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ABSTRACT. We describe how the loop group maps corresponding to
special submanifolds associated to integrable systems may be thought of
as certain Grassmann submanifolds of infinite dimensional $homogen\infty us$

spaces. In general, the associated families of special submanifolds are
certain Grassmann submanifolds. An example is given from the recent
article [2].

1. INTRODUCTION

This article discusses some of the ideas in the article [2], where solutions
to a certain loop group problem were studied. The emphasis here is on
the geometric interpretation of the solutions, rather than the techniques for
producing solutions.

In 1996, Ferus and Pedit [5] defined an integrable system involving a 3-
involution loop group, solutions of which are isometric immersions between
space forms of different non-zero sectional curvature. They modified the
Adler-Kostant-Symes (AKS) theory (described in [4]) to show how to pro-
duce many solutions by solving commuting ODEs on a finite dimensional
vector space.

The present author later studied this system in [1] and [3]: it had several
interesting properties, including a relationship with pluriharmonic maps.

Goal here: generalize the system to arbitrary commuting involutions of
any Lie group and identify the associated special submanifolds.

Results: briefly, we obtained:
$\bullet$ Generalizations, to all reflective submanifolds, of results concerning

isometric immersions of space forms;
$\bullet$ In case of previous results, new proofs;
$\bullet$ And other new special submanifolds as integrable systems.

1.1. Motivation. Other special submanifolds that have been studied with
loop groups, (e.g. harmonic maps into symmetric spaces, CMC surfaces,

special Lagrangian surfaces etc), are associated to loop groups with only
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two involutions. Therefore, it seemed that a system in a loop group with
three involutions might have some interesting properties peculiar to this
situation.

One such property, studied in [1], is as follows: solutions to three distinct
problems are obtained from the same loop group map, by evaluating the
map within different ranges of the loop parameter $\lambda$ . This amounts to a
kind of Lawson correspondence between solutions of these problems, and
shows that the problems of obtaining complete immersions are equivalent
for the three cases.

The table shows three different constant curvature Riemannian subman-
ifolds of three different space forms obtained by evaluating the same loop
group map for values of the spectral parameter in $R,$ $iR$ and $S^{1}[1]$ .

2. SPECIAL SUBMANIFOLDS AND LOOP GROUPS

We first present an outline of how certain special submanifolds are asso-
ciated to maps into loop groups.

2.1. Moving Frame Method. The basic concept of the moving frame
method is encapsulated as follows:

$\bullet$ Given $f$ : $Marrow G/H$ , an immersed submanifold of a homogeneous
space.

$\bullet$ Lift, $F:Marrow G$, a frame for $f$ .
$\bullet$ Idea: Choose $F$ which is adapted in some way to the $g\infty metry$ of

$f$ .
$G$

$\downarrow$

$M$ $arrow$ GIH
$r$

Example: We illustrate this with a simple example.
Special submanifold: a flat immersion,

$f$ : $M=R^{2}arrow S^{3}$ ,
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Adapted frame: $F:R^{2}arrow SO(4)$ ,

$F:=[e_{1} e_{2} n f]$ ,

where $e_{i}$ are an orthonormal basis for the tangent space to the immersion.

2.2. The Maurer-Cartan Form. Given a frame $F$ : $Marrow G$, for $f$ : $Marrow$

$G/H$, the Maurer-Cartan form, $\alpha=F^{-1}dF\in \mathfrak{g}\otimes\Omega(M)$ , is the pull-back
to $M$ of the Mauer-Cartan fom of $G$ . It is necessary that $\alpha$ satisfies the
Maurer-Cartan equation

(21) $d\alpha+\alpha\wedge\alpha=0$ .

Conversely, if any $\alpha\in \mathfrak{g}\otimes\Omega(M)$ , satisfies (2.1) then it is a basic fact $\theta om$ the
theory of Lie groups that we can integrate $\alpha$ to obtain a map $F$ : $Marrow G$ ,
whose Maurer-Cartan form is $\alpha$ . The map $F$ is determined up to an initial
condition $F_{0}\in G$ . Changing this initial condition amounts to left multipli-
cation by an element of $G$ , which is to say an isometry of the homogeneous
space $G/H$ , and consequently we have the
Eindamental point: $\alpha$ contains all $g\infty metric$ information about $f$ .

