THE COKERNEL OF THE JOHNSON HOMOMORPHISMS OF THE AUTOMORPHISM GROUP OF A FREE METABELIAN GROUP

TAKAO SATOH

Graduate School of Sciences, Department of Mathematics, Osaka University 1-16 Machikaneyama, Toyonaka-city, Osaka 560-0043, Japan

ABSTRACT. In this paper, we determine the cokernel of the k-th Johnson homomorphisms of the automorphism group of a free metabelian group for $k \geq 2$ and $n \geq 4$. As a corollary, we obtain a lower bound of the rank of the graded quotient of the Johnson filtration of the automorphism group of a free group. Furthermore, by using the second Johnson homomorphism, we determine the image of the cup product map in the rational second cohomology group of the IA-automorphism group of a free metabelian group, and show that it is isomorphic to that of the IA-automorphism group of a free group which is already determined by Pettet [30]. Finally, by considering the kernel of the Magnus representations of the automorphism group of a free group and a free metabelian group, we show that there are non-trivial rational second cohomology classes of the IA-automorphism group of a free metabelian group, and those are not in the image of the cup product map.

1. Introduction

Let G be a group and $\Gamma_G(1) = G$, $\Gamma_G(2)$, ... its lower central series. We denote by Aut G the group of automorphisms of G. For each $k \geq 0$, let $\mathcal{A}_G(k)$ be the group of automorphisms of G which induce the identity on the quotient group $G/\Gamma_G(k+1)$. Then we obtain a descending central filtration

$$\operatorname{Aut} G = \mathcal{A}_G(0) \supset \mathcal{A}_G(1) \supset \mathcal{A}_G(2) \supset \cdots$$

of Aut G, called the Johnson filtraition of Aut G. This filtration was introduced in 1963 with a pioneer work by S. Andreadakis [1]. For each $k \geq 1$, set $\mathcal{L}_G(k) := \Gamma_G(k)/\Gamma_G(k+1)$ and $\operatorname{gr}^k(\mathcal{A}_G) = \mathcal{A}_G(k)/\mathcal{A}_G(k+1)$. Let G^{ab} be the abelianization of G. Then, for each $k \geq 1$, an Aut G^{ab} -equivariant injective homomorphim

$$\tau_k: \operatorname{gr}^k(\mathcal{A}_G) \to \operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, \mathcal{L}_G(k+1))$$

²⁰⁰⁰ Mathematics Subject Classification. 20F28(Primary), 20J06(Secondly).

Key words and phrases. automorphism group of a free metabelian group, Johnson homomorphism, second cohomology group, Magnus representation.

is defined. (For definition, see Subsection 2.1.2.) This is called the k-th Johnson homomorphism of Aut G. Historically, the study of the Johnson homomorphism was begun in 1980 by D. Johnson [17]. He studied the Johnson homomorphism of a mapping class group of a closed oriented surface, and determined the abelianization of the Torelli group. (See [18].) There is a broad range of remarkable results for the Johnson homomorphisms of a mapping class group. (For example, see [14] and [24].)

Let F_n be a free group of rank n with basis x_1, \ldots, x_n , and F_n^M the free metabelian group of rank n. Namely F_n^M is the quotient group of F_n by the second derived series $[[F_n, F_n], [F_n, F_n]]$ of F_n . Then both abelianizations of F_n and F_n^M are a free abelian group of rank n, denoted by H. Fixing a basis of H induced from x_1, \ldots, x_n , we can identify Aut G^{ab} with $\mathrm{GL}(n, \mathbf{Z})$ for $G = F_n$ and F_n^M . For simplicity, throughout this paper, we write $\Gamma_n(k)$, $\mathcal{L}_n(k)$, $\mathcal{A}_n(k)$ and $\mathrm{gr}^k(\mathcal{A}_n)$ for $\Gamma_{F_n}(k)$, $\mathcal{L}_{F_n}(k)$, $\mathcal{A}_{F_n}(k)$ and $\mathrm{gr}^k(\mathcal{A}_{F_n})$ respectively. Similarly, we write $\Gamma_n^M(k)$, $\mathcal{L}_n^M(k)$, $\mathcal{A}_n^M(k)$ and $\mathrm{gr}^k(\mathcal{A}_n^M)$ for $\Gamma_{F_n^M}(k)$, $\mathcal{L}_{F_n^M}(k)$, $\mathcal{L}_{F_n^M}(k)$, $\mathcal{A}_{F_n^M}(k)$ and $\mathrm{gr}^k(\mathcal{A}_{F_n^M})$ respectively. The first aim of the paper is to determine the $\mathrm{GL}(n, \mathbf{Z})$ -module structure of the cokernel of the Johnson homomorphisms τ_k of Aut F_n^M for $n \geq 4$ as follows:

Theorem 1. For $k \geq 2$ and $n \geq 4$,

$$0 \to \operatorname{gr}^k(\mathcal{A}_n^M) \xrightarrow{\tau_k} H^* \otimes_{\mathbf{Z}} \mathcal{L}_n^M(k+1) \xrightarrow{\operatorname{Tr}_k^M} S^k H \to 0$$

is a $GL(n, \mathbf{Z})$ -equivariant exact sequence.

Here S^kH is the symmetric product of H of degree k, and Tr_k^M is a certain $\operatorname{GL}(n, \mathbf{Z})$ -equivariant homomorphism called the Morita trace introdued by S. Morita [23]. (For definition, see Subsection 3.2.)

From Theorem 1, we can give a lower bound of the rank of $\operatorname{gr}^k(\mathcal{A}_n)$ for $k \geq 2$ and $n \geq 4$. The study of the Johnson filtration of Aut F_n was begun in 1960's by Andreadakis [1] who showed that for each $k \geq 1$ and $n \geq 2$, $\operatorname{gr}^k(\mathcal{A}_n)$ is a free abelian group of finite rank, and that $\mathcal{A}_2(k)$ coincides with the k-th lower central series of the inner automorphism group $\operatorname{Inn} F_2$ of F_2 . Furthermore, he [1] computed $\operatorname{rank}_{\mathbf{Z}} \operatorname{gr}^k(\mathcal{A}_2)$ for all $k \geq 1$. However, the structure of $\operatorname{gr}^k(\mathcal{A}_n)$ for general $k \geq 2$ and $n \geq 3$ is much more complicated. Set $\tau_{k,\mathbf{Q}} = \tau_k \otimes \operatorname{id}_{\mathbf{Q}}$, and call it the k-th rational Johnson homomorphism. For any Z-module M, we denote $M \otimes_{\mathbf{Z}} \mathbf{Q}$ by the symbol obtained by attaching a subscript \mathbf{Q} to M, like $M_{\mathbf{Q}}$ and

 $M^{\mathbf{Q}}$. For $n \geq 3$, the $\mathrm{GL}(n, \mathbf{Z})$ -module structure of $\mathrm{gr}^2_{\mathbf{Q}}(\mathcal{A}_n)$ is completely determined by Pettet [30]. In our previous paper [32], we determined those of $\mathrm{gr}^3_{\mathbf{Q}}(\mathcal{A}_n)$ for $n \geq 3$. For $k \geq 4$, the $\mathrm{GL}(n, \mathbf{Z})$ -module structure of $\mathrm{gr}^k_{\mathbf{Q}}(\mathcal{A}_n)$ is not determined. Furthermore, even its dimension is also unknowm.

Let ν_n : Aut $F_n \to \operatorname{Aut} F_n^M$ be a natural homomorphism induced from the action of Aut F_n on F_n^M . By noticeable works due to Bachmuth and Mochizuki [5], it is known that ν_n is surjective for $n \geq 4$. They [4] also showed that ν_3 is not surjective. In Subsection 3.1, we see that the homomorphism $\overline{\nu}_{n,k}: \operatorname{gr}^k(\mathcal{A}_n) \to \operatorname{gr}^k(\mathcal{A}_n^M)$ induced from ν_n is also surjective for $n \geq 4$. Hence we have

Corollary 1. For $k \geq 2$ and $n \geq 4$,

$$\operatorname{rank}_{\mathbf{Z}}(\operatorname{gr}^k(\mathcal{A}_n)) \geq nk \binom{n+k-1}{k+1} - \binom{n+k-1}{k}.$$

We should remark that in general, the equal does not hold. Since $\operatorname{rank}_{\mathbf{Z}}\operatorname{gr}^3(\mathcal{A}_n)=n(3n^4-7n^2-8)/12$, which is not equal to the right hand side of the inequality above.

Next, we consider the second cohomology group of the IA-automorphism group of the free metabelian group. Here the IA-automorphism group IA(G) of a group G is defined to be a group which consists of automorphisms of G which trivially act on the abelianization of G. By the definition, $IA(G) = A_G(1)$. We write IA_n and IA_n^M for $IA(F_n)$ and $IA(F_n^M)$ for simplicity. Let $H^* := \text{Hom}_{\mathbf{Z}}(H, \mathbf{Z})$ be the dual group of H. Then we see that the first homology group of IA_n^M for $n \geq 4$ is isomorphic to $H^* \otimes_{\mathbf{Z}} \Lambda^2 H$ in the following way. Let $\nu_{n,1} : \mathrm{IA}_n \to \mathrm{IA}_n^M$ be the restriction of ν_n to IA_n. Bachmuth and Mochizuki [5] showed that $\nu_{n,1}$ is surjective for $n \geq 4$. This fact sharply contrasts with their previous work [4] which shows there are infinitely many automorphisms of IA_3^M which are not contained the image of $\nu_{3,1}$. On the other hand, by an independent works of Cohen-Pakianathan [9, 10], Farb [11] and Kawazumi [19], $H_1(IA_n, \mathbb{Z}) \cong H^* \otimes_{\mathbb{Z}} \Lambda^2 H$ for $n \geq 3$. Since the karnel of $\nu_{n,1}$ is contained in the commutator subgroup of IA_n^M , we have $H_1(IA_n^M, \mathbf{Z}) \cong H^* \otimes_{\mathbf{Z}} \Lambda^2 H$ for $n \geq 4$. (See Subsection 2.3.) In general, however, there are few results for computation of the (co)homology groups of IA_n^M of higher dimensions. In this paper we determine the image of the cup product map in the rational second cohomology group

of IA_n^M , and show that it is isomorphic to that of IA_n , using the second Johnson homomorphism. Namely, let $\cup_{\mathbf{Q}} : \Lambda^2 H^1(IA_n, \mathbf{Q}) \to H^2(IA_n, \mathbf{Q})$ and $\cup_{\mathbf{Q}}^M : \Lambda^2 H^1(IA_n^M, \mathbf{Q}) \to H^2(IA_n^M, \mathbf{Q})$ be the rational cup product maps of IA_n and IA_n^M respectively. In Subsection 4.2, we show

Theorem 2. For $n \geq 4$, $\nu_{n,1}^* : \operatorname{Im}(\cup_{\mathbf{Q}}^M) \to \operatorname{Im}(\cup_{\mathbf{Q}})$ is an isomorphism.

