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Abstract
In this note we deal with some topics related to Whitney $pri$

maps.

1 Introduction
In this note, all spaces are separable metrizable spaces and maps are contin-

uous. We denote the interval $[0,1]$ by $I$ . A compact metric space is called a
$\omega m\mu dum$ and continuum means a connected compactum. If $X$ is a continuum
$C(X)$ denotes the space of all subcontinua of $X$ with the topology generated by
the Hausdorff metric.

In this note we study maps called Whitney preserving maps. If $f:Xarrow Y$

is a map between continua, then define a map $f$ : $C(X)arrow C(Y)$ by $f(A)=f(A)$
for each $A\in C(X)$ . A map $f$ : $Xarrow Y$ between continua is called a Whitney
preserving map if there exist Whitney maps (see p105 of [4]) $\mu$ : $C(X)arrow I$

and $\nu$ : $C(Y)arrow I$ such that for each $s\in[O,\mu(X)],\hat{f}(\mu^{-1}(s))=\nu^{-1}(t)$ for
some $t\in[0, \nu(Y)]$ . In this case, we say that $f$ is $\mu$ , v-Whitney preserving. The
notion of a Whitney preserving map is introduced by Espinoza (cf. [2] and [3]).
In this note we study these maps.

2 Main result
At first we give an example of a Whitney preserving map.

Example2.1 (Example 2 of [2]) let $f$ ; $[O,\pi]arrow S^{1}$ be a map defined by
$f(t)=e^{4ti}$ . Then $f$ is Whitney proeerving. But $f$ is not a $hom\infty morphism$ .

Let $X,$ $Y$ be continua. If there exists a surjective map from $X$ to $Y$ , then
does there always exist a Whitney preserving map $f$ from $X$ to $Y$? The answer
to this quenstion is negative by following results.

Theorem 2.2 ($Th\infty rem16$ of [2]) Let $X$ be a continuum such that $X$ contains
a dense arc component. If $f$ ; $Xarrow I$ is a Whitney preserving map, then $f$ is a
homeomo$\tau ph\dot{u}m$.

Recently the author proved the next $th\infty rem$ ([13]).

Theorem 2.3 Let $X$ be a continuum such that $X$ contains a dense arc co\pi ト

ponent and let $D$ be a dendrite with finite branch points. If $f$ : $Xarrow D$ is a
Whitney Presenring map, then $f$ is a homeomorphism.

Corollary 2.4 Let $X$ be a continuum such that $X$ contains a dense arc compo-
nent and let $T$ be a tree. If $f$ : $Xarrow T$ is a Whitney preserving map, then $f$ is
a homeomorphts$m$.
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Generally, Theorem 2.3 does not hold when $D$ is a graph by Example 2.1.

Problem 2.5 Let $X$ be a continuum such that $X$ contains a dense arc com-
ponent and let $D$ be a dendrite. Is it true that if $f$ : $Xarrow D\dot{u}$ a Whitney
presennng maP, then $f$ is a homeomorphism ?

A map $f$ : $Xarrow Y$ between continua is called an atomic map if $f^{-1}(f(A))=$
$A$ for each $A\in C(X)$ such that $f(A)$ is nondegenerate. A subcontinuum $T$ of a
continuum X is terminal, if every subcontinuum of X which intersects both $T$

and its complement must $conta\dot{i}T$ . It is known that a map $f$ of a continuum
$X$ onto a continuum $Y$ is atomic if and only if every fiber of $f$ is a terminal
continuum of $X$ .

A map $f$ : $Xarrow Y$ between compacta is called a Krasinkiewicz map if any
continuum in $X$ either contains a component of a fiber of $f$ or is contained in a
fiber of $f$ (cf. [11]).

These maps are related to Whitney preserving maps. As the main result $of_{(}$

[3] Espinoza proved the next $th\infty rem$ .
Thaerem 2.6 ($\Gamma h\infty rem3.5$ of [3]) If $f:Xarrow Y$ is an open atomic map such
that each fiber of $f$ is a nondegenerate continuum, then $f$ is Whitney preserving.

In [12] the author proved the next. $th\infty rem$ .

Theorem 2.7 Let $X,$ $Y$ be continua and let $f$ : $Xarrow Y$ be a monotone map such
that $f^{-1}(y)$ is a nondegenerate continuum in X. Then the following conditions
are equivalent.

(1) $f$ is an open map and each fiber of $f$ is teminal in $X$.
(2) $f$ is an open Kmsinbiewicz map.
(3) $f$ is a Whitney preserving map.

$Next|$ we define maps satisfying the following property.

Deflnition 2.8 A Whitney preserving map $f$ : $Xarrow Y$ is called a dimension
raising $mim_{eypresef}\tau_{\dot{n}ng}$ map if dim $X<dinf(X)$ .