Example: Retuming to our previous example of flat surfaces in $S^{3}$ , we
compute the Maurer-Cartan fom of $F:=[e_{1} e_{2} n f]$ ,

$\alpha=F^{-1}dF$ $=$ $\{\begin{array}{l}n^{T}e_{1}^{T}e_{2}^{T}f^{T}\end{array}\}\cdot[de_{1} de_{2} dn df]$

$=$ $[-\beta^{t}-\theta^{t}\omega$
$\beta 00$ $0\theta 0]$ ,

where the $2\cross 2$ matrix $w$ is the connection on the tangent bundle for $f$ , the
$2\cross 1$ vector $\beta$ is the second fundamental form, and the 2 $x1$ vector $\theta$ is the
coframe.

Computing the Maurer-Cartan equation $d\alpha+\alpha\wedge\alpha=0$ , the three com-
ponents above give the following three equations:

(22) $d\omega+\omega\wedge\omega-\beta\wedge\beta^{t}-\theta\wedge\theta^{t}=0$ ,

(23) $d\beta+\omega\wedge\beta=0$,

(24) $d\theta+w\wedge\theta=0$ .

The assumption that the induced metric is flat is given by a further equation,

Flatness:
$d\omega+w\wedge\omega=0$ .
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2.3. Parameterised Families of Erames. Now suppose we introduce a
complex parameter $\lambda$ in our example by setting:

$\alpha_{\lambda}=\{\begin{array}{lll}\omega \lambda\beta \lambda\theta-\lambda\beta^{t} 0 0-\lambda\theta^{t} 0 0\end{array}\}=a_{0}+a_{1}\lambda$.

Then $d\alpha_{\lambda}+\alpha_{\lambda}\wedge\alpha_{\lambda}=0\Leftrightarrow d\omega+w\wedge w-\lambda^{2}(\beta\wedge\beta^{t}+\theta\wedge\theta^{t})=0$, plus (2.3)
and (2.4). It follows that we have the following equivalence:

$d\alpha_{\lambda}+\alpha_{\lambda}\wedge\alpha_{\lambda}=0$ for all $\lambda$
$\Leftrightarrow$ (2.2), (2.3) and (2.4) plus flatness.

For each real value of $\lambda$ we can integrate $\alpha_{\lambda}$ to obtain a &ame for a flat
immersion. Thus the flatness condition can be encoded by assuming that
we have such a 1-parameter famdy of frames.

In general, let $G$ be a complex semisimple Lie group, and suppose we have
the following ingredients:

(1) for $\lambda\in \mathbb{C}^{*}$ , a l-parameter family of l-forms, $\alpha_{\lambda}\in \mathfrak{g}\otimes\Omega(M)$ .
(2) $\alpha_{\lambda}$ is a Laurent polynomial in $\lambda$ ,

$\alpha_{\lambda}=\sum_{i=a}^{b}a_{i}\lambda^{i}$ , $a_{i}\in \mathfrak{g}\otimes\Omega(M)$ .

(3) $\alpha_{\lambda}$ satisfies the Maurer-Cartan equation for all $\lambda\in \mathbb{C}^{*}$ .
Then we can integrate to obtain family $F_{\lambda}$ : $Marrow G$ , and project to obtain
a family of special submanifolds $f_{\lambda}$ : $Marrow G/H$ , where $H$ is some subgroup
$ofG$ .
Interesting question: what are the special submanifolds corresponding to
the projections $f_{\lambda}$ ?