Here we should remark that the $GL(n, \mathbb{Z})$ -module structure of $Im(\cup_{\mathbb{Q}})$ is completely determined by Pettet [30] for any $n \geq 3$.

Now, on the study of the second cohomology group of IA_n^M , it is also important problem to determine whether the cup product map $\bigcup_{\mathbf{Q}}^M$ is surjective or not. For the case of IA_n , it is still not known whether $\bigcup_{\mathbf{Q}}$ is surjective or not. In the last section, we prove that the rational cup product map $\bigcup_{\mathbf{Q}}^M$ is not surjective for $n \geq 4$. by studying the kernel \mathcal{K}_n of the homomorphism $\nu_{n,1}$. It is easily seen that \mathcal{K}_n is an infinite subgroup of IA_n since \mathcal{K}_n contains the second derived series of the inner automorphism group of a free group F_n . The structure of \mathcal{K}_n is, however, much complicated. For example, (finitely or infinitely many) generators and the abelianization of \mathcal{K}_n are still not known. To clarify the structure of \mathcal{K}_n is also important to study the obstruction for the faithfullness of the Magnus representation of IA_n since \mathcal{K}_n is equal to the kernel of it by a result of Bachmuth [2]. (See Subsection 2.3.)

From the cohomological five-term exact sequence of the group extension

$$1 \to \mathcal{K}_n \to \mathrm{IA}_n \to \mathrm{IA}_n^M \to 1,$$

it suffices to show the non-triviality of $H^1(\mathcal{K}_n, \mathbf{Q})^{\mathrm{IA}_n}$ to show $\mathrm{Im}(\cup_{\mathbf{Q}}^M) \neq H^2(\mathrm{IA}_n^M, \mathbf{Q})$. Set $\overline{\mathcal{K}}_n := \mathcal{K}_n/(\mathcal{K}_n \cap \mathcal{A}_n(4)) \subset \mathrm{gr}^3(\mathcal{A}_n)$. Then $\overline{\mathcal{K}}_n$ naturally has a $\mathrm{GL}(n, \mathbf{Z})$ -module structure, and the natural projection $\mathcal{K}_n \to \overline{\mathcal{K}}_n$ induces an injective homomorphism $H^1(\overline{\mathcal{K}}_n, \mathbf{Q}) \to H^1(\mathcal{K}_n, \mathbf{Q})^{\mathrm{IA}_n}$. In this paper, we determine the $\mathrm{GL}(n, \mathbf{Z})$ -module structure of $H_1(\overline{\mathcal{K}}_n, \mathbf{Q})$ using the rational third Johnson homomorphism of Aut F_n . The non-triviality of $H^1(\overline{\mathcal{K}}_n, \mathbf{Q})$ immediately follows from it. In Subsection 5.1, we show

Theorem 3. For
$$n \geq 4$$
, $\tau_{3,\mathbf{Q}}(\overline{\mathcal{K}}_n^{\mathbf{Q}}) \cong H_{\mathbf{Q}}^{[2,1]} \oplus (D \otimes_{\mathbf{Q}} H_{\mathbf{Q}}^{[3,2^2,1^{n-4}]})$.

Here H^{λ} denotes the Schur-Weyl module of H corresponding to the Young diagram $\lambda = [\lambda_1, \ldots, \lambda_l]$, and $D := \Lambda^n H$ the one-dimensional representation of $GL(n, \mathbb{Z})$ given by the determinant map. Since $\tau_{3,\mathbf{Q}}$ is

injective, this shows that

$$\overline{\mathcal{K}}_n^{\mathbf{Q}} \cong H_{\mathbf{Q}}^{[2,1]} \oplus (D \otimes_{\mathbf{Q}} H_{\mathbf{Q}}^{[3,2^2,1^{n-4}]}).$$

As a corollary, we have

Corollary 2. For $n \geq 4$,

$$\operatorname{rank}_{\mathbf{Z}}(H_1(\mathcal{K}_n,\mathbf{Z})) \geq \frac{1}{3}n(n^2-1) + \frac{1}{8}n^2(n-1)(n+2)(n-3).$$

Finally, we obtain

Theorem 4. For $n \geq 4$, the rational cup product

$$\cup_{\mathbf{Q}}^{M}: \Lambda^{2}H^{1}(\mathrm{IA}_{n}^{M}, \mathbf{Q}) \to H^{2}(\mathrm{IA}_{n}^{M}, \mathbf{Q})$$

is not surjective, and

$$\dim_{\mathbf{Q}}(H^2(\mathrm{IA}_n^M,\mathbf{Q})) \geq rac{1}{24}n(n-2)(3n^4+3n^3-5n^2-23n-2).$$

In Section 2, we recall the IA-automorphism group of G and the Johnson homomorphisms of the automorphism group $\operatorname{Aut} G$ of G for a group G. In particular, we concentrate on the case where G is a free group and a free metabelian group. We also review the definition of the Magnus representations of IA_n and IA_n^M . In Section 3, we determine the cokernel of the Johnson homomorphisms of the automorphism group of a free metabelian group. In Section 4, we show that the image of the cup product map $\cup_{\mathbf{Q}}^M$ is isomorphise to that of $\cup_{\mathbf{Q}}$. Finally, in Section 5, we determine the $\operatorname{GL}(n,\mathbf{Z})$ -module structure of $\overline{\mathcal{K}}_n^{\mathbf{Q}}$, and show that $\cup_{\mathbf{Q}}^M$ is not surjective.

CONTENTS

1.	Introduction	1
2.	Preliminaries	6
2.1.	Notation	6
2.2.	Free groups	9
2.3.	Free metabelian groups	12
2.4.	Magnus representations	14
3 . •	The cokernel of the Johnson homomorphisms	15
3.1.	Upper bound of the rank of cokernel of τ_k	15
3.2.	Lower bound of the rank of the cokernel of τ_k	15
4.	The image of the cup product in the second cohomology group	18

4.1. A minimal presentation and second cohomology of a group	18
4.2. The image of the rational cup product $\cup_{\mathbf{Q}}^{M}$	20
5. On the kernel of the Magnus representation of IA_n	21
5.1. The irreducible decompositon of $\overline{\mathcal{K}}_n^{\mathbf{Q}}$	22
5.2. Non surjectivity of the cup product \cup_{Ω}^{M}	23
6. Acknowledgments	24
References	

2. Preliminaries

In this section, we recall the definition and some properties of the associated Lie algebra, the IA-automorphism group of G, and the Johnson homomorphisms of the automorphism group Aut G of G for any group G. In Subsections 2.2 and 2.3, we consider the case where G is a free group and a free metabelian group.

2.1. Notation.

First of all, throughout this paper we use the following notation and conventions.

- For a group G, the abelianization of G is denoted by G^{ab} .
- For a group G, the group $\operatorname{Aut} G$ acts on G from the right. For any $\sigma \in \operatorname{Aut} G$ and $x \in G$, the action of σ on x is denoted by x^{σ} .
- For a group G, and its quotient group G/N, we also denote the coset class of an element $g \in G$ by $g \in G/N$ if there is no confusion.
- For any **Z**-module M, we denote $M \otimes_{\mathbf{Z}} \mathbf{Q}$ by the symbol obtained by attaching a subscript \mathbf{Q} to M, like $M_{\mathbf{Q}}$ and $M^{\mathbf{Q}}$. Similarly, for any **Z**-linear map $f: A \to B$, the induced \mathbf{Q} -linear map $A_{\mathbf{Q}} \to B_{\mathbf{Q}}$ is denoted by $f_{\mathbf{Q}}$ or $f^{\mathbf{Q}}$.
- For elements x and y of a group, the commutator bracket [x, y] of x and y is defined to be $[x, y] := xyx^{-1}y^{-1}$.

2.1.1. Associated Lie algebra of a group.

For a group G, we define the lower central series of G by the rule

$$\Gamma_G(1) := F_n, \quad \Gamma_G(k) := [\Gamma_G(k-1), G], \quad k \geq 2.$$

We denote by $\mathcal{L}_G(k) := \Gamma_G(k)/\Gamma_G(k+1)$ the graded quotient of the lower central series of G, and by $\mathcal{L}_G := \bigoplus_{k \geq 1} \mathcal{L}_G(k)$ the associated graded sum. The graded sum \mathcal{L}_G naturally has a graded Lie algebra structure induced

from the commutator bracket on G, and called the accosiated Lie algebra of G.

For any $g_1, \ldots, g_t \in G$, a commutator of weight k type of

$$[[\cdots [[g_{i_1},g_{i_2}],g_{i_3}],\cdots],g_{i_k}], \quad i_j \in \{1,\ldots,t\}$$

with all of its brackets to the left of all the elements occurring is called a simple k-fold commutator among the components g_1, \ldots, g_t , and we denote it by

$$[g_{i_1},g_{i_2},\cdots,g_{i_k}]$$

for simplicity. Then we have

Lemma 2.1. If G is generated by g_1, \ldots, g_t , then each of the graded quotients $\Gamma_G(k)/\Gamma_G(k+1)$ is generated by the simple k-fold commutators

$$[g_{i_1}, g_{i_2}, \ldots, g_{i_k}], \quad i_j \in \{1, \ldots, t\}.$$

Let ρ_G : Aut $G \to \operatorname{Aut} G^{\operatorname{ab}}$ be the natural homomorphism induced from the abelianization of G. The kernel $\operatorname{IA}(G)$ of ρ_G is called the IA-automorphism group of G. Then the automorphism group Aut G naturally acts on $\mathcal{L}_G(k)$ for each $k \geq 1$, and $\operatorname{IA}(G)$ acts on it trivially. Hence the action of $\operatorname{Aut} G^{\operatorname{ab}}$ on $\mathcal{L}_G(k)$ is well-defined.

