Expanding Ratios, Box counting Dimension and Hausdorff Dimension

Chikara Fujita, Hisao Kato and Masahiro Matsumoto

Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

1 Introduction

All spaces in this note are metric spaces and maps are continuous functions. Let $f : X \to X$ be a map of a compactum X. We say that f is positively expansive ([12]) if there is an admissible metric d for X and a positive number $c > 0$ such that if $x, y \in X$ and $x \neq y$, then there is a natural number $n \geq 0$ such that $d(f^n(x), f^n(y)) > c$. Note that this property is independent of the choice of metrics for X. We say that f is a Ruelle expanding map ([14]) if f is positively expansive and an open onto map. Note that by invariance of domain in n–manifolds, if $f : M \to M$ is a positively expansive map, then f is a Ruelle expanding map. We say that f expands small distances if there is an admissible metric d for X and $\epsilon > 0$ and $\lambda > 1$ such that if $0 < d(x, y) \leq \epsilon$, then $d(f(x), f(y)) > \lambda d(x, y)$. In this case, we say that $f : (X, d) \to (X, d)$ expands small distances. A map $f : X \to X$ increases small distances if there is an admissible metric d for X and $\epsilon > 0$ such that if $0 < d(x, y) \leq \epsilon$, then $d(f(x), f(y)) > d(x, y)$. The above two notions are dependent of the choice of metrics for X.

In [12], by use of the Frink's metrization theorem ([5]), Reddy proved that the following notions are equivalent:

1. $f : X \to X$ is positively expansive.
2. f expands small distances.
3. f increases small distances.

Hence for any onto open map $f : X \to X$, the following notions are equivalent:

1. f is a Ruelle expanding map.
2. f expands small distances.
3. f increases small distances.

In this note, we are interested in "metrics" related to expandability of maps and we investigate more precise expandability of maps as follows. We say that f expands strictly small distances with an expanding ratio $\lambda > 1$ if there is an admissible metric d for X and a positive number $\epsilon > 0$ such that if $x, y \in X$ and $d(x, y) \leq \epsilon$, then $d(f(x), f(y)) = \lambda d(x, y)$. In this case, we say that $f : (X, d) \to (X, d)$ expands strictly small distances with an expanding ratio $\lambda > 1$. Let \mathbb{R} denote the real line, and let \mathbb{N} be the set of all natural numbers and \mathbb{Z} the set of all integers.
Example 1.1. Let $L : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map such that $L(\mathbb{Z}^n) \subset \mathbb{Z}^n$ and $|\lambda_i| > 1,$ $|\lambda_i| \neq |\lambda_j|$ $(i \neq j)$ for eigenvalues λ_i $(i = 1, 2, \ldots, n)$ of L. If $f : T^n \to T^n$ is the map of the n-dimensional torus T^n induced by L, then for the Euclidean metric ρ for T^n, $f : (T^n, \rho) \to (T^n, \rho)$ expands small distances, but it does not expand strictly small distances with a common expanding ratio.

In this note, by use of the Alexandroff-Urysohn's metrization theorem we obtain the following theorem which is a more precise result in case of Ruelle expanding maps: If $f : X \to X$ is a Ruelle expanding map of a compactum X and any positive number $s > 1$, then there exists an admissible metric d for X and positive numbers $\epsilon > 0, \lambda$ $(1 < \lambda < s)$ such that if $x, y \in X$ and $d(x, y) \leq \epsilon$, then $d(f(x), f(y)) = \lambda d(x, y)$. For a case of graphs, we obtain that if $f : X \to X$ is a positively expansive map of a graph X (=1-dimensional compact polyhedron), then the same conclusion holds. In these cases, the metrics d satisfy the following equality:

$$\dim_{H}(X, d) = D_{d}(X) = \underline{D}_{d}(X) = \frac{h(f)}{\log \lambda},$$

where $\dim_{H}(X, d)$, $D_{d}(X)$ and $\underline{D}_{d}(X)$ denote the Hausdorff dimension, the lower box-counting dimension and the upper box-counting dimension of the compact metric space (X, d) and $h(f)$ is the topological entropy of f. This implies that such a metric d is a "fractal" metric for X. In fact, we can consider that the compact metric space (X, d) has some sort of local self-similarity with respect to the inverse f^{-1} of f and the similarity ratio $1/\lambda$. Also, we obtain that if $f : X \to X$ is an expanding homeomorphism of a noncompact metric space X, then there exist an admissible metric d for X and a positive number $\lambda > 1$ such that if $x, y \in X$, then $d(f(x), f(y)) = \lambda d(x, y)$.