2.4. The Connection to Special PDE. The existence of a l-parameter
family of integrable Maurer-Cartan forms (corresponding to flat connec-
tions with values in a loop algebra) is well known to be an essential charac-
teristic of soliton equations and other so-called integrable systems. This
aspect manifests itself in the following way: given a family of l-forms
$\alpha_{\lambda}=\sum_{i=a}^{b}a_{i}\lambda^{i},$ $a_{i}\in \mathfrak{g}\otimes\Omega(M)$ , as above, it is easy to see that

$d\alpha_{\lambda}+\alpha_{\lambda}\wedge\alpha_{\lambda}=0$, for all $\lambda$

if and only if
$da_{k}+\sum_{i+j=k}a_{i}\wedge a_{j}=0$

.

This is a system of PDE (after choosing some coordinates).
Example: We return once more to our example of flat immersions into

$S^{3}$ . The Gauss equation: $d\omega+w\wedge\omega-\beta$ A $\beta^{t}-\theta\wedge\theta^{t}=0$, together with
the flatness condition $d\omega+\omega$ A $\omega=0$, turn out to reduce to one equation,
in special coordinates:

$\phi_{xy}=0$ ,
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FIGURE 1. The relations between maps into loop groups, flat
connections, special submanifolds and special PDE.

namely, the wave equation.

3. GRASSMANN GEOMETRIES

The methods $hom$ loop groups used here produce submanifolds which are,
or are related to, Grassmann submanifolds in homogenmus spaces. This
point has perhaps not been emphasized in the past, because the majority of
applications studied were in space forms, where the Grassmrn submanifold
condition (arising bom orbits of the action of the isometry group in the
symmetric space representation) is satisfied by any submtifold.

The concept of aGrassmrn submanifold was introduced by Harvey
and Lawson in [6], as follows: let $\overline{N}$ be amanifold and take any sub-
set, $\mathcal{V}$ , of the Grassmrn bundle over $\overline{N}$ consisting of tangential $s- plan\infty$ ,
$Gr_{s}(T \overline{N})=\bigcup_{x\in\overline{N}}Gr_{\epsilon}(T_{x}\overline{N})$ . A $\mathcal{V}$ -submanifold, $N$ , of $\overline{N}$ , is an $\epsilon$-dimensional
connected submtifold such that $T_{x}N\in \mathcal{V}$ for eai $x\in N$ . The set of such
submtifolds, $N$ , is called the $\mathcal{V}$ -geometry.

In this article, $\overline{N}$ will always be ahomogenmus space, $G/H,$ with $G$ a
connected Lie group, and $\mathcal{V}$ an orbit of the action of $G$ on $Gr_{\epsilon}(T\overline{N})$ . In such
acase, the gmmetry $\mathcal{V}$ is determined by an $s$-dimensional vector subspace

of the tangent space at the origin, $H$ , of of $G/H$ . Aspecial case is when
$\overline{N}=\overline{U}/\overline{K}$ is asymmetnic space. Then we have the canonical decomposition
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of the Lie algebra $\overline{u}=\overline{t}\oplus\overline{\mathfrak{p}}$ , and the tangent space at the origin is $T_{0}\overline{N}=\overline{\mathfrak{p}}$ .
So for symmetric spaces we have the correspondence:

{s-Dim $\mathcal{V}-geometries$ } $rightarrow$ { $s$-Dim subspaces $\mathfrak{p}\subset\overline{\mathfrak{p}}$}.
Given $\mathfrak{p}\subset\overline{\mathfrak{p}}$ , we will call the associated geometry the $\mathcal{V}_{P}$-geometry.

If $Ad_{\overline{K}}\mathfrak{p}\subset \mathfrak{p}$ then the $\mathcal{V}_{\mathfrak{p}}$ -geometry consists of integral submanifolds of a
distribution determined by $\mathfrak{p}$ , but otherwise it is a more general concept.

3.1. Examples. For space forms, any s-dimensional submanifold is a $\mathcal{V}_{\mathfrak{p}^{-}}$

submanifold for any s-dim subspace $p\subset\overline{\mathfrak{p}}$ . We demonstrate this for curves
in $\overline{N}=SO(3)/SO(2)=S^{2}$ . We have the canonical decomposition:

$\mathfrak{s}o(3)=\overline{f}\oplus\overline{\mathfrak{p}}=\{\{\begin{array}{ll}* *0* *00 00\end{array}\}\}\oplus\{$ $\{\begin{array}{ll}0 0*0 0** *0\end{array}\}\}$ .