2.1.2. Johnson homomorphisms.

For $k \geq 0$, the action of Aut G on each nilpotent quotient $G/\Gamma_G(k+1)$ induces a homomorphism

$$\rho_G^k : \operatorname{Aut} G \to \operatorname{Aut}(G/\Gamma_G(k+1)).$$

The map ρ_G^0 is trivial, and $\rho_G^1 = \rho_G$. We denote the kernel of ρ_G^k by $\mathcal{A}_G(k)$. Then the groups $\mathcal{A}_G(k)$ define a descending central filtration

$$\operatorname{Aut} G = \mathcal{A}_G(0) \supset \mathcal{A}_G(1) \supset \mathcal{A}_G(2) \supset \cdots$$

of Aut G, with $A_G(1) = IA(G)$. (See [1] for details.) We call it the Johnson filtration of Aut G. For each $k \geq 1$, the group Aut G acts on $A_G(k)$ by conjugation, and it naturally induces an action of Aut $G^{ab} = \operatorname{Aut} G/IA(G)$ on $\operatorname{gr}^k(A_G)$. The graded sum $\operatorname{gr}(A_G) := \bigoplus_{k\geq 1} \operatorname{gr}^k(A_G)$ has a graded Lie algebra structure induced from the commutator bracket on IA(G).

To study the Aut G^{ab} -module structure of each graded quotient $\operatorname{gr}^k(\mathcal{A}_G)$, we define the Johnson homomorphisms of Aut G in the following way. For

each $k \geq 1$, we consider a map $\mathcal{A}_G(k) \to \operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, \mathcal{L}_G(k+1))$ defined by

$$\sigma \mapsto (g \mapsto g^{-1}g^{\sigma}), \quad x \in G.$$

Then the kernel of this homomorphism is just $A_G(k+1)$. Hence it induces an injective homomorphism

$$\tau_k = \tau_{G,k} : \operatorname{gr}^k(\mathcal{A}_G) \hookrightarrow \operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, \mathcal{L}_G(k+1)).$$

The homomorphsim τ_k is called the k-th Johnson homomorphism of Aut G. It is easily seen that each τ_k is an Aut G^{ab} -equivariant homomorphism. Since each Johnson homomorphism τ_k is injective, to determine the cokernel of τ_k is an important problem on the study of the structure of $\operatorname{gr}^k(\mathcal{A}_G)$ as an Aut G^{ab} -module.

Here, we consider another descending filtration of IA(G). Let $\mathcal{A}'_G(k)$ be the k-th subgroup of the lower central series of IA(G). Then for each $k \geq 1$, $\mathcal{A}'_G(k)$ is a subgroup of $\mathcal{A}_G(k)$ since $\mathcal{A}_G(k)$ is a central filtration of IA(G). In general, it is not known whether $\mathcal{A}'_G(k)$ coincides with $\mathcal{A}_G(k)$ or not. Set $\operatorname{gr}^k(\mathcal{A}'_G) := \mathcal{A}'_G(k)/\mathcal{A}'_G(k+1)$ for each $k \geq 1$. The restriction of the homomorphism $\mathcal{A}_G(k) \to \operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, \mathcal{L}_G(k+1))$ to $\mathcal{A}'_G(k)$ induces an Aut G^{ab} -equivariant homomorphism

$$\tau'_k = \tau'_{G,k} : \operatorname{gr}^k(\mathcal{A}'_G) \to \operatorname{Hom}_{\mathbf{Z}}(G^{\operatorname{ab}}, \mathcal{L}_G(k+1)).$$

In this paper, we also call τ'_k the k-th Johnson homomorphism of Aut G.

For any $\sigma \in A_G(k)$ and $\tau \in A_G(l)$, we give an example of computation of $\tau_{k+l}([\sigma,\tau])$ using $\tau_k(\sigma)$ and $\tau_l(\tau)$. For $\sigma \in \mathcal{A}_G(k)$ and $\sigma \in \mathcal{A}_G(k)$ are $s_g(\sigma) := g^{-1}g^{\sigma} \in \Gamma_G(k+1)$. Then, $\tau_k(\sigma)(g) = s_g(\sigma) \in \mathcal{L}_G(k+1)$. For any $\sigma \in A_G(k)$ and $\tau \in A_G(l)$, by an easy calculation, we have

(1)

$$s_g([\sigma, \tau]) = (s_g(\tau)^{-1})^{\tau^{-1}} (s_g(\sigma)^{-1})^{\sigma^{-1}\tau^{-1}} s_g(\tau)^{\sigma^{-1}\tau^{-1}} s_g(\sigma)^{\tau\sigma^{-1}\tau^{-1}},$$

$$\equiv s_g(\sigma)^{-1} s_g(\sigma)^{\tau} \cdot (s_g(\tau)^{-1} s_g(\tau)^{\sigma})^{-1} \pmod{\Gamma_G(k+l+2)}.$$

Using this fomula, we can easily compute $s_g([\sigma, \tau])$ from $s_g(\sigma)$ and $s_g(\tau)$. For example, if $s_g(\sigma)$ and $s_g(\tau)$ is given by

(2)
$$s_g(\sigma) = [g_1, g_2, \dots, g_{k+1}] \in \mathcal{L}_G(k+1), \quad s_g(\tau) = [h_1, h_2, \dots, h_{l+1}] \in \mathcal{L}_G(l+1),$$

then we obtain

$$s_g([\sigma,\tau]) = \left(\sum_{i=1}^{k+1} [g_1,\ldots,s_{g_i}(\tau),\ldots,g_{k+1}]\right) - \left(\sum_{j=1}^{l+1} [h_1,\ldots,s_{h_j}(\sigma),\ldots,h_{l+1}]\right)$$

in $\mathcal{L}_G(k+l+1)$.

2.2. Free groups.

In this section we cosider the case where G is a free group of finite rank.

2.2.1. Free Lie algebra.

For $n \geq 2$, let F_n be a free group of rank n with basis x_1, \ldots, x_n , and We denote the abelianization of F_n by H, and its dual group by $H^* := \text{Hom}_{\mathbf{Z}}(H,\mathbf{Z})$. If we fix the basis of H as a free abelian group induced from the basis x_1, \ldots, x_n of F_n , we can identify $\text{Aut } F_n^{\text{ab}} = \text{Aut}(H)$ with the general linear group $\text{GL}(n,\mathbf{Z})$. In this paper, for simplicity, we write $\Gamma_n(k)$, $\mathcal{L}_n(k)$ and \mathcal{L}_n for $\Gamma_{F_n}(k)$, $\mathcal{L}_{F_n}(k)$ and \mathcal{L}_{F_n} respectively.

The associated Lie algebra \mathcal{L}_n is called the free Lie algebra generated by H. (See [31] for basic material concerning free Lie algebra.) It is calssically well known due to Witt [33] that each $\mathcal{L}_n(k)$ is a $GL(n, \mathbf{Z})$ -equivariant free abelian group of rank

(3)
$$r_n(k) := \frac{1}{k} \sum_{d|k} \mu(d) n^{\frac{k}{d}}$$

where μ is the Möbius function.

Next we consider the $GL(n, \mathbf{Z})$ -module structure of $\mathcal{L}_n(k)$. For example, for $1 \leq k \leq 3$ we have

$$\mathcal{L}_n(1) = H, \quad \mathcal{L}_n(2) = \Lambda^2 H,$$

$$\mathcal{L}_n(3) = (H \otimes_{\mathbf{Z}} \Lambda^2 H) / \langle x \otimes y \wedge z + y \otimes z \wedge x + z \otimes x \wedge y \mid x, y, z \in H \rangle.$$

In general, the irreducible decomposition of $\mathcal{L}_n^{\mathbf{Q}}(k)$ as a $\mathrm{GL}(n, \mathbf{Z})$ -module is completely determined. For $k \geq 1$ and any Young diagram $\lambda = [\lambda_1, \ldots, \lambda_l]$ of degree k, let H^{λ} be the Schur-Weyl module of H corresponding to the Young diagram λ . For example, $H^{[k]} = S^k H$ and $H^{[1^k]} = \Lambda^k H$. (For details, see [12] and [13].) Let $m(H_{\mathbf{Q}}^{\lambda}, \mathcal{L}_n^{\mathbf{Q}}(k))$ be the multiplicity of the Schur-Weyl module $H_{\mathbf{Q}}^{\lambda}$ in $\mathcal{L}_n^{\mathbf{Q}}(k)$. Bakhturin [6] gave a formula for $m(H_{\mathbf{Q}}^{\lambda}, \mathcal{L}_n^{\mathbf{Q}}(k))$ using the chracter of the Specht module of

 $H_{\mathbf{Q}}$ corresponding to the Yound diagram λ . However, its character value had remained unknown in general. Then Zhuravlev [34] gave a method of calculation for it. Using these fact, we can give the explicit irreducible decomposition of $\mathcal{L}_n^{\mathbf{Q}}(k)$. For example,

(4)
$$\mathcal{L}_{n}^{\mathbf{Q}}(3) \cong H_{\mathbf{Q}}^{[2,1]}, \quad \mathcal{L}_{n}^{\mathbf{Q}}(4) \cong H_{\mathbf{Q}}^{[3,1]} \oplus H_{\mathbf{Q}}^{[2,1,1]}.$$

2.2.2. IA-automorphism group.

Now we consider the IA-automorphism group of F_n . We denote IA(F_n) by IA_n. It is well known due to Nielsen [26] that IA₂ coincides with the inner automorphism group Inn F_2 of F_2 . Namely, IA₂ is a free group of rank 2. However, IA_n for $n \geq 3$ is much larger than Inn F_n . Indeed, Magnus [21] showed that for any $n \geq 3$, the IA-automorphism group IA_n is finitely generated by automorphisms

$$K_{ij}: \begin{cases} x_i & \mapsto x_j^{-1}x_ix_j, \ x_t & \mapsto x_t, \end{cases} \quad (t \neq i)$$

for distinct $i, j \in \{1, 2, ..., n\}$ and

$$K_{ijk}: egin{cases} x_i & \mapsto x_i x_j x_k x_j^{-1} x_k^{-1}, \ x_t & \mapsto x_t, \ \end{cases} (t
eq i)$$

for distinct $i, j, k \in \{1, 2, ..., n\}$ such that j < k.

