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SEQUENCE SPACES AND INCLUSION INDICES

LUZ M. FERNANDEZ-CABRERA*

ABSTRACT. Inclusion indices of quasi-Banach spaces have been studied by Cobos, Manzano,
Mart{nez and the author (Bolletino U.M.I. 10-B (2007), 99-117). We review their results on
sequence spaces, providing proofs of results that were only stated in that paper.

0. INTRODUCTION.

Let E be a Banach space of sequences with #; «— F < {,,, where — means continuous
embedding. The inclusion indices of E are defined by

dp=sup{p>1:4, = E}, vg=inf{p<o0: E— fp}.

Inclusion indices are useful in the research of properties of embeddings between sequence spaces
(see, for example, [7], [8], [9] and [11]).

If E is symmetric then indices can be computed by using the fundamental function g of E.
Namely

. logn . logn
= sty Y TR

Cobos, Manzano, Martinez and the author have studied in [5] inclusion indices of quasi-
Banach spaces. Their results apply to function spaces, sequence spaces and to any intermediate
space with respect to an ordered compatible couple. The aim of the present paper is to review
their work on sequence spaces, providing proofs of results that were only stated in [5]. This is
done in Section 2, while in Section 1 we recall some basic concepts on sequence spaces.

(0.1)

1. PRELIMINARIES

We denote by f the set of all sequences & = {{,} which have a finite number of coordinates

én #0.
Following [14] we define the non-increasing rearrangement of a bounded sequence u = {un} €

£ as the sequence u* = {s,(u)} given by

sn(p) = inf{ljp — Tllee, : T = {Tm} € f, card{m € N : 7, # 0} < n}.
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Here card A stands for the cardinality of the set A. In the special case that £ is a zero sequence,
€ € co, then we have s,(£) = |€|, where {£;} is the rearrangement of the elements of {{,} by
magnitude of the absolute values, |¢] > €3] > ---.

Given any subset D C N, we put ep = {Tn} where , =1ifne€ Dand 7, =0ifn ¢ D. If
€ = {&n}, 1 = {un} are bounded sequences, £u denotes the sequence {&npin}-

We say that a quasi-Banach lattice of bounded sequences F is symmetric (or rearrangement
invariant) if E satisfies the following conditions:

(1) eq1) belongs to E with |leqs;|le = 1.
(ii) Whenever € € E and u € £y with £* = u*, then p € E and ||¢||g = |lullz-

These conditions yield that § C E. On the other hand, we have E — £ because for any
E={é,}€EandanyneN

[€nl = léneq}lle = énemylle < liénlle-

The fundamental function of the symmetric sequence space E is defined by

ve(n) = lleq,... n}llE-

The function g is non-decreasing with pg(1) = 1. It is also clear that if E = cg or E = £
then lim, oo pE(n) = 1 < 00. Next we show that the converse of this statement holds.

Lemma 1.1. If the fundamental function of a symmetric quasi-Banach sequence space E sat-
isfies that limy, oo pp(n) =c < 00, then E =c¢p or E = £.

Proof. Take any § = {£n} € cp and let 7, = £eqy,... n}. For any m > n we have

[7m —mnlle < mex{|§j| :n+1<j < m} pp(m—-n)
< cmax{|{j:n+1<j<m}—0 as n— oo

Hence {7,} is a Cauchy sequence in E. This yields that £ € E and that co — E. Consequently,
co — E — €. Now, using [14], Thm. 13.1.8, we conclude that E = ¢ or E = £uo. -0

Important examples of symmetric quasi-Banach sequence spaces are £, and £p . Recall that
for 0 < p < oo the Lorentz sequence space £y is formed by all bounded sequences § = {{n}
having a finite quasi-norm

1€Ne,,00 = sup{n*/Ps,(£)}.
neN
It is easy to check that

Pe,(n) = @1, 0 (n) =n'? forall neN.

2. INDICES OF QUASI-BANACH SEQUENCE SPACES

In this section we investigate the notion of inclusion indices of sequences spaces by using the
whole scale of £,—spaces, that is {£,},>0, and not only the Banach part where 1 < p < co. The
natural spaces to consider are quasi-Banach sequence spaces. Indices are defined as follows.
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Definition 2.1. Let F' be a quasi-Banach sequence space. We define the lower inclusion indez
of F by

op =sup{0 <p<oco:f,— F}.
If there is no 0 < p < oo such that €, — F', we put ép = 0.
The upper inclusion indez of F is defined by
=inf{0 <p<o0: F < 4}
If F 4 ¢, for any 0 < p < o0, then we write yr = co.

Next we show that the formulae in (0.1) still hold for quasi-Banach sequence spaces. Note
that the proof of (0.1) in the Banach case does not work in our setting because it is based on
the fact that any symmetric Banach space X lies between the Lorentz and the Marcinkiewicz
space with fundamental function px (see [2] or [12]). For symmetric quasi-Banach spaces no
similar result is known. Only for p—Banach spaces a partial result can be found in [1].

