Boundedness of γ -Cesàro means ($\gamma > 0$) of operators

Ryotaro Sato (Okayama University)

E-mail: satoryot@math.okayama-u.ac.jp

In this talk I would like to report some recent results on the boundedness properties of γ -Cesàro means of operators, where $\gamma > 0$. The results are taken from joint works with Jeng-Chung Chen, Yuan-Chuan Li, and Sen-Yen Shaw (cf. [1], [3]).

1. The discrete case. Let $T: X \to X$ be a bounded linear operator on a Banach space X. The Cesàro means of order γ (or γ -Cesàro means) of T, where $\gamma \geq 0$, are defined by

$$C_n^{\gamma} = C_n^{\gamma}(T) := \frac{1}{\sigma_n^{\gamma}} \sum_{k=0}^n \sigma_{n-k}^{\gamma-1} T^k, \qquad n = 0, 1, 2, \dots,$$

where $\sigma_n^{\beta} = {\beta+n \choose n}$ for $n \geq 1$, and $\sigma_0^{\beta} = 1$ (see Zygmund [5, Chapter 3]). Among them are the following two particular means: $C_n^0 = C_n^0(T) = T^n$, and $C_n^1 = C_n^1(T) = (n+1)^{-1} \sum_{k=0}^n T^k$.

The Abel means of T are the operators $A_r = A_r(T) := (1-r) \sum_{k=0}^{\infty} r^k T^k$, defined for 0 < r < 1/r(T), where $r(T) = \lim_{n \to \infty} ||T^n||^{1/n}$ denotes the spectral radius of T. Clearly, $r(T) \le 1$ if and only if A_r exists for all 0 < r < 1. (Moreover, in this cse, we have $A_r = (1-r)(I-rT)^{-1}$ for each 0 < r < 1.) The following is well-known (cf. [5]):

If $0 < \gamma < \beta < \infty$, then

(1)
$$\sup_{0 < r < 1} ||A_r|| \le \sup_{n \ge 0} ||C_n^{\beta}|| \le \sup_{n \ge 0} ||C_n^{\gamma}|| \le \sup_{n \ge 0} ||C_n^{0}|| \ (= \sup_{n \ge 0} ||T^n||);$$

in particular, if T is a positive linear operator on a Banach lattice X, then

(2)
$$\sup_{0 < r < 1} ||A_r|| < \infty \iff \sup_{n \ge 0} ||C_n^1|| < \infty \qquad (cf. Emilion [2]).$$

In connection with these relations, two questions come up naturally:

- (A) If T is positive, then does the implication " $\sup_{0 < r < 1} ||A_r|| < \infty \Rightarrow \sup_{n \ge 1} ||C_n^{\gamma}||$ < \infty "holds for a certain constant \gamma, with $0 < \gamma < 1$?
- (B) If T is not assumed to be positive, then does the implication " $\sup_{0 < r < 1} ||A_r|| < \infty \Rightarrow \sup_{n \ge 1} ||C_n^{\gamma}|| < \infty$ "hold for a certain constant γ , with $\gamma \ge 1$?

Our answers are as follows.

Theorem 1. For any γ , with $0 < \gamma < 1$, there exists a positive linear operator T on an L_1 -space such that $\sup_{n\geq 1} \|C_n^{\beta}\| < \infty$ for all $\beta > \gamma$, but $\sup_{n\geq 1} \|C_n^{\gamma}\| = \infty$.

Theorem 2. There exists a positive linear operator T on an L_1 -space such that $\sup_{n\geq 1} \|C_n^{\beta}\| < \infty$ for all $\beta > 0$, but $\sup_{n\geq 1} \|T^n\| = \infty$.