For any $n \geq 3$, although a generating set of IA_n is well known as above, any presentation for IA_n is still not known. For n = 3, Krstić and McCool [20] showed that IA_3 is not finitely presentable. For $n \geq 4$, it is also not known whether IA_n is finitely presentable or not.

Andreadakis [1] showed that the first Johnson homomorphism τ_1 of Aut F_n is surjective by computing the image of the generators of IA_n above. Furthermore, recently, Cohen-Pakianathan [9, 10], Farb [11] and Kawazumi [19] inedepedently showed that τ_1 induces the abelianization of IA_n . Namely, for any $n \geq 3$, we have

$$(5) IA_n^{\rm ab} \cong H^* \otimes_{\mathbf{Z}} \Lambda^2 H$$

as a $GL(n, \mathbf{Z})$ -module.

2.2.3. Johnson homomorphisms.

Here, we consider the Johnson homomorphisms of Aut F_n . Throughout this paper, for simplicity, we write $\mathcal{A}_n(k)$, $\mathcal{A}'_n(k)$, $\operatorname{gr}^k(\mathcal{A}_n)$ and $\operatorname{gr}^k(\mathcal{A}'_n)$ for $\mathcal{A}_{F_n}(k)$, $\mathcal{A}'_{F_n}(k)$, $\operatorname{gr}^k(\mathcal{A}_{F_n})$ and $\operatorname{gr}^k(\mathcal{A}'_{F_n})$ respectively. Pettet [30] showed

(6)
$$\operatorname{rank}_{\mathbf{Z}} \operatorname{gr}^{2}(\mathcal{A}_{n}) = \frac{1}{6}n(n+1)(2n^{2}-2n-3),$$

and in our previous paper [32], we showed

$$\operatorname{rank}_{\mathbf{Z}} \operatorname{gr}^{3}(\mathcal{A}_{n}) = \frac{1}{12}n(3n^{4} - 7n^{2} - 8).$$

In general, for any $n \geq 3$ and $k \geq 4$ the rank of $\operatorname{gr}^k(\mathcal{A}_n)$ is still not known. One of the aim of the paper is to give a lower bound of $\operatorname{rank}_{\mathbf{Z}} \operatorname{gr}^k(\mathcal{A}_n)$ by studying the Johnson filtration of the automorphism group of a free metabelian group.

Next, we mention the relation between $\mathcal{A}'_n(k)$ and $\mathcal{A}_n(k)$. Since τ_1 is the abelianization of IA_n as mensioned above, we have $\mathcal{A}'_n(2) = \mathcal{A}_n(2)$. Furthermore, Pettet [30] showed that $\mathcal{A}'_n(3)$ has at most a finite index in $\mathcal{A}_n(3)$. Although it is conjectured that $\mathcal{A}'_n(k) = \mathcal{A}_n(k)$ for $k \geq 3$, there are few results for the difference between $\mathcal{A}'_n(k)$ and $\mathcal{A}_n(k)$ for $n \geq 3$.

Let H^* be the dual group $\operatorname{Hom}_{\mathbf{Z}}(H,\mathbf{Z})$ of H. For the standard basis x_1,\ldots,x_n of H induced from the generators of F_n , let x_1^*,\ldots,x_n^* be its dual basis of H^* . Then identifying $\operatorname{Hom}_{\mathbf{Z}}(H,\mathcal{L}_n(k+1))$ with $H^*\otimes_{\mathbf{Z}}\mathcal{L}_n(k+1)$, we obtain the Johnson homomorphism

$$\tau_k: \operatorname{gr}^k(\mathcal{A}_n) \hookrightarrow H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(k+1)$$

of Aut F_n . Here we give some examples of computation $\tau_k(\sigma)$ for $\sigma \in \mathcal{A}_n(k)$. For the generators K_{ij} and K_{ijk} of $\mathcal{A}_n(1) = \mathrm{IA}_n$, we have

$$s_{x_l}(K_{ij}) = egin{cases} 1, & l
eq i, \ [x_i^{-1}, x_j^{-1}], & l = i, \end{cases} \quad s_{x_l}(K_{ijk}) = egin{cases} 1, & l
eq i, \ [x_j, x_k], & l = i \end{cases}$$

in $\Gamma_n(2)$. Hence

(7)
$$\tau_1(K_{ij}) = x_i^* \otimes [x_i, x_j], \quad \tau_1(K_{ijk}) = x_i^* \otimes [x_j, x_k]$$

in $H^* \otimes_{\mathbf{Z}} \mathcal{L}_n(2)$. Then using (1) and (7), we can recursively compute $\tau_k(\sigma) = \tau'_k(\sigma)$ for $\sigma \in \mathcal{A}'_n(k)$. These computations are perhaps easiest

explained with examples, so we give two here. For distinct a, b, c and d in $\{1, 2, ..., n\}$, we have

$$\begin{aligned} \tau_2'([K_{ab},K_{bac}]) &= x_a^* \otimes ([s_{x_a}(K_{bac}),x_b] + [x_a,s_{x_b}(K_{bac})]) \\ &- x_b^* \otimes ([s_{x_a}(K_{ab}),x_c] + [x_a,s_{x_c}(K_{ab})]), \\ &= x_a^* \otimes [x_a,[x_a,x_c]] - x_b^* \otimes [[x_a,x_b],x_c] \end{aligned}$$

and

$$\begin{aligned} \tau_{3}'([K_{ab}, K_{bac}, K_{ad}]) \\ &= x_{a}^{*} \otimes ([s_{x_{a}}(K_{ad}), [x_{a}, x_{c}]] + [x_{a}, [s_{x_{a}}(K_{ad}), x_{c}]] + [x_{a}, [x_{a}, s_{x_{c}}(K_{ad})]]), \\ &- x_{b}^{*} \otimes ([[s_{x_{a}}(K_{ad}), x_{b}], x_{c}] + [[x_{a}, s_{x_{b}}(K_{ad})], x_{c}] + [[x_{a}, x_{b}], s_{x_{c}}(K_{ad})]) \\ &- x_{a}^{*} \otimes ([s_{x_{a}}([K_{ab}, K_{bac}]), x_{d}] + [x_{a}, s_{x_{d}}([K_{ab}, K_{bac}])]), \\ &= x_{a}^{*} \otimes [[x_{a}, x_{d}], [x_{a}, x_{c}]] + x_{a}^{*} \otimes [x_{a}, [[x_{a}, x_{d}], x_{c}]] \\ &- x_{b}^{*} \otimes [[[x_{a}, x_{d}], x_{b}], x_{c}] \\ &- x_{a}^{*} \otimes [[x_{a}, [x_{a}, x_{c}]], x_{d}]. \end{aligned}$$

2.3. Free metabelian groups.

In this section we cosider the case where a group G is a free metabelian group of finite rank.

2.3.1. Free metabelian Lie algebra.

Let $F_n^M = F_n/F_n''$ be a free metabelian group of rank n where $F_n'' = [[F_n, F_n], [F_n, F_n]]$ is the second derived group of F_n . Then we have $(F_n^M)^{ab} = H$, and hence $\operatorname{Aut}(F_n^M)^{ab} = \operatorname{Aut}(H) = \operatorname{GL}(n, \mathbb{Z})$. In this paper, for simplicity, we write $\Gamma_n^M(k)$, $\mathcal{L}_n^M(k)$ and \mathcal{L}_n^M for $\Gamma_{F_n^M}(k)$, $\mathcal{L}_{F_n^M}(k)$ and $\mathcal{L}_{F_n^M}$ respectively.

The associated Lie algebra \mathcal{L}_n^M is called the free metabelian algebra generated by H. We see that $\mathcal{L}_n(k) = \mathcal{L}_n^M(k)$ for $1 \leq k \leq 3$. It is also classically well known due to Chen [8] that each $\mathcal{L}_n^M(k)$ is a $\mathrm{GL}(n,\mathbf{Z})$ -equivariant free abelian group of rank

(8)
$$r_n^M(k) := (k-1)\binom{n+k-2}{k}.$$

2.3.2. IA-automorphism group.

Here we consider the IA-automorphism group of F_M . Let $IA_n^M := IA(F_n^M)$. We denote by $\nu_n : Aut F_n \to Aut F_n^M$ the natural homomorphism induced from the action of $Aut F_n$ on F_n^M . Restricting ν_n to IA_n , we obtain a homomorphism $\nu_{n,1} : IA_n \to IA_n^M$. Bachmuth and Mochizuki [4] showed that $\nu_{3,1}$ is not surjective and IA_3^M is not finitely generated. They also showed that in [5], $\nu_{n,1}$ is surjective for $n \geq 4$. Hence IA_n^M is finitely generated for $n \geq 4$. It is, however, not known whether IA_n^M is finitely presented or not for $n \geq 4$.

From now on, we consider the case where $n \geq 4$. Set $\mathcal{K}_n := \mathrm{Ker}(\nu_n)$. Since $\mathcal{K}_n \subset \mathrm{IA}_n$, we have an exact sequence

$$(9) 1 \to \mathcal{K}_n \to \mathrm{IA}_n \to \mathrm{IA}_n^M \to 1.$$

Furthermore, observing $\mathcal{K}_n \subset \mathcal{A}_n(2) = [\mathrm{IA}_n, \mathrm{IA}_n]$, we obtain

(10)
$$(IA_n^M)^{ab} \cong IA_n^{ab} \cong H^* \otimes_{\mathbf{Z}} \Lambda^2 H,$$

and see that the first Johnson homomorphism τ_1 of Aut F_n^M is an isomorphism.

2.3.3. Johnson homomorphisms.

Here we consider the Johnson homomorphisms of Aut (F_n^M) . We denote $\mathcal{A}_{F_n^M}(k)$ and $\operatorname{gr}^k(\mathcal{A}_{F_n^M})$ by $\mathcal{A}_n^M(k)$ and $\operatorname{gr}^k(\mathcal{A}_n^M)$ respectively. Furthermore, we also denote $\mathcal{A}'_{F_n^M}(k)$ and $\operatorname{gr}^k(\mathcal{A}'_{F_n^M})$ by $\mathcal{A}'_n^M(k)$ and $\operatorname{gr}^k(\mathcal{A}'_n^M)$ respectively.