Theorem 2.2. Let E be a symmetric quasi-Banach sequence space. Then

0g = lim inf _lig_n_'
n—co log p(n)
Proof. Assume first that nllrxgo we(n) < oco. Then lir{gic,réf[log n/log pe(n)] = co. On the other
hand, using Lemma 1.1 we get that E = ¢y or E = £y, and therefore ég = co.
Assume now that lim ¢g(n) = oo. If there is any p > 0 such that ¢, — F, then we can find
C > 0 so that e
¢e(n) < Cn'/P for any neN.
Taking logarithms and lower limits we obtain p < h&lggf [logn/log ¢r(n)]. This implies that
.. logn
s < IR oy
If lim inf[log n/ log pg(n)] = 0, the previous argument shows that there is no 0 < p < oo such
that £:.2+° E. Then, by Definition 2.1, we have that g = 0 and we are done.
In order to establish the remaining case, take any p with 0 < p < lim inf [log n/log pr(n)] and

let us check that £, — E. Since £, — {5 , it is enough to show that Epoo < E. A sufficient
condition for the last embedding is that

7 ={n"Y/?} belongs to E. (2.1)
Indeed, if this is the case, for any § € £, o using that
sn(€) = n"YP(n3,(£)) < n7VP|Ely e »

we get
€lie = lI€"le < lITlEllélle, o -
To prove (2.1) take any ¢ with p < ¢ < liﬂioréf[logn/ log pp(n)] . There exists N € N such
that pg(n) < nl/? for all n > N. Hence, we can find M > 0 such that

¢E(n) < Mn'/? forall neN. (2.2)
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Put
Tin = Te€{y,... 2n}-
Then {n,} C f C E. We claim that {n,} is a Cauchy sequence in E. Indeed, let ¢ be the

constant in the triangle inequality of £ and define p by the equation (2¢)? = 2. According to
3], Lemma 3.10.1 and (2.2) we derive for n <m

li7m — nnII% = ”"'e{2n+1,--- ,2m}“§
m—1
<2 Z iTes 41, 2941315
Jj=n
m—1
<2 Z 2—.7'P/P(pE(2.7')P
=n
: m—1
< o2MP Z 2(1/e=1/P)Pi _, (0 as 1 — oo.
Jj=n .
Since the sequence formed by the n-th coordinates of M5 M2 ++r» I, ... CONvVerges to the n-th
coordinate of 7, the limit of {7} must be . Consequently, r € E. This proves (2.1) and
completes the proof. O

The corresponding formula for the upper index says the following.
Theorem 2.3. Let E be a symmetric quasi-Banach sequence space. Then

= limsu logn
B ey log pp(n)’

Proof. If E < £, for some 0 < p < 00, then we can find C' > 0 such that nl/? < Cyg(n) for all
n € N. Hence limsup[log n/log pg(n)] < p. This implies that
n-—00

lim sup ————
neseo 108 9E(n) —

If hm sup[log n/log pg(n)] = oo, there is no 0 < p < oo such that E —» £,. Then Definition

< B-

2.1 ylelds tha.t YE = oo and we obtain the wanted equality.
To establish the equality in the remaining case where hmsup[log n/logpge(n)] < oo, we

should show that E < £, for all p > hmsup[log n/ log <pE(n)] Wlth this aim, take any ¢ w1th

p>q> hmsup[logn/ log pr(n)). There is N € N such that nl/q < pg(n) for all n > N. Let
M >0be such that
n'/? < Mpg(n) forall neN.

We claim that E < ¢, o,. Indeed, for any £ = {én} € E and any m € N, we obtain
léle =€l = I€%eq,.mlle > sm(E)pE(m) > M~1mYism(g).

Hence E < £;,,. Now the result follows by using that £4,c0 < £p. O

As an immediate consequences of Theorems 2.2 and 2.3 we obtain.
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Corollary 2.4. Let E be a symmetric quasi-Banach sequence space. Then

0g =g ifand only if lim logn

S ——-—log on(n) exists.

Corollary 2.5. Let E be a symmetric quasi-Banach sequence space. Assume that there is
0 < p < oo such that for any 0 < € < 1/p, there are positive constants c., C; so that

1_ 1
cen? ® < pp(n) < Cen?™ forall neN.
Then ég = vg = p.
Next we show that the indices are equal if pg has regular variation at co.

Corollary 2.6. Let E be a symmetric quasi-Banach sequence space. If lim [pr(2n)/pg(n)]
Nn=-—00
erists, then 0 = vg.

Proof. Clearly, pg(2n) 2 ¢g(n). So

im PECM)
n—0o @g(n)
Assume 0 < a < oo and take any 0 < € < . There is N € N such that

=2% forsome 0<a< oc.

