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Abstract

In this note we deal with some topics related to Whitney preserving
maps.

1 Introduction

In this note, all spaces are separable metrizable spaces and maps are contin-
uous. We denote the interval [0, 1] by I. A compact metric space is called a
compactum and continuum means a connected compactum. If X is a continuum
C(X) denotes the space of all subcontmua of X with the topology generated by
the Hausdorff metric.

In this note we study maps called Whitney preserving maps. If f : X - Y
is a map between continua, then define amap f : C(X) — C(Y) by f(4) = f(A4)
for each A € C(X). A map f: X — Y between continua is called a Whitney
preserving map if there exist Whitney maps (see p105 of [4]) u : C(X) — I
and v : C(Y) — I such that for each s € [0, u(X)], f(u~2(s)) = v~1(¢) for
some t € [0,~(Y)]. In this case, we say that f is u,v-Whitney preserving. The
notion of a Whitney preserving map is introduced by Espinoza (cf. (2] and [3}).
In this note we study these maps.

2 Main result
At first we give an example of a Whitney preserving map.

Example 2.1 (Example 2 of [2]) let f : [0,7] — S be a map defined by
f(t) = e**. Then f is Whitney preserving. But f is not a homeomorphism.

Let X,Y be continua. If there exists a surjective map from X to Y, then
does there always exist a Whitney preserving map f from X to Y? The answer
to this quenstion is negative by following results.

Theorem 2.2 (Theorem 16 of [2]) Let X be a continuum such that X contains
a dense arc component. If f : X — I is a Whitney preserving map, then fis a
homeomorphism.

Recently the author proved the next theorem ([13)).

Theorem 2.3 Let X be a continuum such that X contains a dense arc com-
ponent and let D be a dendrite with finite branch points. If f: X — D isa
thtney preserving map, then f is a homeomorphism. :

Corollary 2.4 Let X be a continuum such that X contains a dense arc compo-
nent and let T be a tree. If f : X — T is a Whitney preserving map, then fis
a homeomorphism.



Generally, Theorem 2.3 does not hold when D is a graph by Exo,mple 2.1.

Problem 2.5 Let X be a continuum such that X contains a dense arc com-
ponent and let D be a dendrite. Is it true that if f + X — D is a Whitney
preserving map, then fis a homeomorphism ?

A map f: X —Y between continua is called an atomic map if f~(f(A)) =

A for each A € C(X) such that f(A) is nondegenerate. A subcontinuum 7 of a
continuum X is terminal, if every subcontinuum of X which intersects both T
and its complement must contain 7'. It is known that a map f of a continuum

X onto a continuum Y is atomic if and only if every fiber of f is a terminal

continuum of X.
Amap f: XY between compacta is called a K rasmkzewzcz map if any

continuum in X either contains a component of a fiber of f or is contained in a
fiber of f (cf. [11]).

These maps are related to Wh1tney preserving maps As the main result of .

[3] Espinoza proved the next theorem.

Theorem 2.6 (Theorem 3.50f [3]) If f: X =Y isan open atomic map such
that each fiber of f is a nondegenerate continuum, then f is Whitney presemng

In [12] the author proved the next theorem.

Theorem 2.7 Let X,Y be continua and let f : X —>Ybea monotone map such
that f~1(y) is a nondegenerate continuum in X. Then the following conditions
are equivalent.

(1) f is an open map and each fiber of f is terminal in X.

(2) f is an open Krasinkiewicz map.

(3) f is a Whitney preserving map.

-Next we define maps satisfying the following property.

Definition 2.8 A Whitney preserving map f : X — Y is called a dzmenswn '

raising Whitney presemng map if dim X < dim f(X).

It is clear that a dimension raising Whitney preserving map is not a homeo-
morphism. There does not always exist a dimension raising Whitney preserving
map on each continuum X by Proposition 2.10.

A continuum X is said to be continuumwise accessible if for every subcon-
tinuum A C X there exist a nondegenerate subcontinuum B C X and a pomt
- z € A such that AN B = {z} (cf. Definition 4 of [2]).

The next lemma is an immediate consequence of Corollary 6 of [2].

Lemma 2.9 Let X be a continuum such that X is cik at some point or X is

continuum accessible. If f : X — Y is Whitney preserving, then f is a light

map.

Proposition 2.10 Let X be a nondegenerate continuum such that
(1) X is cik at some point or X is continuum accessible, and
(2) each nondegenerate subcontinuum of X contains an arc.
If f : X — f(X) is a Whitney preserving map, then dim f(X) =1.
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For example, if X is an arc (or a circle, or a sin(l/z)-curve, etc.) and
f: X — f(X) is a Whitney preserving map, Then dim f(X) = 1 by Proposition
2.10. ‘

As an application of Theorem 2.7 we obtain the next result.

Theorem 2.11 For each n > 2 and a continuum X with dim X = n there
exists a 1-dimensional subcontinuum T and a monotone Whitney preserving
map ¢ : T — q(T) such that dim ¢(T') > n.

3 applications

Now we consider an applications of Theorem 2.11. A continuum is said to be
indecomposable if it is not sum of two proper subcontinua. A continuum is
called a hereditarily indecomposable continuum if each of its subcontinua is
indecomposable. In [6] Kelley proved the next result. ‘

Theorem 3.1 (cf. Theorem 8.5 and 8.6 of [6]) Let X be a hereditarily indecom-
posable continuum with dimX > 2 and let p : C(X) — I be a Whitney map.
Then for each sufficiently small t > 0, dimp~1(t) = oco.