For each $k \geq 1$, restricting ν_n to $\mathcal{A}_n(k)$, we obtain a homomorphism $\nu_{n,k}: \mathcal{A}_n(k) \to \mathcal{A}_n^M(k)$. Since $\tau_1: \operatorname{gr}^1(\mathcal{A}_n'^M) \to H^* \otimes_{\mathbb{Z}} \Lambda^2 H$ is an isomorphism, we see that $\mathcal{A}_n^M(2) = \mathcal{A}_n'^M(2)$, and hence $\nu_{n,2}$ is surjective. However it is not known whether $\nu_{n,k}$ is surjective or not for $k \geq 3$.

Now, the main aim of the paper is to determine the $GL(n, \mathbb{Z})$ -module structure of the cokernel of the Johnson homomorphisms of Aut F_n^M . In this paper, we give an answer to this problem for the case where $k \geq 2$ and $n \geq \max\{4, k+1\}$. We remark that by an argument similar to that in Subsection 2.2, we can recursively compute $\tau_k(\sigma) = \tau'_k(\sigma)$ for $\sigma \in \mathcal{A}_n^{'M}(k)$, using $\tau_1(\nu_{n,1}(K_{ij})) = x_i^* \otimes [x_i, x_j]$ and $\tau_1(\nu_{n,1}(K_{ijk})) = x_i^* \otimes [x_j, x_k]$.

2.4. Magnus representations.

In this subsection we recall the Magnus representation of Aut F_n and Aut F_n^M . (For details, see [7].) For each $1 \le j \le n$, let

$$\frac{\partial}{\partial x_i}: \mathbf{Z}[F_n] \to \mathbf{Z}[F_n]$$

be the Fox derivation defined by

$$rac{\partial}{\partial x_i}(w) = \sum_{j=1}^r \epsilon_j \delta_{\mu_j,i} x_{\mu_1}^{\epsilon_1} \cdots x_{\mu_j}^{rac{1}{2}(\epsilon_j-1)} \in \mathbf{Z}[F_n]$$

for any reduced word $w = x_{\mu_1}^{\epsilon_1} \cdots x_{\mu_r}^{\epsilon_r} \in F_n$, $\epsilon_j = \pm 1$. Let $\mathfrak{a}: F_n \to H$ be the abelianization of F_n . We also denote by \mathfrak{a} the ring homomorphism $\mathbf{Z}[F_n] \to \mathbf{Z}[H]$ induced from \mathfrak{a} . For any $A = (a_{ij}) \in \mathrm{GL}(n, \mathbf{Z}[F_n])$, let $A^{\mathfrak{a}}$ be the matrix $(a_{ij}^{\mathfrak{a}}) \in \mathrm{GL}(n, \mathbf{Z}[H])$. The Magnus representation $\overline{\mathrm{rep}}: \mathrm{Aut}\, F_n \to \mathrm{GL}(n, \mathbf{Z}[H])$ of $\mathrm{Aut}\, F_n$ is defined by

$$\sigma \mapsto \left(\frac{\partial x_i^{\sigma}}{\partial x_j}\right)^{\mathfrak{a}}$$

for any $\sigma \in \operatorname{Aut} F_n$. This map is not a homomorphism but a crossed homomorphism. Namely,

$$\overline{\operatorname{rep}}(\sigma\tau) = (\overline{\operatorname{rep}}(\sigma))^{\tau^*} \cdot \overline{\operatorname{rep}}(\tau)$$

where $(\overline{\text{rep}}(\sigma))^{\tau^*}$ denotes the matrix obtained from $\overline{\text{rep}}(\sigma)$ by applying the automorphism $\tau^*: \mathbf{Z}[H] \to \mathbf{Z}[H]$ induced from $\rho(\tau) \in \text{Aut}(H)$ on each entry. Hence by ristricting $\overline{\text{rep}}$ to IA_n , we obtain a homomorphism $\text{rep}: IA_n \to GL(n, \mathbf{Z}[H])$. This is called the Magnus representation of IA_n .

Next, we consider the Magnus representation of IA_n^M . Let $rep^M : IA_n^M \to GL(n, \mathbf{Z}[H])$ be a map defined by

$$\sigma \mapsto \left(rac{\partial (x_i^{\sigma})}{\partial x_j}
ight)^{\mathfrak{a}}$$

for any $\sigma \in IA_n^M$ where we consider any lift of the element $x_i^{\sigma} \in F_n^M$ to F_n . Then we see rep^M is a homomorphism and $\operatorname{rep} = \operatorname{rep}^M \circ \nu_{n,1}$, and call it the Mugnus representation of IA_n^M . Bachmuth [2] showed that rep^M is faithful, and determined the image of rep^M in $\operatorname{GL}(n, \mathbf{Z}[H])$. The faithfullness of the Magnus representation rep^M shows that the kernel of the Magnus representation rep^M shows that the kernel of

3. The cokernel of the Johnson homomorphisms

In this section, we determine the cokernel of the Johnson homomorphism τ_k of Aut F_n^M for $k \geq 2$ and $n \geq \max\{4, k+1\}$.

3.1. Upper bound of the rank of cokernel of τ_k .

First we give an upper bound of the rank of the cokernel of τ_k by reducing generators of it. By Lemma 2.1, we see that elements type of $x_i^* \otimes [x_{i_1}, x_{i_2}, \dots, x_{i_{k+1}}]$ generate $H^* \otimes_{\mathbf{Z}} \mathcal{L}_n^M(k+1)$. First we prepare some lemmas. Let \mathfrak{S}_l be the symmetric group of degree l. Then we have

Lemma 3.1. Let $l \geq 2$ and $n \geq 2$. For any element $[x_{i_1}, x_{i_2}, x_{j_1}, \dots, x_{j_l}] \in \mathcal{L}_n^M(l+2)$ and any $\lambda \in \mathfrak{S}_l$,

$$[x_{i_1}, x_{i_2}, x_{j_1}, \ldots, x_{j_l}] = [x_{i_1}, x_{i_2}, x_{j_{\lambda(1)}}, \ldots, x_{j_{\lambda(l)}}].$$

Lemma 3.2. Let $k \geq 1$ and $n \geq 4$. For any i and $i_1, i_2, \ldots, i_{k+1} \in \{1, 2, \ldots, n\}$, if $i_1, i_2 \neq i$,

$$x_i^* \otimes [x_{i_1}, x_{i_2}, \ldots, x_{i_{k+1}}] \in \operatorname{Im}(\tau_k').$$

Lemma 3.3. Let $k \geq 1$ and $n \geq 4$. For any i and $i_1, i_2, \ldots, i_k \in \{1, 2, \ldots, n\}$ such that $i_1, i_2 \neq i$, and any $\lambda \in \mathfrak{S}_k$,

$$x_i^* \otimes [x_i, x_{i_1}, \ldots, x_{i_k}] - x_i^* \otimes [x_i, x_{i_{\lambda(1)}}, \ldots, x_{i_{\lambda(k)}}] \in \operatorname{Im}(\tau_k').$$

Lemma 3.4. Let $k \geq 1$ and $n \geq 4$. For any $i_2, \ldots, i_{k+1} \in \{1, 2, \ldots, n\}$, we have

$$x_i^* \otimes [x_i, x_{i_2}, \dots, x_{i_{k+1}}] - x_j^* \otimes [x_j, x_{i_2}, \dots, x_{i_{k+1}}] \in \operatorname{Im}(\tau_k')$$

for any $i \neq i_2$ and $j \neq i_2, i_{k+1}$.

Using the lemmas above, we can reduce the generators of $\operatorname{Coker}(\tau_k)$. We remark that $\operatorname{Im}(\tau_k') \subset \operatorname{Im}(\tau_k)$.

Proposition 3.1. For $k \geq 2$ and $n \geq 4$, $Coker(\tau_k)$ is generated by $\binom{n+k-1}{k}$ elements.

3.2. Lower bound of the rank of the cokernel of τ_k .

In this subsection we give a lower bound of the rank of $\operatorname{Coker}(\tau_k)$ by using the Magnus representation of $\operatorname{Aut} F_n^M$. To do this, we use trace maps introduced by Morita [23] with pioneer and remarkable works. Recently, he showed that there is a symmetric product of H of degree k in

the cokernel of the Johnson homomorphism of the automorphism group of a free group using trace maps. Here we apply his method to the case for $\operatorname{Aut} F_n^M$. In order to define the trace maps, we prepare some notation of the associated algebra of the integral group ring. (For basic materials, see [29], Chapter VIII.)

For a group G, let $\mathbf{Z}[G]$ be the integral group ring of G over \mathbf{Z} . We denote the augmentation map by $\epsilon: \mathbf{Z}[G] \to \mathbf{Z}$. The kernel I_G of ϵ is called the augmentation ideal. Then the powers of I_G^i for $i \geq 1$ provide a descending filtration of $\mathbf{Z}[G]$, and the direct sum

$$\mathfrak{I}_G := \bigoplus_{k>1} I_G^k / I_G^{k+1}$$

naturally has a graded algebra structure induced from the multiplication of $\mathbf{Z}[G]$. We call \mathfrak{I}_G the associated algebra of the group ring $\mathbf{Z}[G]$.

For $G = F_n$ a free group of rank n, write I_n and \mathfrak{I}_n for I_{F_n} and \mathfrak{I}_{F_n} respectively. It is classically well known due to Magnus [22] that each graded quotient I_n^k/I_n^{k+1} is a free abelian group with basis $\{(x_{i_1}-1)(x_{i_2}-1)\cdots(x_{i_k}-1)\mid 1\leq i_j\leq n\}$, and a map $I_n^k/I_n^{k+1}\to H^{\otimes k}$ defined by

$$(x_{i_1}-1)(x_{i_2}-1)\cdots(x_{i_k}-1)\mapsto x_{i_1}\otimes x_{i_2}\otimes\cdots\otimes x_{i_k}$$

induces an isomorphism from \mathfrak{I}_n to the tensor algebra

$$T(H) := \bigoplus_{k \ge 1} H^{\otimes k}$$

of H as a graded algebra. We identify I_n^k/I_n^{k+1} with $H^{\otimes k}$ via this isomorphism.