2%~%pp(n) < pp(2n) < 2°tpg(n) forall n> N.
Let k € N and take any m € N with 2¥N < m < 2F*1N. We have
26@=€)pp(N) < pB(2"N) < pr(m) < Ep(2FTIN) < 26+DEtgh(N),
Since 1/2N < 2¥/m < 1/N, it follows that
1 \ya—e a—e ok\ a—e _
—_ < —_— a—&
((5z)" eeM]me < (=) es()m*=* < pp(m)
ok \ a+te 1\ate
atef 2 a+e a+e | = a+te
< 224(Z) T epnmete <[22+ (£)T emi)|mate.
Put . 1\at
(L1 a—& —oate( 1 a+e
G=(55) ee®) smd Gr=22%(5)" e().
Then we obtain C1m* ¢ < pr(m) < Com®*e for all m > 2N, and so
< limin _l_g_g_n_ < limsup logn < 1 .
a+e” noo logprp(n) T nooo l0gpE(N) T a—¢

Now, using Theorems 2.2 and 2.3, we conclude that ég = 7g = 1/a.
The case a = 0 can be treated analogously. _ a

Next we go on to work with spaces which are not symmetric. Then they do not have funda-
mental function and so indices should be computed in a different way.

Assume that F is a quasi-Banach sequence space such that ¢, < F < £, for some 0 < r < oo.
Then F can be regarded as an intermediate space with respect to the compatible couple Ly, L0)
and we can use ideas of interpolation theory to establish analytic formulae for computing the
indices. ’
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We recall that Peetre’s K—functional and J—functional are defined by

K(t,&; brs loo) = mi{[Inlle, + thullew :€=n+n,n€Lrp € los},t > 0,6 € Loo,

and

J(t’ §; e,-,eoo) = max{”'f”lr’t”g”eoo}’ t>0, {€ir,
(see [2], [3] or {16]). Following [4], we put

Yr(t) = sup{K(t,§;4r, €)1 £ € F, [[€]lF = 1},

pr(t) = inf{J(t,&; Lr, boo) : € € &r, ||€|lF = 1}

We refer, for instance, to [15], [13], [6], [7] and [8] for properties of these functions.
Indices of F' are related to the functions ¢¥r and pr by means of the following analytic
formulae:

Theorem 2.7. Let 0 < r < 0o and let F be a quasi-Banach seguence space with £, — F — L.

Then @
_ log pp(t)\ 1
p=r(1-tmint =10EE)

_ . log yp(t)\—1
7r = (1~ limeup 2ELE)

See [5] for the proof.
The next result shows a necessary and sufﬁc1ent condition for equality of indices in terms of
the functions ¥ and pp.

Theorem 2.8. Let 0 < r < 0o and F be a quasi-Banach sequence space with £, — F — L.
Then a necessary and sufficient condition for O = YF 18 that the limits
1
o lger®) L logdr()
t—oo logt t—oo logt

ezist and coincide.

Proof. If the limits exist and are equal, then Theorem 2.7 yields that the indices of F' are equal
Conversely, suppose that 6 = vp. Using again Theorem 2.7, we have

. clogpp(t) _ .. log ¥ (t) ’
= lim ) 2.3
hﬂ}:gf logt t—il:p logt (2:3)
On the other hand, we know from (3], Thm. 5.2.1 that

] .
K(t,&€ry Loo) ~ (tz s;(ﬁ)) Y

n=1
Here [-] is the greatest integer function. For t > 1, put & = e(y ... r]}. Let C > 0 such that for
anyt2>1
K(ta ét;er,eoo) > Ct.
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We have
J(tbilribeo) ot K(bEibrbo) 1
lelr = Tedr >~ Cledr = CVF®

Therefore, using (2.3) we obtain

pr(t) <

. logpr(t) _ .. logyp(t) .. . .logpp(t)
1 — 2 <} —_—Tr s = —r
1?_121? logt — E.,i‘.}p logt htlﬁégf logt
and
im sup 2BYEE) _ i ing 10BPF®) i i l0BYE()
t—00 logt t—oo  logt t—oo  logt
Consequently, tlirgo[log Yr(t)/logt] and tli»nolo [log pr(t)/logt] exist and coincide. a

We end the paper with a result on the grade of proximity between sequence spaces. Recall
that a bounded linear operator T € L(X,Y’) between two quasi-Banach spaces X and Y is called
strictly singular if it fails to be an isomorphism on any infinite dimensional subspace (see [10]

-and [14]).

Theorem 2.9. Let E and F be quasi-Banach sequence spaces with f C E <« F — £,. Assume
that 0g = yg and 6 = vr. If the inclusion operator E — F is not strictly singular, then either:

(i) ngganq>oeq or
(i) Ugcoo e SECS F Cloo o1
(ii) Ugep e S E S F Cgnplq for some 1 <p < oo.

The proof can be found in [5].
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