If X is a continuum, then for each mutually disjoint closed subsets B,C C X
there exists a closed partition H between B and C such that each component of
H is a hereditarily indecomposable continuum (cf. Theorem 6 of {1]). So if X
is a continuum with dimX > 3, then X contains a hereditarily indecomposable
continuum Y such that dimY > 2. Hence by Theorem 3.1 we can see that if
X is a continuum with dimX > 3 and u : C(X) — I is a Whitney map, then
dimp~1(t) = oo for each sufficiently small ¢ > 0.

In [10] Levin and Sternfeld gave a positive answer to the following long-
standing open problem: If a continuum X is 2-dimensional, is dimC(X) = oo ?
Furthermore, they proved the next result.

Theorem 3.2 (Theorem 2.2 of [10]) Let X be a 2-dimensional continuum and
let u: C(X) — I be a Whitney map. Then for all sufficiently small t-> 0,
dimu~1(t) = oco.

Hence the next result holds.

Theorem 3.3 Let X be a continuum with dimX > 2 and let u: C(X) — I be
a Whitney map. Then for all sufficiently small t > 0, dimp~(t) = co.

By Theorem 3.3 if X is a continuum with dimX >2and u: C(X) —» Iisa
Whitney map, then dimu~1([0,t]) = oo for each t € (0, u(X)).
Let T be a continuum and let u : C(T) — I be a Whitney map. If

dimC(T) = o0, is dimp~1([0,t]) = oo for all t € (0,u(T)] ? The answer to

this question is negative by the next result.

Theorem 3.4 (cf. Applications (ii) of [8]) Let X be a 2-dimensional hereditar-

ily indecomposable continuum which is embeddable in I 3. Then there exists a
1-dimensional subcontinuum T C X such that

(1) dimC(T) = oo, and -

(2) if p : C(T) — I is a Whitney map, then dimu~1([0,t]) = 2 for all
sufficiently small t > 0. V
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In fact, Levin proved the following : A 2-dimensional hereditarily inde-
composable continuum X which is embeddable in I3 contains a 1-dimensional
subcontinuum T such that (1) dimC(T") = oo, and (2) if u : C(T) — I is a
Whitney map, then dimu~1(t) = 1 for all sufficiently small ¢ > 0.

A continuum T in this result is not embeddable in I? since T is hereditarily
indecomposable and dimC(T") = oo (cf. Corollary 1 of [7]). In [13} as an
application of Theorem 2.11 the author proved Theorem 3.6. In the proof we
use a Bing-Krasinkiewicz-Lelek maps effectively.

A map between compacta is called a Bing map if each of its fibers is a Bing
compactum.

Let f : X — Y be a map between compacta. For each a > 0, let F( f, a) be

the union of components A of fibers: with diam A > a, and put

o0
F(f) = J F(5,1/4).
i=1
Foreachn > 1, f: X — Y is called an n-dimensional Lelek map if dim
F(f) £ n. In case n < 0, for convenience sake, a map f : X — Y is an n-
dimensional Lelek map if and only if f is a 0-dimensional map. Note that an
n-dimensional Lelek map is an n-dimensional map.
A map f: X —Y is called a Bing-Krasinkiewicz map if f has properties
‘of a Bing map and a Krasinkiewicz map. A map g : X — Y is called an

n-dimensional Bing-Krasinkiewicz-Lelek map if g has properties of a Bing.

map, a Krasinkiewicz map and an n-dimensional Lelek map.

Theorem 3.5 (cf. [5], [11] and [16]) Let X be an (n+1)-dimensional com- -

pactum and P a connected polyhedron. Then the set of all n-dimensional Bing-

Krasinkiewicz-Lelek maps is a dense Gs-subset of the space of all maps from X

to P.

Theorem 3.6 There exists a 1-dimensional continuum T C I 2 a Whitney map
u:C(T) — I and sg,s1 € I such that
(1) 0 < 89 < 81 < u(T),
(2) dimu~1(s) = 1 for each s € |0, so),
(3) dimu—1(sg) = 2, and
(4) dimu~1(s) = oo for each s € (sg, s1].
“Theorem 3.7 There exists a 1-dimensional continuum T C I? such that
(1) dimC(T) = o0, and
(2) for each Whitney map w : C(T) — I there exists ag € (0, w(T)) such
that dimw=1(s) = 1 for each s € [0, ap).

At last we give some results related to Whitney preserving maps.

Proposition 3.8 Let f : X — Y be a monotone u,v-Whitney preserving

map and let so = max {s € I|f(u~(s)) = v~2(0)}. Then flpq([,o,,,(x)])
£ ([80, u(X)]) — C(Y) is a homeomorphism. Hence p~ }(s) is homeomorphic

to f(u=1(s)) for each s € [s0, u(X)].

A topological property P is said to be a Whitney property provxded that
if a continuum X has property P, so does u~1(t) for each Whitney map u for
C(X) and for each t € [0, 4(X)]. As a corollary of Proposition 3.8 we get the
next result. . 4
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Corollary 3.9 Let f: X — Y be a monotone Whitney preserving map. If X
has a topological property P which is a Whitney property, then so does Y.

Also we give an application of Proposition 3.8.

Theorem 3.10 Let X,Y be continua andlet f : X — Y be a map. Let f = hog
be the monotone-light decomposition of f with g monotone and h light. Then f
is Whitney preserving if and only if g and h are Whitney preserving.
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