For a
$\mathfrak{p}=\{\begin{array}{l}\mathfrak{p}\subset\overline{\mathfrak{p}}[Matrix]\}\end{array}$

Let $f$ : $Rarrow S^{2}$ be any curve. The $V_{\mathfrak{p}}$-geometry is determined by the
left action of $SO(3)$ on $Gr_{1}(TS^{2})$ , and to show that a curve in $S^{3}$ is a $\mathcal{V}_{\mathfrak{p}^{-}}$

submanifold, we need to show there exists hame $F\in SO(3)$ for $f$ , such that
the projection onto $\overline{\mathfrak{p}}$ of $F^{-1}dF$ lies in $\mathfrak{p}$ . This is achieved by choosing an
adapted ffame $F$ : $Rarrow SO(3)$ ,

$F=[e, n, f]$ , $e$ tangent, $n$ normal,

$F^{-1}dF=\{\begin{array}{l}e^{t}n^{t}f^{t}\end{array}\}$ [de $dn$ $df$ ] $=\{\begin{array}{lll}0 e^{t}dn e^{t}dfn^{t}de 0 n^{t}dff^{t}de f^{t}dn 0\end{array}\}$ .

The $\overline{\mathfrak{p}}$ part is $\{\begin{array}{lll}0 0 e^{t}df0 0 n^{t}dff^{t}de f^{t}dn 0\end{array}\}=\{\begin{array}{lll}0 0 e^{t}df0 0 0f^{t}de 0 0\end{array}\}\in \mathfrak{p}$ .

More meaningful examples of Grassman submanifolds are Lagrangian sub-
manifolds of $CP^{n}$ and almost complex and totally real submanifolds of $S^{6}$ .
The latter arise with respect to the action of $G_{2}$ on the homogeneous space
$S^{6}=G_{2}/SU(3)$ , which is not a symmetric space representation of $S^{6}$ ; hence
there is no conflict with the above comment concerning space forms.

4. GRASSMANN GEOMETRIES ASSOCIATED TO LOOP GROUPS

Loop group techniques (AKS-theory, DPW, etc) produce maps into a sub-
group of a loop group which are characterized by the fact that the Maurer-
Cartan form is a Laurent polynomial of fixed degree in the loop parameter,
$\lambda$ . Solutions are determined modulo the action of the constant subgroup -

henoe actually frames for maps into a homogeneous space.
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We formulate this in the language of Grassmann geometries: Let $G$ be a
complex semisimple Lie group, and define the loop group

$\Lambda G$ $:=\{\gamma:S^{1}arrow G\}$ ,

where the maps have some convergence condition, such as the Wiener topol-
ogy, which makes $\Lambda G$ a Banach Lie group. Let $\mathcal{H}$ be a Banach subgroup of
$\Lambda G$ , and denote by $\mathcal{H}^{0}$ $:=\mathcal{H}\cap G$ , the subgroup of constant loops. Then the
left coset spaoe $\mathcal{H}/\mathcal{H}^{0}$ is a homogeneous space on which $\mathcal{H}$ acts on the left.

To define Grassmann geometries on $\mathcal{H}/\mathcal{H}^{0}$ , we need to describe its tangent
space at the origin. The Lie algebra of $\Lambda G$ is $\Lambda g=\{\sum_{i-\infty}^{\infty}a_{i}\lambda^{i}|a_{i}\in g\}$ , and
Lie $(\mathcal{H})$ is a vector subspaoe of Ag. Clearly Lie $(\mathcal{H}^{0})=$ {constant polynomials
in Lie $(\mathcal{H})$ }, from which it follows that

$T_{0} \frac{\mathcal{H}}{\mathcal{H}^{0}}=\{\sum_{i\neq 0}a_{i}\lambda^{i}\}\subset Lie(\mathcal{H})$ .