It is also well known that each geaded quotient I_H^k/I_H^{k+1} is a free abelian group with basis $\{(x_{i_1}-1)(x_{i_2}-1)\cdots(x_{i_k}-1)\mid 1\leq i_1\leq i_2\leq\cdots\leq i_k\leq n\}$, and the associated graded algebra \mathfrak{I}_H of H is isomorphisc to the symmetric algebra

$$S(H) := \bigoplus_{k>1} S^k H$$

of H as a graded algebra. (See [29], Chapter VIII, Proposition 6.7.) We also identify I_H^k/I_H^{k+1} with S^kH . Then a homomorphism $I_n^k/I_n^{k+1} \to I_H^k/I_H^{k+1}$ induced from the abelianization $\mathfrak{a}: F_n \to H$ is considered as the natural projection $H^{\otimes k} \to S^kH$.

Now, we define trace maps. For any element $f \in H^* \otimes_{\mathbf{Z}} \mathcal{L}_n^M(k+1)$, set

$$\left\|f\right\|:=\left(\frac{\partial(x_i^f)}{\partial x_j}\right)^{\mathfrak{a}}\in M(n,S^kH)$$

where we consider any lift of the element

$$x_i^f \in \mathcal{L}_n^M(k+1) = \Gamma_n(k+1)/(\Gamma_n(k+2) \cdot \Gamma_n(k+1) \cap F_n'')$$

to $\Gamma_n(k+1)$. Then we define a map $\operatorname{Tr}_k^M: H^* \otimes_{\mathbf{Z}} \mathcal{L}_n^M(k+1) \to S^k H$ by $\operatorname{Tr}_k^M(f) := \operatorname{trace}(\|f\|)$.

It is easily seen that Tr_k^M is a $\operatorname{GL}(n,\mathbf{Z})$ -equivariant homomorphism. The maps Tr_k^M are called the Morita's trace maps. We show that Tr_k^M is surjective and $\operatorname{Tr}_k^M \circ \tau_k = 0$ for $k \geq 2$ and $n \geq 3$. By a direct computation, we obtain

Lemma 3.5. For $f = x_i^* \otimes [x_{i_1}, x_{i_2}, \dots, x_{i_{k+1}}] \in H^* \otimes_{\mathbf{Z}} \mathcal{L}_n^M(k+1)$, we have

$$\operatorname{Tr}_{k}^{M}(f) = (-1)^{k} \{ \delta_{i_{1}i} \ x_{i_{2}} x_{i_{3}} \cdots x_{i_{k+1}} - \delta_{i_{2}i} \ x_{i_{1}} x_{i_{3}} \cdots x_{i_{k+1}} \}$$

where δ_{ij} is the Kronecker's delta.

Lemma 3.6. For any $k \geq 1$ and $n \geq 2$, Tr_k^M is surjective.

Before showing $\operatorname{Tr}_k^M \circ \tau_k = 0$, we consider a relation between the Magnus representation and the Johnson homomorphism. For each $k \geq 1$, composing the Magnus representation rep^M restricted to $\mathcal{A}_n^M(k)$ with a homomorphism $\operatorname{GL}(n,\mathbf{Z}[H]) \to \operatorname{GL}(n,\mathbf{Z}[H]/I_H^{k+1})$ induced from a natural projection $\mathbf{Z}[H] \to \mathbf{Z}[H]/I_H^{k+1}$, we obtain a homomorphism $\operatorname{rep}_k^M : \mathcal{A}_n^M(k) \to \operatorname{GL}(n,\mathbf{Z}[H]/I_H^{k+1})$. By the definition of the Magnus representation and the Johnson homomorphism, we obtain

(11)
$$\operatorname{rep}_{k}^{M}(\sigma) = I + \|\tau_{k}(\sigma)\|$$

where I denotes the identity matrix.

Proposition 3.2. For $k \geq 2$ and $n \geq 3$, Tr_k^M vanishes on the image of τ_k .

As a corollary, we have

Corollary 3.1. For $k \geq 2$ and $n \geq 3$,

$$\operatorname{rank}_{\mathbf{Z}}(\operatorname{Coker}(au_k)) \geq inom{n+k-1}{k}.$$

Combining this corollary with Proposition 3.1, we obtain

Theorem 3.1. For $k \geq 2$ and $n \geq 4$,

$$0 \to \operatorname{gr}^k(\mathcal{A}_n^M) \xrightarrow{\tau_k} H^* \otimes_{\mathbf{Z}} \mathcal{L}_n^M(k+1) \xrightarrow{\operatorname{Tr}_k^M} S^k H \to 0$$

is a $GL(n, \mathbb{Z})$ -equivariant exact sequence.

From (8), we obtain

Corollary 3.2. For $k \geq 2$ and $n \geq 4$,

$$\operatorname{rank}_{\mathbf{Z}}(\operatorname{gr}^k(\mathcal{A}_n^M)) = nk\binom{n+k-1}{k+1} - \binom{n+k-1}{k}.$$

Let $\overline{\nu}_{n,k}: \operatorname{gr}^k(\mathcal{A}_n) \to \operatorname{gr}^k(\mathcal{A}_n^M)$ be the homomorphism induced from $\nu_{n,k}$. By the argument above, we see that $\operatorname{Im}(\tau_k \circ \overline{\nu}_{n,k}) = \operatorname{Im}(\tau_k)$. Since τ_k is injective, this shows that $\overline{\nu}_{n,k}$ is surjective. Hence

Corollary 3.3. For $k \geq 2$ and $n \geq 4$,

$$\operatorname{rank}_{\mathbf{Z}}(\operatorname{gr}^k(\mathcal{A}_n)) \geq nk \binom{n+k-1}{k+1} - \binom{n+k-1}{k}.$$

As mensioned above, in the inequality above the equal does not hold in general. Since rank_z gr³(\mathcal{A}_n) = $n(3n^4 - 7n^2 - 8)/12$, which is not equal to the right hand side of the inequality above.

4. The image of the cup product in the second cohomology group

In this section, we consider the rational second (co)homology group of IA_n^M . In particular, we determine the image of the cup product map

$$\cup_{\mathbf{Q}}^{M}: \Lambda^{2}H^{1}(\mathrm{IA}_{n}^{M}, \mathbf{Q}) \to H^{2}(\mathrm{IA}_{n}^{M}, \mathbf{Q}).$$

4.1. A minimal presentation and second cohomology of a group.

In this subsection, we consider detecting non-trivial elements of the second cohomology group $H^2(G, \mathbb{Z})$ if G has a minimal presentation. For a group G, a group extension

$$(12) 1 \to R \to F \xrightarrow{\varphi} G \to 1$$

is called a minimal presentation of G if F is a free group such that φ induces an isomorphism

$$\varphi_*: H_1(F, \mathbf{Z}) \to H_1(G, \mathbf{Z}).$$

This shows that R is contained in the commutator subgroup [F, F] of F. In the following, we assume that G has a minimal presentation defined by (12), and fix it. Furthermore we assume that the rank m of F is finite. We remark that considering the Magnus generators of IA_n and IA_n^M , we see that each of IA_n and IA_n^M has a such minimal presentation. From the cohomological five-term exact sequence of (12), we see

$$H^2(G, \mathbf{Z}) \cong H^1(R, \mathbf{Z})^G$$
.

Set $\mathcal{L}_F(k) = \Gamma_F(k)/\Gamma_F(k+1)$ for each $k \geq 1$. Then $\mathcal{L}_F(k)$ is a free abelian group of rank $r_m(k)$ by (3). Let $\{R_k\}_{k\geq 1}$ be a descending filtration defined by $R_k := R \cap \Gamma_F(k)$ for each $k \geq 1$. Then $R_k = R$ for k = 1, and 2. For each $k \geq 1$, let

$$\varphi_k:\mathcal{L}_F(k) o \mathcal{L}_G(k)$$

be a homomorphism induced from the natural projection $\varphi: F \to G$. Observing $R_k/R_{k+1} \cong (R_k \Gamma_F(k+1))/\Gamma_F(k+1)$, we have an exact sequence

(13)
$$0 \to R_k/R_{k+1} \xrightarrow{\iota_k} \mathcal{L}_F(k) \xrightarrow{\varphi_k} \mathcal{L}_G(k) \to 0.$$

This shows each graded quotient R_k/R_{k+1} is a free abelian group.

Set $\overline{R}_k := R/R_k$. The natural projection $R \to \overline{R}_k$ induces an injective homomorphism

$$\psi^k: H^1(\overline{R}_k, \mathbf{Z}) \to H^1(R, \mathbf{Z}).$$

Considering the right action of F on R, defined by

$$r \cdot x := x^{-1}rx, \quad r \in R, \ x \in F,$$

we see ψ^k is an G-equivariant homomorphism. Hence it induces an injective homomorphism, also denoted by ψ^k ,

$$\psi^k: H^1(\overline{R}_k, \mathbf{Z})^G \to H^1(R, \mathbf{Z})^G.$$

For k=3, $H^1(\overline{R}_3, \mathbf{Z})^G = H^1(\overline{R}_3, \mathbf{Z})$ since G acts on \overline{R}_3 trivially. Here we show that the image of the cup product $\cup : \Lambda^2 H^1(G, \mathbf{Z}) \to H^2(G, \mathbf{Z})$ is contained in $H^1(\overline{R}_3, \mathbf{Z})$.

Lemma 4.1. If G has a minimal presentation as avove, the image of the cup product

$$\cup: \Lambda^2 H^1(G, \mathbf{Z}) \to H^2(G, \mathbf{Z})$$

is isomorphic to the image of $\iota_2^*: H^1(\mathcal{L}_F(2), \mathbf{Z}) \to H^1(\overline{R}_3, \mathbf{Z})$.

By an argument similar to that in Lemma 4.1, if $H_1(G, \mathbf{Z})$ is a free abelian group of finite rank then the image of the rational cup product $\cup_{\mathbf{Q}}: \Lambda^2 H^1(G, \mathbf{Q}) \to H^2(G, \mathbf{Q})$ is equal to $H^1(\overline{R}_3, \mathbf{Q})$ since $\iota_2^*: H^1(\mathcal{L}_F(2), \mathbf{Q}) \to H^1(\overline{R}_3, \mathbf{Q})$ is surjective.

