 dimensional Sobolev reproducing kernels
and its reproducing kemel Hilbert space is the tensor product of the two
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Hilbert spaces of the one dimensional Sobolev Hilbert space (see [17] for
this structure).

We shall introduce several simple reproducing kernels on the whole real
line space. Note here that for multidimensional spaces, we can consider the
products as in (54). Furthermore, the restriction of a reproducing kernel to
any subset is again a reproducing kernel. The sum and the usual product
of two reproducing kemels on a same set are again reproducing kernels. For
these elementary facts, see, ([17]). On the whole real space $R$, the followings
are reproducing kernels:

(1) Any positive semidefinite matrix.
(2) $\delta(x-y)$ ($\delta(0)=1$ and $\delta(x)=0$ for $x\neq 0$).
(3) For any $\alpha>0,$ $\exp(-\alpha|x-y|)$ .
(4) $\exp(\alpha xy)$ $(\alpha>0)$ .
(5) $\exp(-\alpha(x-y)^{2})$ $(\alpha>0)$ .
(6) $\exp(-|x-y|)(1+|x-y|)$ .
(7) $\min(x, y)$ .
(8) For any $\alpha>0,$ $\ovalbox{\tt\small REJECT}\sin\alpha x-x-y$ .

On the half space $\{x>0\}$ , the followings are reproducing kernels:

(1) $\frac{1}{(x+y)^{2q}}$ $(q \geq\frac{1}{2})$ .
(2) $\frac{1}{(x^{2}+y^{2})^{2q}}$ $(q \geq\frac{1}{2})$ .
(3) $\exp\{\min(x, y)\}$ .
(4) min $\{\frac{x(1-x)^{N}}{1-x}R\}$ ( $N\geq 1$ , integer).

On the interval $\{-1<x<1\}$ , the followings are reproducing kernels:

(1) $\frac{1}{(1-xy)^{2q}}$ $(q \geq\frac{1}{2})$ .
(2) log $\frac{1}{1-xy}$

$(4)(3) \frac{\frac{1}{xy}\log_{1}\frac{1}{1-xy}}{[\cosh\alpha(x-y)]^{2q}}$

$(q \geq\frac{1}{2}, \alpha>0)$ .

Furthermore, note that any reproducing kernel $K(p, q)$ on an arbitrary
set $E$ for a separable reproducing kernel Hilbert space is represented in the
form, for some functions $\{\varphi_{j}(p)\}$ on $E$
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$K(p, q)= \sum_{j}\varphi_{j}(p)\overline{\varphi_{j}(q)}$
,

that converges absolutely on $E\cross E$ . Conversely, any function $K(p, q)$ which
is represented in this way for arbitrary complex-valued functions $\{\varphi_{j}(p)\}$ on
$E$ is a reproducing kernel.

9.3 Exact algorithm
We shall state the exact algorithm looking for the extremal function $f_{d,\alpha}(p)$

in (17), clearly in the setting (50).
1) We set

$X(P, q)=(L_{p}\tilde{K}(p, q;\alpha))(P)$ ,

$k(P, q)=(L_{p}K(p, q))(P)$ (55)

and
$\kappa(P, Q)=(L_{q}L_{p}K(p, q))(P, Q)$ . (56)

2) As the solution of the regular linear equations (50)

$\alpha X(P_{j}, q)+\sum_{j=1}^{N}X(P_{j’}, q)\kappa(P_{j}, P_{j’})=k(P_{j},q);j=1,2,$
$\ldots,$

$N$, (57)

we determine $X(P_{j}, q)$ . Then we obtain the approximate inverse

$f_{d,\alpha}(p)= \sum_{j=1}^{N}d_{j}X(P_{j},p)$ . (58)

Therefore, for some concrete problem for its inversion, we need the ex-
perimental data (55) and (56) of the two types in 1) and the procedure 2) is
a mathematical problem.

By Theorem 3.1, we note that in (58), the following estimate holds:

$|f_{d,\alpha}(p)| \leq\frac{1}{\sqrt{\alpha}}\sqrt{K(p,p)}(\sum_{j=1}^{N}d_{j}^{2})^{1/2}$ .
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The simplest and the most typical case of the above algorithm is that the
system $L$ is any type matrix of type $m$ and $n$ (without loss of generality we
assume that $n\geq m$), and the positive matrix is the identity matrix of size $n$ .
Even this case, it seems that the approximate inversion formula (58) is new.
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