It is clear that a dimension raising Whitney preserving map is not a homeo-
morphism. There does not always exist a dimension raising Whitney praeerving
map on each continuum $X$ by Proposition2.10.

A continuum $X$ is said to be cmtinuumwise accessible if for every subcon-
tinuum $A\subset X$ there exist a nondegenerate subcontinuum $B\subset X$ and a point
$x\in A$ such that $A\cap B=\{x\}$ (cf. Definition 4 of [2]).

The next lemma is an immediate consequence of Corollary 6 of [2].

Lemma 2.9 Let $X$ be a continuum such that $X$ is ctk at some point or $X^{\wedge}\dot{u}$

continuum accessible. If $f$ : $Xarrow Y$ is Whitney presenring, then $f$ is a light
map.

ProPosition 2:10 Let $X$ be a nondegenerate continuum such that
(1) $X$ is cik at some point or $X$ is continuum accessible, and
(2) each nondegenerate subcontinuum of $X$ contains an arc.
If $f:Xarrow f(X)\dot{u}$ a Whitney preserving map, then dim $f(X)=1$ .
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For example, if $X$ is an arc (or a circle, or a $\sin(1/x)$-curve, etc.) and
$f$ : $Xarrow f(X)$ is a Whitney preserving map, Then dim $f(X)=1$ by Proposition
2.10.

As an application of Theorem 2.7 we obtain the next result.

Theorem 2.11 For each $n\geq 2$ and a continuum $X$ with dim $X=n$ there
enists a l-dimensional subcontinuum $T$ and a monotone Whitney $\Psi^{esen\dot{n}ng}$

map $q:Tarrow q(T)$ such that dim $q(T)\geq n$ .

3 applications
Now we consider an applications of $Th\infty rem2.11$ . A continuum is said to be
indecomposable if it is not sum of two proper subcontinua. A continuum is
called a hereditarily indecomposable continuum if each of its subcontinua is
indecomposable. In [6] Kelley proved the next result.

Theorem 3.1 (cf. $Th\infty rem8.5$ and 8.6 of [6]) Let $X$ be a hereditarily indecom-
posable continuum urith dimX $\geq 2$ and let $\mu$ : $C(X)arrow I$ be a Whitney map.
Then for each sufficiently small $t>0,$ $\dim\mu^{-1}(t)=\infty$ .

If $X$ is a continuum, then for each mutually disjoint closed subsets $B,C\subset X$

there exists a closed partition $H$ between $B$ and $C$ such that each component of
$H$ is a hereditarily indecomposable continuum (cf. $Th\infty rem6$ of [1]). So if $X$

is a continuum with dimX $\geq 3$ , then $X$ contains a hereditarily indecomposable
continuum $Y$ such that dimY $\geq 2$ . Hence by $Th\infty rem3.1$ we can see that if
$X$ is a continuum with dimX $\geq 3$ and $\mu$ : $C(X)arrow I$ is a Wfitney map, then
$\dim\mu^{-1}(t)=\infty$ for each sufficiently small $t>0$.

In [10] Levin and Sternfeld gave a positive answer to the following long-
standing open problem: If a continuum $X$ 鋤 2-dimensional, is $\dim C(X)=\infty$ ?
Furthermore, they proved the next result.

Theorem 3.2 ($Th\infty rem2.2$ of [10]) Let $X$ be a 2-dimensional continuum and
let $\mu$ ; $C(X)arrow I$ be a Whitney map. Then for all sufficiently small $t\cdot>0$ ,
$\dim\mu^{-1}(t)=\infty$ .

Hence the next result holds.

Theorem 3.3 Let $X$ be a continuum utth dimX $\geq 2$ and let $\mu$ : $C(X)arrow I$ be
a Whitney map. Then for all sufficiently smdl $t>0,$ $\dim\mu^{-1}(t)=\infty$ .

By $Th\infty rem3.3$ if $X$ is a continuum with $d_{\dot{i}1}X\geq 2$ and $\mu$ : $C(X)arrow I$ is a
Whitney map, then $\dim\mu^{-1}([0, t])=\infty$ for each $t\in(O,\mu(X)$ ].

Let $T$ be a continuum and let $\mu$ : $C(T)arrow I$ be a Whitney map. If
$\dim C(T)=\infty$ , is $\dim\mu^{-1}([0,t])=\infty$ for all $t\in(0, \mu(T)$] ? The answer to
this question is negative by the next result.

