Title: Boundedness of γ-Cesaro means ($\gamma > 0$) of operators (Banach spaces, function spaces, inequalities and their applications)

Author(s): Sato, Ryotaro

Citation: 数理解析研究所講究録 (2007), 1570: 33-35

Issue Date: 2007-10

URL: http://hdl.handle.net/2433/81274

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Boundedness of γ-Cesàro means ($\gamma > 0$) of operators

Ryotaro Sato (Okayama University)
E-mail: satoryot@math.okayama-u.ac.jp

In this talk I would like to report some recent results on the boundedness properties of γ-Cesàro means of operators, where $\gamma > 0$. The results are taken from joint works with Jeng-Chung Chen, Yuan-Chuan Li, and Sen-Yen Shaw (cf. [1], [3]).

1. The discrete case. Let $T : X \to X$ be a bounded linear operator on a Banach space X. The Cesàro means of order γ (or γ-Cesàro means) of T, where $\gamma \geq 0$, are defined by

$$C_n^{\gamma} = C_n^{\gamma}(T) := \frac{1}{\sigma_{n}^{\gamma}} \sum_{k=0}^{n} \sigma_{n-k}^{\gamma-1} T^k,$$

where $\sigma_{n}^{\beta} = \binom{\beta+n}{n}$ for $n \geq 1$, and $\sigma_{0}^{\beta} = 1$ (see Zygmund [5, Chapter 3]). Among them are the following two particular means: $C_n^{0} = C_n^{0}(T) = T^n$, and $C_n^{1} = C_n^{1}(T) = (n+1)^{-1} \sum_{k=0}^{n} T^k$.

The Abel means of T are the operators $A_{r} = A_{r}(T) := (1-r) \sum_{k=0}^{\infty} r^k T^k$, defined for $0 < r < 1/r(T)$, where $r(T) = \lim_{n \to \infty} \| T^n \|^{1/n}$ denotes the spectral radius of T. Clearly, $r(T) \leq 1$ if and only if A_{r} exists for all $0 < r < 1$. (Moreover, in this case, we have $A_{r} = (1-r)(I - rT)^{-1}$ for each $0 < r < 1$.) The following is well-known (cf. [5]):

If $0 < \gamma < \beta < \infty$, then

$$\sup_{0<r<1} \| A_{r} \| \leq \sup_{n \geq 0} \| C_n^{\beta} \| \leq \sup_{n \geq 0} \| C_n^{\gamma} \| \leq \sup_{n \geq 0} \| C_n^{0} \| = \sup_{n \geq 0} \| T^n \|;$$

in particular, if T is a positive linear operator on a Banach lattice X, then

$$\sup_{0<r<1} \| A_{r} \| < \infty \iff \sup_{n \geq 0} \| C_n^{1} \| < \infty \quad (\text{cf. Emilion [2]}).$$
In connection with these relations, two questions come up naturally:

(A) *If T is positive, then does the implication* \(\sup_{0<r<1} \| A_r \| < \infty \Rightarrow \sup_{n \geq 1} \| C_n^\gamma \| < \infty \) *hold for a certain constant* γ, with $0 < \gamma < 1$?

(B) *If T is not assumed to be positive, then does the implication* \(\sup_{0<r<1} \| A_r \| < \infty \Rightarrow \sup_{n \geq 1} \| C_n^\gamma \| < \infty \) *hold for a certain constant* γ, with $\gamma \geq 1$?

Our answers are as follows.

Theorem 1. For any γ, with $0 < \gamma < 1$, there exists a positive linear operator T on an L_1-space such that \(\sup_{n \geq 1} \| C_n^\beta \| < \infty \) for all $\beta > \gamma$, but \(\sup_{n \geq 1} \| C_n^\gamma \| = \infty \).

Theorem 2. There exists a positive linear operator T on an L_1-space such that \(\sup_{n \geq 1} \| C_n^\beta \| < \infty \) for all $\beta > 0$, but \(\sup_{n \geq 1} \| T^n \| = \infty \).

Theorem 3. Let $\dim X = \infty$. Then the following hold:

(i) *For any integer* $k \geq 1$, there exists a bounded linear operator T on X such that \(\sup_{n \geq 1} \| C_n^k \| < \infty \), but \(\sup_{n \geq 1} \| C_n^\beta \| = \infty \) for all β with $0 \leq \beta < k$.

(ii) *There exists a bounded linear operator* T on X, with $r(T) = 1$, such that \(\sup_{0<r<1} \| A_r \| < \infty \), but \(\sup_{n \geq 1} \| C_n^\beta \| = \infty \) for all $\beta \geq 0$.

2. **The continuous case.** Let $T(\cdot)$ be a C_0-semigroup of bounded linear operators on a Banach space X. The γ-th Cesàro means of $T(\cdot)$, where $\gamma \geq 0$, are defined as $C_t^\gamma = C_t^\gamma(T(\cdot)) := T(0)$ and, for $t > 0$,

$$ C_t^\gamma = C_t^\gamma(T(\cdot)) := \left\{ \begin{array}{ll} T(t) & \text{if } \gamma = 0, \\ \gamma t^{-\gamma} \int_0^t (t-u)^{\gamma-1} T(u) du & \text{if } \gamma > 0. \end{array} \right. $$

The Abel means of $T(\cdot)$ are the operators

$$ A_\lambda = A_\lambda(T(\cdot)) := \lambda \int_0^\infty e^{-\lambda u} T(u) du = \lim_{t \to \infty} \lambda \int_0^t e^{-\lambda u} T(u) du, $$

defined for $\lambda > 0$ if the limit exists. As in the discrete case, we have (cf. [4]):

If $0 < \gamma < \beta < \infty$, then

$$(3) \quad \sup_{0<\lambda<\infty} \| A_\lambda \| \leq \sup_{t>0} \| C_t^\beta \| \leq \sup_{t>0} \| C_t^\gamma \| \leq \sup_{t>0} \| C_t^0 \| = \sup_{t>0} \| T(t) \|;$$
in particular, if $T(\cdot)$ is a positive C_0-semigroup on a Banach lattice X, then

\[(4) \quad \sup_{0<\lambda<\infty} \|A_\lambda\| < \infty \iff \sup_{t>0} \|C^1_t\| < \infty \quad (\text{cf. } [2]).\]

The following are the continuous case results:

Theorem 1'. For any γ, with $0 < \gamma < 1$, there exists a positive C_0-semigroup $T(\cdot)$ on an L_1-space such that $\sup_{t>0} \|C^\beta_t\| < \infty$ for all $\beta > \gamma$, but $\sup_{t>0} \|C^\beta_t\| = \infty$.

Theorem 2'. There exists a positive C_0-semigroup $T(\cdot)$ on an L_1-space such that $\sup_{t>0} \|C^\beta_t\| < \infty$ for all $\beta > 0$, but $\sup_{t>0} \|T(t)\| = \infty$.

Theorem 3'. Let $\dim X = \infty$. Then the following hold:

(i) For any integer $k > 1$, there exists a C_0-semigroup $T(\cdot)$ on X such that $\sup_{t>0} \|C^k_t\| < \infty$, but $\sup_{t>0} \|C^\beta_t\| = \infty$ for all β, with $0 \leq \beta < k$.

(ii) There exists a C_0-semigroup $T(\cdot)$ on X such that $\sup_{0<\lambda<\infty} \|A_\lambda\| < \infty$, but $\sup_{t>0} \|C^\beta_t\| = \infty$ for all $\beta \geq 0$.

References

