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Construction of solutions f'(z) = af(Ax), A > 1.
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1. MAIN RESULT

We denote by C°(R) the set of all infinitely differentiable functions
on R. Let

4
C(R) = {fé C*(R) : %(m) — 0 as |z] — oo, Z=0,1,2,---},
Coomp(R) = {f € C*(R) : f has a compact support}.

We denote by Xirs) the characteristic function of the interval [r, s).
Let X be the set of all step functions

m
(1.1) p= Z CiX[rj—1,75)1

j=1
such that m =1,2,--- and

c;ER (j=1,2,---,m), ca=1,

ro=0 0<ri<ry<:---<ry <00,
m
D il =) =1
j=1

We note that [, p(z)dz =1 for p € X.

For A > 1 and p € X, we define an operator T' = T}, : L'(R) —
LY(R) (by [17] (p. 149, Remark 2) and [2], we can say that Ty, :
B} (R) — Bl (R) for s € R, since Ap(\-) € Bj o,(R)) as follows:
(12) Tf(z) = Trp (@) = Ap * f)N2).

We note that T'f € L*(R) N C(R), since f € L}(R) and p € LY, (R).

If f € B} o(R) we have FL+]- 22 € L=(R) (see [15]). Therefore
we have T*f € L*R) N C(R) for k > —s — 1 if f € Bj (R).



Theorem 1.1. For A > 1 and p € X, let T be the operator defined
by (1.2). Then there exists a function u = uyp € Cg5,(R) such that,
for all f € LY(R) (or for all f € UserBj o (R), which function set is
strictly bigger than L'(R)),

elir& T f(z) = c;u(z) uniformly with respect to z € R,
where ¢; = f(0).
Moreover,
1) Tu=uvy;
(2) [gu(z)dz =1;
(3) Lu(0) =0 forallk=0,1,2,--+;
(4) ifp > 0, then u > 0; and,
(5) if suppp C [0,7], then suppu C [0,7/(A — 1)].

In the above statement supp f denotes the support of f.

Remark 1.1. If p; # po, then uyp, # Unp,-

2. APPLICATION

To construct solutions for the following equation,
! — )\2
o) fla)=2f(z), zER
f(0) =0,
we use u = Uy, in Theorem 1.1 with A > 1 and p = 37, ¢;Xjr;_1,rp) €
X, and we define a sequence of functions {v,} inductively as follows:

4 m
vo(z) = u(z) + Y Gulz — ),
=1
\ m
vesn(z) = ve(z) + 3 Gve(z — Xo¥ry), £=0,1,2,---,
k i=1

where &; = —(¢; — ci+1), j=1,2,--+ ;m =1, &n = —Cm.
Then v € CHp(R), £=0,1,2,---, and
ve(z) = ver(z), T € (=00, A1r], £=0,1,2,--- .
Therefore we get a function f = f, € C*(R) such that
f(@) =velz), z€ (=00, Ay}, €=0,1,2,.--.

Since f(z) = u(z) near z = 0, ;‘i—k,,—f(o) =0forallk=0,1,2,---.



Theorem 2.1. Let A > 1. For every p € X, the function f = fap
given by the above method is a solution for (2.1).

Remark 2.1. By the property (5) in Theorem 1.1 and the definition of
Vg,

suppu C [0,7m/(A — 1)),
supp(vo — u) C [r1, TmA/ (A — 1)],
suppve C [0, rmA®*/(A = 1)}
supp(ver1 — vg) C [r A, r A2/ (A = 1)].

Therefore, if 7m/(A — 1) < 71, then f(z) = 0 on [rpA/ (A — 1), 714,
£=0,1,2,..., and f is bounded (See the graph (512)). Let

my
b= Zc'i’jxlfi,j—l,ri,j) eX, i=12.
Jj=1

If p; # po and there exists R > 0 such taht r;pm, /(A — 1) < R < 1y,
i = 1,2, then fip, # frp, by Remark 1.1, while foRf,\,m(a:)da: =
SFurp(@)de=1,i=1,2.

Remark 2.2. In the definition (1.1), let m = oo with the condition
> i21lei+1 — ¢j| < co. Then the derivative of p in the sense of dis-
tribution is a finite Radon measure and the Fourier transform of the
derivative is an almost periodic function. With some conditions we can
also construct solutions for (2.1) from such functions. For the Fourier

preimage of the space of all finite Radon measures, see, for example,
(6, 7).

In the rest of this section, we give graphs of solutions for f'(z) =
4f(2z), f'(z) = (3/2)*f(3z/2) and f'(z) = 9f(3z) with £(0) = 0.

Let p be as in Table 1. Then, calculating Tf,pxmyl) numerically by
computer, we get the graphs of solutions (S1)—(S7) in Figure 1, (S8)-
(S11) in Figure 2 and (S12)—(S13) in Figure 3.
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FIGURE 2. Solutions of f'(z) = (3/2)%f(3z/2).
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FIGURE 3. Solutions of f'(z) =

9f(3z).
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