For integers $a<b$ , deflne $W_{a}^{b}\subset\tau_{0\pi}^{\mathcal{H}}$ by

$W_{a}^{b}= \{x\in T_{0}\frac{\mathcal{H}}{\mathcal{H}^{0}}|\sum_{i=a}^{b}a_{i}\lambda^{i}\}$ .

Now set $\mathcal{V}_{a}^{b}$ to be the distribution given by the orbit of $W_{a}^{b}$ under the action
of $\mathcal{H}$ on $Gr_{b-a}(T\mathcal{H}*)$ .

The basic object we can construct, using the techniques described here,
are $\mathcal{V}_{a}^{b}$-compatible (immersed) submanifolds of $\mathcal{H}/\mathcal{H}^{0}$ , i.e. maps $f$ : $Marrow$

$\mathcal{H}/\mathcal{H}^{0}$ for which there exists frames $F:Marrow \mathcal{H}$ with $F^{-1} dF=\sum_{i=a}^{b}\alpha_{i}\lambda^{i}$ .

5. SPECIAL SUBMANIFOLDS FROM LOOP GROUP MAPS

A $\mathcal{V}_{a}^{b}$-immersion $f$ : $Marrow \mathcal{H}/\mathcal{H}^{0}$ , leads naturally to families of special
submanifolds as follows: Evaluate $f$ at some $\lambda_{0}$ , to get a map $f_{\lambda 0}$ : $Marrow$

$G/\mathcal{H}^{0}$ . The subgroup $\mathcal{H}$ together with the $\mathcal{V}_{a}^{b}$ condition make $f_{\lambda_{0}}$ a certain
Grassman submanifold.

Since $f$ is a $\mathcal{V}_{a}^{b}$-immersion, by definition, there exists a lft $F$ : $Marrow \mathcal{H}$ ,
such that $\alpha$

$:=F^{-1} dF=\sum_{i=a}^{b}\alpha_{1}\lambda^{i}$ . An essential point is: $\alpha$ must satisfy
the Maurer-Cartan equation,

$d\alpha+\alpha\wedge\alpha=0$,

for all values of $\lambda$ . This is equivalent to some conditions on $\alpha_{i}$ ,

(51) $d\alpha_{k}+\sum_{i+j=k}\alpha_{i}\wedge\alpha_{j}=0$
,

independent of $\lambda$ .
The equations (5.1) give some extra conditions, usually on the (tangent

and normal) curvature of the submanifold. This will be illustrated by our
example below.

70



DAVID BRANDER

6. THB THREE INVOLUTION LOOP GROUP

Now we define the generalization of the loop group construction of [5]. Let
$G$ be a complex semisimple Lie group and $\overline{\tau},\hat{\sigma},$

$\rho$ commuting involutions
of $G$ , where $\rho$ is C-antihinear. The fixed point subgroup with respect to $\rho$ ,
$\overline{U}$

$:=G_{\rho}$ , is a real form of the group.
We extend the involutions to $\Lambda G$ by the rules:

$(\rho X)(\lambda)=\rho(X(\overline{\lambda}))$ ,
$(\hat{\sigma}X)(\lambda)=\hat{\sigma}(X(-\lambda))$ ,

$(\overline{\tau}X)(\lambda)=\overline{\tau}(X(-1/\lambda))$ ,

and consider the subgroup fixed by all three involutions:

$\mathcal{H}=\Lambda G_{\rho\overline{\tau}\hat{\sigma}}$ .
Consider a $\mathcal{V}_{-1}^{1}$-immersion $f$ : $Marrow \mathcal{H}/\mathcal{H}^{0}$ . For $\lambda\in R^{*}$ ,

$f_{\lambda}$ : $Marrow\overline{U}/\overline{U}_{\overline{\tau}\hat{\sigma}}$ ,

sinoe $\mathcal{H}^{0}=\overline{U}_{\overline{\tau}\hat{\sigma}}=\overline{U}_{\overline{\tau}}\cap\overline{U}_{\hat{\sigma}}$ .

$We_{-}$ can also project to obtain maps into the symmetric spaces $\overline{U}/\overline{U}_{\overline{\tau}}$

and $U/\overline{U}_{\hat{\sigma}}$ , or more generally, into any homogeneous spaoe $\overline{U}/H$ , where
$\overline{U}_{\overline{\tau}}\cap\overline{U}_{\hat{\sigma}}\subset H$ .