Theorem 3.4 (cf. Applications (ii) of [8]) Let $X$ be a 2-dimensional hereditar-
ily indeoomposable continuum which is embeddable in $I^{3}$ . Then there exists a
l-dimensiond subcontinuum $T\subset X$ such that

(1) dim$C(T)=\infty$ , and
(2) if $\mu$ : $C(T)arrow I$ is a Whitney map, then $\dim\mu^{-1}([0,t])=2$ for all

sufficiently smdl $t>0$ .
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In fact, Levin proved the following : A 2-dimensional hereditarily inde-
composable continuum $X$ which is embeddable in $I^{3}$ contains a l-dimensional
subcontinuum $T$ such that (1) $\dim C(T)=\infty$ , and (2) if $\mu$ : $C(T)arrow I$ is a
Whitney map, then $\dim\mu^{-1}(t)=1$ for all sufficiently small $t>0$ .

A continuum $T$ in this result is not embeddable in $I^{2}$ since $T$ is hereditarily
indecomposable and $\dim C(T)=\infty$ (cf. Corollary 1 of [7]). In [13} $\cdot as$ an
application of Thmrem 2.11 the author proved Theorem 3.6. In the proof we
use a Bing-Kmsinhewicz-Lelek maps effectively.

A map between compacta is called a Bing map if each of its fibers is a Bing
compactum.

Let $f$ : $Xarrow Y$ be a map between compacta. For each $a>0$ , let $F(f,a)$ be
the union of components $A$ of fibers with diam $A>a$ , and put

$F(f)= \bigcup_{1=1}^{\infty}F(f)1/i)$ .

For each $n\geq 1,$ $f$ : $Xarrow Y$ is calied an n-dimensional Lelek map if dim
$F(f)\leq n$ . In case $n\leq 0$ , for convenience sake, a map $f$ : $Xarrow Y$ is an $n-$

dimensional Lelek map if and only if $f$ is a O-dimen8iona1 map. Note that an
n-dimensional Lelek map is an n-dimensional map.

A map $f$ : $Xarrow Y$ is called a Bing-Krasinkiewicz map if $f$ has properties
of a Bing map and a Krasinkiewicz map. A map $g$ : $Xarrow Y$ is called an
n-dimensional Bing-Krasinkiewicz-Lelek map if $g$ has properties of a Bing
map, a Krasinkiewicz map and an n-dimensional Lelek map.

Theorem 3.5 (cf. [5], [11] and [16]) Let $X$ be an $(n+l)$-dimensiond com-
pactum and $P$ a connected polyhedron. Then the set of $dl$ n-dimensiond Bing-
Krasinkiewicz-Lelek maps is a dense $G_{\delta}$ -subset of the space of all maps fivm $X$

to $P$ .
Theorem 3.6 There esists a l-dimensional continuum $T\subset I^{2}$ , a Whitney map
$\mu:C(T)arrow I$ and $s_{0},$ $s_{1}\in I$ such that

(1) $0<s_{0}<s_{1}<\mu(T)$ ,
(2) $\dim\mu^{-1}(s)=1$ for each $s\in[0, s_{0}$ ),
(3) $\dim\mu^{-1}(s_{0})=2$ , and
(4) $\dim\mu^{-1}(s)=\infty$ for each $s\in(s_{0}, s_{1}$ ].

Theorem 3.7 There nists a l-dimensional continuum $T\subset I^{2}$ such that
(1) dim$C(T)=\infty$ , and
(2) for each Whitney map $w$ : $C(T\rangle$ $arrow I$ there exists $a_{0}\in(0,w(T))$ such

that $\dim w^{-1}(s)=1f\prime or$ each $s\in[0,a_{0}]$ .
At last we give some results related to Whitney preserving maps.

Proposition 3.8 Let $f$ : $Xarrow Y$ be a monotone $\mu$ , v-Whitney preseiwing
map and let $so=$ max $\{s\in I|\hat{f}(\mu^{-1}(s))=\nu^{-1}(0)\}$ . Then $\hat{f}|_{\mu^{-1}\langle[\cdot 0,\mu(X)])}$ :
$\mu^{-1}([s_{0},\mu(X)])arrow C(Y)$ is a homeomorphism. Hence $\mu^{-1}(s)$ is $homeomo\eta bc$

to $\hat{f}(\mu^{-1}(s))$ for each $s\in[s_{0},\mu(X)]$ .
A topological property $P$ is said to be a Whitney $\psi\varphi erty$ provided that

if a continuum $X$ has property $P$ , so does $\mu^{-1}(t)$ for each Whitney map $\mu$ for
$C(X)$ and for each $t\in[0,\mu(X)]$ . As a corollary of Proposition 3.8 we get the
next result.
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Corollary 3.9 Let $f$ : $Xarrow Y$ be a monotone Whitney preserving map. If $X$

has a topological prvperty $P$ which is a Whitney property, then so does Y.

Also we give an application of Proposition3.8.

Theorem 3.10 Let $X,$ $Y$ be continua and let $f$ : $Xarrow Y$ be a map. Let $f=h\circ g$

be the monotone-light decomposition of $f$ with $g$ monotone and $h$ light. Then $f$

is Whitney preserving if and only if $g$ and $h$ are Whitney preserwing.
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