Theorem 3. Let dim $X = \infty$. Then the following hold:

- (i) For any integer $k \geq 1$, there exists a bounded linear operator T on X such that $\sup_{n\geq 1} \|C_n^k\| < \infty$, but $\sup_{n\geq 1} \|C_n^\beta\| = \infty$ for all β , with $0 \leq \beta < k$.
- (ii) There exists a bounded linear operator T on X, with r(T) = 1, such that $\sup_{0 \le r \le 1} ||A_r|| < \infty$, but $\sup_{n \ge 1} ||C_n^{\beta}|| = \infty$ for all $\beta \ge 0$.
- 2. The continuous case. Let $T(\cdot)$ be a C_0 -semigroup of bounded linear operators on a Banach space X. The γ -th Cesàro means of $T(\cdot)$, where $\gamma \geq 0$, are defined as $C_0^{\gamma} = C_0^{\gamma}(T(\cdot)) := T(0)$ and, for t > 0,

$$C_t^{\gamma} = C_t^{\gamma}(T(\cdot)) := \left\{ \begin{array}{ll} T(t) & \text{if } \gamma = 0, \\ \gamma t^{-\gamma} \int_0^t (t-u)^{\gamma-1} T(u) \, du & \text{if } \gamma > 0. \end{array} \right.$$

The Abel means of $T(\cdot)$ are the operators

$$A_{\lambda} = A_{\lambda}(T(\cdot)) := \lambda \int_0^{\infty} e^{-\lambda u} T(u) du = \lim_{t \to \infty} \lambda \int_0^t e^{-\lambda u} T(u) du,$$

defined for $\lambda > 0$ if the limit exists. As in the discrete case, we have (cf. [4]): If $0 < \gamma < \beta < \infty$, then

(3)
$$\sup_{0 \le \lambda \le \infty} \|A_{\lambda}\| \le \sup_{t > 0} \|C_t^{\beta}\| \le \sup_{t > 0} \|C_t^{\gamma}\| \le \sup_{t > 0} \|C_t^{0}\| \ (= \sup_{t > 0} \|T(t)\|);$$

inparticular, if $T(\cdot)$ is a positive C_0 -semigroup on a Banach lattice X, then

(4)
$$\sup_{0 < \lambda < \infty} ||A_{\lambda}|| < \infty \iff \sup_{t > 0} ||C_t^1|| < \infty \quad (cf. [2]).$$

The following are the continuous case results:

Theorem 1'. For any γ , with $0 < \gamma < 1$, there exists a positive C_0 -semigroup $T(\cdot)$ on an L_1 -space such that $\sup_{t>0} \|C_t^{\beta}\| < \infty$ for all $\beta > \gamma$, but $\sup_{t>0} \|C_t^{\gamma}\| = \infty$.

Theorem 2'. There exists a positive C_0 -semigroup $T(\cdot)$ on an L_1 -space such that $\sup_{t>0} \|C_t^{\beta}\| < \infty$ for all $\beta > 0$, but $\sup_{t>0} \|T(t)\| = \infty$.

Theorem 3'. Let dim $X = \infty$. Then the following hold:

- (i) For any integer k > 1, there exists a C_0 -semigroup $T(\cdot)$ on X such that $\sup_{t>0} \|C_t^k\| < \infty$, but $\sup_{t>0} \|C_t^{\beta}\| = \infty$ for all β , with $0 \le \beta < k$.
- (ii) There exists a C_0 -semigroup $T(\cdot)$ on X such that $\sup_{0<\lambda<\infty}\|A_\lambda\|<\infty$, but $\sup_{t>0}\|C_t^\beta\|=\infty$ for all $\beta\geq 0$.

References

- [1] J.-C. Chen, R. Sato, and S.-Y. Shaw, Growth orders of Cesàro and Abel means of functions in Banach spaces, preprint.
- [2] R. Emilion, Mean-bounded operators and mean ergodic theorems, *J. Funct.*Anal. 61 (1985), 1–14.
- [3] Y.-C. Li, R. Sato, and S.-Y. Shaw, Boundedness and growth orders of means of discrete and continuous semigroups, preprint.
- [4] R. Sato, On ergodic averages and the range of a closed operator, *Taiwanese J. Math.* 10 (2006), 1193-1223.
- [5] A. Zygmund, *Trigonometric Series*. Vol. I, Cmbridge University Press, Cambridge, 1959.