What are the special submanifolds so obtained?

7. REFLECTIVE SUBMANIFOLDS

We are primarily interested in the projection to $\overline{U}/\overline{U}_{\overline{\tau}}$, as this generalizes
the isometric immersions of space forms studied in [5]. To describe the pro-
jections, we first need to define reflective submanifolds.

Examples In space forms, these are just the complete totally $g\infty desic$

submanifolds. Other examples are Lagrangian embeddings of $RP^{n}\subset CP^{n}$

and $RH^{n}\subset CH^{n}$ .
Definition: A reflective submanifold, $N$ , of a Riemannian manifold, $\overline{N}$ ,

is a totally $g\infty desic$ symmetric submanifold.

For a connected symmetric space $\overline{N}=\overline{U}/\overline{K}$, we can characterize a reflec-
tive submanifold $N$ of $\overline{N}$ , by the existenoe of a second involution on the Lie
algebra of $\overline{U}$ . Specifically, $N\subset\overline{N}$ is characterized by a $p\underline{a}ir$ of commuting
involutions, $\overline{\tau}$ and $\hat{\sigma}$ , of the Lie algebra $\overline{u}$ of $\overline{U}$ , and $K=U_{\overline{\tau}}$ . That is:

$N\subset\overline{U}/\overline{K}$ $rightarrow$ $(\overline{u},\overline{\tau},\hat{\sigma})$ .
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We have two canonical decompositions of the Lie algebra $\overline{u}=\overline{\mathfrak{k}}\oplus\overline{\mathfrak{p}}=\hat{\mathfrak{k}}\oplus\hat{\mathfrak{p}}$ ,
into $the+1$ and-l eigenspaces of the two involutions. Setting

$\mathfrak{p}$

$;=\overline{\mathfrak{p}}n\hat{\mathfrak{p}}$ ,

the reflective submanifold is given by: $N=\pi_{\overline{N}}\exp(\mathfrak{p})$ .

Reflective submanifolds of symmetric spaces were classified by DSP Leung
(1974-1979), and there are clearly many cases.

8. ISOMETRIC IMMERSIONS OF SPACE FORMS

The three involution loop group leads naturally to a generalization of the
following $results/conjectures$ :

An isometric immersion $f$ : $M^{k}(c)arrow M^{n}(\overline{c})$ , of space forms with constant
sectional curvature $c$ and $\tilde{c}$ respectively, has negative extrinsic curvature if
$c<\tilde{c}$ . There are two basic questions: existence of a local solution, and
existenoe of a complete solution. For these it is known:

(1) Local solutions exist iff $n\geq 2k-1$ (Cartan).

(2) Theorem (JD Moore): If $0<c<1$ , there is no complete isometric
immersion with flat normal bundle of $S^{k}(c)$ into $S^{n}$ for any $k>1$
and any $n$ .

(3) Plausible conjecture: If $c<-1$ there is no complete isometric im-
mersion with flat normal bundle of $H^{k}(c)$ into $H^{n}(-1)$ for any $k>1$
and any $n$ .

For the case $n=2k-1$, this is equivalent to the conjectured
generalization of Hilberts’s non-immersibility of $H^{2}$ into $E^{3}$ .

9. THE GENERALIZATION TO OTHER REFLECTIVE SUBMANIFOLDS

$M$ a Riemannian manifold, let $M_{R}$ denote the same manifold with the
metric scaled by a factor $R>0$ .