4.2. The image of the rational cup product $\cup_{\mathbf{Q}}^{M}$.

In this subsection, we determine the image of the rational cup product

$$\cup_{\mathbf{Q}}^{M}: \Lambda^{2}H^{1}(\mathrm{IA}_{n}^{M}, \mathbf{Q}) \to H^{2}(\mathrm{IA}_{n}^{M}, \mathbf{Q}).$$

First, we should remark that the image of the cup product $\cup_{\mathbf{Q}} : \Lambda^2 H^1(\mathrm{IA}_n, \mathbf{Q}) \to H^2(\mathrm{IA}_n, \mathbf{Q})$ is completely determined by Pettet [30] who gave the $\mathrm{GL}(n, \mathbf{Q})$ -irreducible decomposition of it. Here we show that the ristriction of $\nu_{n,1}^* : H^2(\mathrm{IA}_n^M, \mathbf{Q}) \to H^2(\mathrm{IA}_n, \mathbf{Q})$ to $\mathrm{Im}(\cup_{\mathbf{Q}}^M)$ is an isomorphism onto $\mathrm{Im}(\cup_{\mathbf{Q}})$.

To do this, we prepare some notation. Let F be a free group on K_{ij} and K_{ijk} which are corresponding to the Magnus generators of IA_n . Namely, F is a free group of rank $n^2(n-1)/2$. Then we have a natural surjective homomorphism $\varphi: F \to IA_n$, and a minimal presentation

$$(14) 1 \to R \to F \xrightarrow{\varphi} IA_n \to 1$$

of IA_n where $R = Ker(\varphi)$. From a result of Pettet [30], we have

Lemma 4.2. For $n \geq 3$, \overline{R}_3 is a free abelian group of rank

$$\alpha(n) := \frac{1}{8}n^2(n-1)(n^3-n^2-2) - \frac{1}{6}n(n+1)(2n^2-2n-3).$$

Next, we consider the second cohomology groups of IA_n^M . From now on, we assume $n \geq 4$. We recall that the natural homomorphism $\nu_{n,1} : IA_n \to IA_n^M$ is surjective, and $\nu_{n,1}$ induces an isomorphism $IA_n^{ab} \cong (IA_n^M)^{ab} \cong H^* \otimes_{\mathbb{Z}} \Lambda^2 H$ for $n \geq 4$. Then we have a surjective homomorphism $\varphi^M := \nu_{n,1} \circ \varphi : F \to IA_n^M$, and a minimal presentation

$$(15) 1 \to R^M \to F \xrightarrow{\varphi^M} IA_n^M \to 1$$

of IA_n^M where $R^M = Ker(\varphi)$. Observe a sequence

$$\operatorname{gr}^2_{\mathbf{Q}}(\mathcal{A}'_n) \to \operatorname{gr}^2_{\mathbf{Q}}(\mathcal{A}'^M_n) \to \operatorname{gr}^2_{\mathbf{Q}}(\mathcal{A}^M_n)$$

of surjective homomorphisms. Since $A_n(3)/A'_n(3)$ is at most finite abelian group due to Pettet [30], we see

$$\dim_{\mathbf{Q}}(\operatorname{gr}_{\mathbf{Q}}^{2}(\mathcal{A}'_{n})) = \dim_{\mathbf{Q}}(\operatorname{gr}_{\mathbf{Q}}^{2}(\mathcal{A}_{n})) = \frac{1}{6}n(n+1)(2n^{2}-2n-3)$$
$$= \dim_{\mathbf{Q}}(\operatorname{gr}_{\mathbf{Q}}^{2}(\mathcal{A}_{n}^{M}))$$

by (6), and hence $\operatorname{gr}^2_{\mathbf{Q}}(\mathcal{A}_n^{'M}) \cong \operatorname{gr}^2_{\mathbf{Q}}(\mathcal{A}_n^{M})$. Thus,

Lemma 4.3. For $n \geq 4$, $\overline{R_3^M}$ is a free abelian group of rank $\alpha(n)$.

Therefore, from the functoriality of the spectral sequence, we obatain commutativity of a diagram

$$0 \longrightarrow H^{1}(\overline{R_{3}^{M}}, \mathbf{Q}) \longrightarrow H^{2}(IA_{n}^{M}, \mathbf{Q})$$

$$\cong \downarrow \qquad \qquad \downarrow^{\nu_{n,1}^{*}}$$

$$0 \longrightarrow H^{1}(\overline{R_{3}}, \mathbf{Q}) \longrightarrow H^{2}(IA_{n}, \mathbf{Q})$$

and

Theorem 4.1. For $n \geq 4$, $\nu_{n,1}^* : \operatorname{Im}(\cup_{\mathbf{Q}}^M) \to \operatorname{Im}(\cup_{\mathbf{Q}})$ is an isomorphism.

In the subsection 5.2, we will show that the rational cup product $\cup_{\mathbf{Q}}^{M}$: $\Lambda^{2}H^{1}(\mathrm{IA}_{n}^{M},\mathbf{Q}) \to H^{2}(\mathrm{IA}_{n}^{M},\mathbf{Q})$ is not surjective.

5. On the kernel of the Magnus representation of IA_n

In this section, we study the kernel \mathcal{K}_n of the Magnus representation of IA_n for $n \geq 4$. Set $\overline{\mathcal{K}}_n := \mathcal{K}_n/(\mathcal{K}_n \cap \mathcal{A}_n(4)) \subset \mathrm{gr}^3(\mathcal{A}_n)$. Since $[\mathcal{K}_n, \mathcal{K}_n] \subset \mathcal{A}_n(6)$, we see $H_1(\overline{\mathcal{K}}_n, \mathbf{Z}) = \overline{\mathcal{K}}_n$. Here we determine the $\mathrm{GL}(n, \mathbf{Z})$ -module structure of $\overline{\mathcal{K}}_n^{\mathbf{Q}}$. As a corollary, we see that the rational cup product $\cup_{\mathbf{Q}}^M : \Lambda^2 H^1(\mathrm{IA}_n^M, \mathbf{Q}) \to H^2(\mathrm{IA}_n^M, \mathbf{Q})$ is not surjective.

5.1. The irreducible decompositon of $\overline{\mathcal{K}}_n^{\mathbf{Q}}$.

First, we consider the irreducible decomposition of the target $H_{\mathbf{Q}}^* \otimes_{\mathbf{Q}} \mathcal{L}_n^{\mathbf{Q}}(4)$ of the rational third Johnson homomorphism $\tau_{3,\mathbf{Q}}$ of Aut F_n . Let B and B' be subsets of $\mathcal{L}_n(4)$ consisting of

$$[[[x_i, x_j], x_k], x_l], i > j \le k \le l$$

and

$$[[x_i, x_j], [x_k, x_l]], i > j, k > l, i > k,$$

 $[[x_i, x_j], [x_i, x_l]], i > j, i > l, j > l$

respectively. Then $B \cup B'$ forms a basis of $\mathcal{L}_n(4)$ due to Hall [15]. Let \mathcal{G}_n be the $\mathrm{GL}(n,\mathbf{Z})$ -equivariant submodule of $\mathcal{L}_n(4)$ generated by elements type of $[[x_i,x_j],[x_k,x_l]]$ for $1 \leq i,j,k,l \leq n$. Then B' is a basis of \mathcal{G}_n and the quotient module of $\mathcal{L}_n(4)$ by \mathcal{G}_n is isomorphic to $\mathcal{L}_n^M(4)$. Observing that $\mathcal{G}_n^{\mathbf{Q}}$ is a $\mathrm{GL}(n,\mathbf{Z})$ -equivariant submodule of $\mathcal{L}_n^{\mathbf{Q}}(4) \cong H_{\mathbf{Q}}^{[3,1]} \oplus H_{\mathbf{Q}}^{[2,1,1]}$, and $\dim_{\mathbf{Q}}(\mathcal{G}_n^{\mathbf{Q}}) = n(n^2 - 1)(n + 2)/8$, we see $\mathcal{G}_n^{\mathbf{Q}} \cong H_{\mathbf{Q}}^{[2,1,1]}$ and $\mathcal{L}_{n,\mathbf{Q}}^M(4) \cong H_{\mathbf{Q}}^{[3,1]}$. Let $D := \Lambda^n H$ be the one-dimensional representation of $\mathrm{GL}(n,\mathbf{Z})$ given by the determinant map. Then considering a natural isomorphism $H_{\mathbf{Q}}^* \cong (D \otimes_{\mathbf{Q}} \Lambda^{n-1} H_{\mathbf{Q}})$ as a $\mathrm{GL}(n,\mathbf{Z})$ -module, and using Pieri's formula (See [13].), we obtain

Lemma 5.1. For $n \geq 4$,

$$(i) \ H_{\mathbf{Q}}^* \otimes_{\mathbf{Z}} \mathcal{G}_n^{\mathbf{Q}} \cong H_{\mathbf{Q}}^{[1^3]} \oplus H_{\mathbf{Q}}^{[2,1]} \oplus (D \otimes_{\mathbf{Q}} H_{\mathbf{Q}}^{[3,2^2,1^{n-4}]}),$$

$$(ii) \ H^*_{\mathbf{Q}} \otimes_{\mathbf{Z}} \mathcal{L}^{M}_{n,\mathbf{Q}}(4) \cong H^{[3]}_{\mathbf{Q}} \oplus H^{[2,1]}_{\mathbf{Q}} \oplus (D \otimes_{\mathbf{Q}} H^{[4,2,1^{n-3}]}_{\mathbf{Q}}).$$

Now it is clear that $\tau_{3,\mathbf{Q}}(\overline{\mathcal{K}}_n^{\mathbf{Q}}) \subset H_{\mathbf{Q}}^* \otimes_{\mathbf{Z}} \mathcal{G}_n^{\mathbf{Q}}$. On the other hand, in our previous paper [32], we showed that the cokernel of the rational Johnson homomorphism $\tau_{3,\mathbf{Q}}$ is given by $\operatorname{Coker}(\tau_{3,\mathbf{Q}}) = H_{\mathbf{Q}}^{[3]} \oplus H_{\mathbf{Q}}^{[1^3]}$. Hence we see that $\tau_{3,\mathbf{Q}}(\overline{\mathcal{K}}_n^{\mathbf{Q}})$ is isomorphic to a submodule of $H_{\mathbf{Q}}^{[2,1]} \oplus (D \otimes_{\mathbf{Q}} H_{\mathbf{Q}}^{[3,2^2,1^{n-4}]})$. In the following, we show $\tau_{3,\mathbf{Q}}(\overline{\mathcal{K}}_n^{\mathbf{Q}}) \cong H_{\mathbf{Q}}^{[2,1]} \oplus (D \otimes_{\mathbf{Q}} H_{\mathbf{Q}}^{[3,2^2,1^{n-4}]})$.

To show this, we prepare some elements of \mathcal{K}_n . First, for any distinct $p, q, r, s \in \{1, 2, ..., n\}$ such that p > q, r and q > r, set

$$T(s, p, q, r) := [[K_{sp}^{-1}, K_{sr}^{-1}], K_{sqp}] \in IA_n.$$

Since T(s, p, q, r) satisfies

$$x_t \mapsto egin{cases} x_s[[x_p, x_q], [x_p, x_r]], & ext{if } t = s, \ x_t, & ext{if } t
eq s, \end{cases}$$

 $T(s, p, q, r) \in \mathcal{K}_n$ and $\tau_3(T(s, p, q, r)) = x_s^* \otimes [[x_p, x_q], [x_p, x_r]] \in H^* \otimes_{\mathbf{Z}} \mathcal{G}_n$. Next, for any distinct $p, q, r, s \in \{1, 2, ..., n\}$ such that p > s, set

$$E(s, p, q, r) := [[K_{sr}, K_{spq}], K_{rsq}] (K_{rs}^{-1}[[K_{rs}, K_{spq}]^{-1}, K_{rq}^{-1}]K_{rs}) \in IA_n.$$

Then we have

Lemma 5.2. For any $n \geq 4$,

- $(i) \ \tau_3(E(s,p,q,r)) = x_s^* \otimes [[x_p,x_q],[x_s,x_q]] \in H^* \otimes_{\mathbf{Z}} \mathcal{G}_n.$
- (ii) $E(s, p, q, r) \in \mathcal{K}_n$.

Theorem 5.1. For $n \geq 4$, $\tau_{3,\mathbf{Q}}(\overline{\mathcal{K}}_n^{\mathbf{Q}}) \cong H_{\mathbf{Q}}^{[2,1]} \oplus (D \otimes_{\mathbf{Q}} H_{\mathbf{Q}}^{[3,2^2,1^{n-4}]})$.

Since $\tau_{3,\mathbf{Q}}$ is injective, this shows that

$$\overline{\mathcal{K}}_n^{\mathbf{Q}} \cong H_{\mathbf{Q}}^{[2,1]} \oplus (D \otimes_{\mathbf{Q}} H_{\mathbf{Q}}^{[3,2^2,1^{n-4}]})$$

and

Corollary 3. For $n \geq 4$,

$$\operatorname{rank}_{\mathbf{Z}}(H_1(\mathcal{K}_n,\mathbf{Z})) \geq \frac{1}{3}n(n^2-1) + \frac{1}{8}n^2(n-1)(n+2)(n-3).$$

5.2. Non surjectivity of the cup product $\cup_{\mathbf{Q}}^{M}$.

In this subsection, we also assume $n \geq 4$. Here we show that the rational cup product $\bigcup_{\mathbf{Q}}^{M} : \Lambda^{2}H^{1}(\mathrm{IA}_{n}^{M}, \mathbf{Q}) \to H^{2}(\mathrm{IA}_{n}^{M}, \mathbf{Q})$ is not surjective. From the rational five-term exact sequence

$$0 \to H^1(\mathrm{IA}_n^M, \mathbf{Q}) \to H^1(\mathrm{IA}_n, \mathbf{Q}) \to H^1(\mathcal{K}_n, \mathbf{Q})^{\mathrm{IA}_n} \to H^2(\mathrm{IA}_n^M, \mathbf{Q}) \to H^2(\mathrm{IA}_n, \mathbf{Q})$$
 of (9), we have an exact sequence

$$0 \to H^1(\mathcal{K}_n, \mathbf{Q})^{\mathrm{IA}_n} \to H^2(\mathrm{IA}_n^M, \mathbf{Q}) \to H^2(\mathrm{IA}_n, \mathbf{Q}).$$

By Theorem 4.1, to show the non-surjectivity of the cup product $\cup_{\mathbf{Q}}^{M}$ it suffices to show that the non-triviality of $H^{1}(\mathcal{K}_{n},\mathbf{Q})^{\mathrm{IA}_{n}}$.

The natural projection $\mathcal{K}_n \to \overline{\mathcal{K}}_n$ induces an injective homomorphism

$$H^1(\overline{\mathcal{K}}_n,\mathbf{Q})\to H^1(\mathcal{K}_n,\mathbf{Q})^{\mathrm{IA}_n}.$$

By Theorem 5.1, and the universal coefficients theorem, we see

$$H^1(\overline{\mathcal{K}}_n, \mathbf{Q}) \cong \operatorname{Hom}_{\mathbf{Z}}(H_1(\overline{\mathcal{K}}_n, \mathbf{Z}), \mathbf{Q}) \neq 0.$$

Therefore we obtain

Theorem 5.2. For $n \geq 4$, the rational cup product

$$\cup_{\mathbf{Q}}^{M}: \Lambda^{2}H^{1}(\mathrm{IA}_{n}^{M}, \mathbf{Q}) \to H^{2}(\mathrm{IA}_{n}^{M}, \mathbf{Q})$$

is not surjective, and

$$\dim_{\mathbf{Q}}(H^{2}(\mathrm{IA}_{n}^{M},\mathbf{Q})) \geq \frac{1}{24}n(n-2)(3n^{4}+3n^{3}-5n^{2}-23n-2).$$

6. ACKNOWLEDGMENTS

The author would like to thank Professor Nariya Kawazumi for valuable advice and useful suggestions. This research is supported by JSPS Research Fellowships for Young Scientists.

REFERENCES

- [1] S. Andreadakis; On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. (3) 15 (1965), 239-268.
- [2] S. Bachmuth; Automorphisms of free metabelian groups, Trans. Amer. Math. Soc. 118 (1965), 93-104.
- [3] S. Bachmuth; Induced automorphisms of free groups and free metabelian groups, Trans. Amer. Math. Soc. 122 (1966), 1-17.
- [4] S. Bachmuth and H. Y. Mochizuki; The non-finite generation of Aut(G), G free metabelian of rank 3, Trans. Amer. Math. Soc. 270 (1982), 693-700.
- [5] S. Bachmuth and H. Y. Mochizuki; $Aut(F) \to Aut(F/F'')$ is surjective for free group for rank ≥ 4 , Trans. Amer. Math. Soc. 292, no. 1 (1985), 81-101.
- [6] Y. A. Bakhturin, Identities in Lie algebras, Nauka, Moscow 1985; English translation, Identical relations in Lie Algebras, VNU Sience press, Utrecht (1987).
- [7] J. S. Birman; Braids, Links, and Mapping Class Groups, Annals of Math. Studies 82 (1974).
- [8] K. T. Chen; Integration in free groups, Ann. of Math. 54, no. 1 (1951), 147-162.
- [9] F. Cohen and J. Pakianathan; On Automorphism Groups of Free Groups, and Their Nilpotent Quotients, preprint.
- [10] F. Cohen and J. Pakianathan; On subgroups of the automorphism group of a free group and associated graded Lie algebras, preprint.
- [11] B. Farb; Automorphisms of F_n which act trivially on homology, in preparation.
- [12] W. Fulton; Young Tableaux, London Mathematical Society Student Texts 35, Cambridge University Press (1997).
- [13] W. Fulton, J. Harris; Representation Theory, Graduate text in Mathematics 129, Springer-Verlag (1991).
- [14] R. Hain; Infinitesimal presentations of the Torelli group, Journal of the American Mathematical Society 10 (1997), 597-651.
- [15] M. Hall; A basis for free Lie rings and higher commutators in free groups, Proc. Amer. Math. Soc. 1 (1950), 575-581.
- [16] P. J. Hilton and U. Stammbach; A Course in Homological Algebra, Graduate Texts in Mathematics 4, Springer -Verlag, New York (1970).
- [17] D. Johnson; An abelian quotient of the mapping class group, Math. Ann. 249 (1980), 225-242.

- [18] D. Johnson; The strucure of the Torelli group III: The abelianization of \mathcal{I}_g , Topology 24 (1985), 127-144.
- [19] N. Kawazumi; Cohomological aspects of Magnus expansions, preprint, arXiv:math.GT/0505497.
- [20] S. Krstić, J. McCool; The non-finite presentability in $IA(F_3)$ and $GL_2(\mathbf{Z}[t,t^{-1}])$, Invent. Math. 129 (1997), 595-606.
- [21] W. Magnus; Über n-dimensinale Gittertransformationen, Acta Math. 64 (1935), 353-367.
- [22] W. Magnus, A. Karras, D. Solitar; Combinatorial group theory, Interscience Publ., New York (1966).
- [23] S. Morita; Abelian quotients of subgroups of the mapping class group of surfaces, Duke Mathematical Journal 70 (1993), 699-726.
- [24] S. Morita; Structure of the mapping class groups of surfaces: a survey and a prospect, Geometry and Topology Monographs Vol. 2 (1999), 349-406.
- [25] S. Morita; Cohomological structure of the mapping classs group and beyond, preprint.
- [26] J. Nielsen; Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1918), 385-397.
- [27] J. Nielsen; Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), 169-209.
- [28] J. Nielsen; Untersuchungen zur Topologie der geschlossenen Zweiseitigen Fläschen, Acta Math. 50 (1927), 189-358.
- [29] I. B. S. Passi; Group rings and their augmentation ideals, Lecture Notes in Mathematics 715, Springer-Verlag (1979).
- [30] A. Pettet; The Johnson homomorphism and the second cohomology of IA_n , Algebraic and Geometric Topology 5 (2005) 725-740.
- [31] C. Reutenauer; Free Lie Algebras, London Mathematical Societymonographs, new series, no. 7, Oxford University Press (1993).
- [32] T. Satoh; New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group, Journal of the London Mathematical Society, (2) 74 (2006) 341-360.
- [33] E. Witt; Treue Darstellung Liescher Ringe, Journal f
 ür die Reine und Angewandte Mathematik, 177 (1937), 152-160.
- [34] V. M. Zhuravlev; A free Lie algebra as a module over the full linear group, Sbornik Mathematics 187 (1996), 215-236.

Graduate School of Sciences, Department of Mathematics, Osaka University, 1-16 Machikaneyama, Toyonaka-city, Osaka 560-0043, Japan

E-mail address: takao@math.sci.osaka-u.ac.jp