Problem $A$ : Suppose given a reflective submanifold
$N\subset\overline{N}$

of a symmetric space. Thus, $N_{R}\subset\overline{N}_{R}$ is also a reflective submanifold. Does
there exist a (local or global) isometric immersion

$N_{R}arrow\overline{N}$ ,

satisfying condition X? That is, can we $shrink/stretchN$ within $\overline{N}$? More
specifically, we ask this for:

(1) $R>1$ , if $\overline{N}$ is of compact type,
(2) $R<1$ , if $\overline{N}$ is of non-compact type.
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Reflective submanifolds in other symmetric spaces do not generally have
flat normal bundle. Thus, we need to replace the flat normal bundle condi-
tion with an appropriate one, which we call here condition $X$

Condition X just says:
(1) $N_{R}arrow\overline{N}$ is a $\mathcal{V}_{\mathfrak{p}}$-submanifold, where $N=\exp(\mathfrak{p})$ .

(2) The normal bundle of $N_{R}arrow\overline{N}$ is isomorphic (as an affine vector
bundle$/connection$ pair) with the normal bundle of $N_{R}\subset\overline{N}_{R}$ .

10. PROJECTIONS TO $\overline{U}/\overline{U}_{\overline{\tau}}$ AND $\overline{U}/\overline{U}_{\hat{\sigma}}$

Here we summarize results from [2]. In fact Proposition 10.2 is stated
incorrectly in [2] - the limit as $\lambdaarrow\infty$ or $\lambdaarrow 0$ must be taken before a
curved flat is obtained.

Set $\overline{K}$
$:=\overline{U}_{\overline{\tau}}$ , and $\hat{K}:=\overline{U}_{\hat{\sigma}}$ . Take $f$ : $Marrow \mathcal{H}/\mathcal{H}^{0}$ a $\mathcal{V}_{-1}^{1}$-immersion.

Recall $f_{\lambda}$ : $Marrow\overline{U}/(\overline{K}\cap\hat{K})$ , for $\lambda\in R$ .
$P_{-}roposition10.1.\underline{L}et\overline{f}_{\lambda}$ : $Marrow\overline{U}/\overline{K}$ be the projection of $f_{\lambda}$ . Suppose that
$f_{\lambda}$ is regular. Then $f_{\lambda}$ is a solution of Problem $A$ (for $R>1$). Conversely,
any solution of Problem $A$ , corresponds to such a $\mathcal{V}_{-1}^{1}$ -immersion.

Proposition 10.2. Let $\hat{f}_{\lambda}$ : $Marrow\overline{U}/\hat{K}$ be the projection of $f_{\lambda}$ . Then:
$\bullet$

$\hat{f}_{\lambda}$ is asymptotic to a curved flat in $\overline{U}/\hat{K}$ , as $\lambdaarrow\infty$ , or $\lambdaarrow 0$ .
$\bullet$ If $\overline{f}_{\lambda}$ is regular then so is $\hat{f}_{\lambda}$ (but not conversely).

Hence, if $\overline{U}/\overline{K}$ compact then:
(1) Local regular solutions to Problem $A$ enist

$\Rightarrow Dim(\mathfrak{p})\leq Rank(\overline{U}/\hat{K})$ .
(2) Global regular solutions to Problem $A$ do not $e\dot{r}st$ for $Dim(N)>$

1.

11. CONSEQUENCES

Theorem 11.1. (Compa$ct$ Case) The following list contains the geomet-
ric interpretations of all possible solutions to Problem $A$ for the case $R>1$
and $\overline{N}$ is a simply connected, compact, irreducible, Riemannian symmetric
space.

In all $case8$, local solutions evist and can be constructed by loop grvup
methods. In all cases where $Dim(N_{R})>1$ , there is no solution which is
geodesically complete.

(1) $N_{R}=S_{R}^{k}$ is an $isomet7\dot{Y}C$ immersion with flat normal bundle of a k-
sphere of radius $\sqrt{R}$ into the unit sphere $S^{n}$ , with $0<k\leq(n+1)/2$ ,
and $n\geq 2$ .

(2) $N_{R}=S_{R}^{n}$ is an isometric totally real immersion of an n-sphere of
radius $\sqrt{R}$ into complex projective space $CP^{n}$ , with $n\geq 2$ .
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Note: Lagrangian immersions of a sphere into $CP^{n}$ is a new example of
a submanifold as an integrable system.

Theorem 11.2. (Non-Compact Case) The analogue-except we do not
obtain the global non-existence result, which remains an open problem.
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