2 Metrics of Ruelle expanding maps

In this section, we need the following terminology and concepts. Let \mathcal{U} and \mathcal{V} be open covers of a space X. We assume that each element of any open cover of a space is not an empty set. If \mathcal{V} refines \mathcal{U}, then we denote $\mathcal{V} \leq \mathcal{U}$ (e.g. see [9] and [10]). Suppose that $x \in X$ and \mathcal{U} is an open cover of X. Then we denote

$$St(x, \mathcal{U}) = \bigcup \{U \in \mathcal{U} | x \in U\}.$$

We put

$$\mathcal{U}^\Delta = \{St(x, \mathcal{U}) | x \in X\}.$$

An open cover \mathcal{V} of X is a delta-refinement of an open cover \mathcal{U} of X if $\mathcal{V} \leq \mathcal{U}$. Let $\{\mathcal{U}_i\}_{i=1}^\infty$ be a sequence of open covers of X. Then $\{\mathcal{U}_i\}_{i=1}^\infty$ is called a normal delta-sequence (e.g. see [9] and [10]) if \mathcal{U}_{i+1} is a delta-refinement of \mathcal{U}_i $(i = 1, 2, \ldots)$. Also, $\{\mathcal{U}_i\}_{i=1}^\infty$ is called a development of X if $\{St(x, \mathcal{U}_i) | i = 1, 2, \ldots\}$ is a neighborhood base for each point x of X. The following theorem is well known as the Alexandroff-Urysohn's metrization theorem (e.g. see [2], [9] and [10]).
Theorem 2.1. (the Alexandroff-Urysohn’s metrization theorem [2]) A T_1-space X is metrizable if and only if there exists a sequence $\{U_i\}_{i=1}^{\infty}$ of open covers of X such that $\{U_i\}_{i=1}^{\infty}$ is a normal delta-sequence and a development of X.

In this section, by use of the construction of the Alexandroff-Urysohn’s metrics we obtain the theorem which is a more precise result in case of Ruelle expanding maps. For the proof of Theorem 2.5, we need the following propositions.

Proposition 2.2. Let X be a compactum and let $f : X \to X$ be a local embedding. Then there exists $k \in \mathbb{N}$ such that f is at most k-to-1 map.

Let (X, d) be a metric space and $x \in X$. Also, let $U_\epsilon(x)$ be the ϵ neighborhood of x in X, i.e., $U_\epsilon(x) = \{y \in X \mid d(y, x) < \epsilon\}$.

Proposition 2.3. Let $f : X \to X$ be a map of a compactum (X, d). Suppose that \mathcal{W} is an open cover of X such that for each $x \in X$, there exists $W \in \mathcal{W}$ such that $f^{-1}(x) \subset W$. Then there is a positive number $r > 0$ such that if A is a subset of X with $\text{diam}(A) \leq r$, then there exists $W \in \mathcal{W}$ with $f^{-1}(A) \subset W$.

Proposition 2.4. (Reddy [10, p.330, Construction Lemma]) Let (X, d) be a compact metric space and $f : X \to X$ a positively expansive map with an expansive constant $c > 0$. Then for each positive number $r < c$, there exists a natural number $N(r) \in \mathbb{N}$ such that

$$r \leq d(x, y) \leq c \ (x, y \in X) \Rightarrow \max\{d(f^i(x), f^i(y)) \mid 0 \leq i \leq N(r) - 1\} > c.$$

Theorem 2.5. Let $f : X \to X$ be a Ruelle expanding map of a compactum X. For any $s > 1$, there exist an admissible metric \tilde{d} for X and a positive number λ ($s > \lambda > 1$) such that $f : (X, \tilde{d}) \to (X, \tilde{d})$ expands strictly small distances with the expanding ratio λ, that is, for some $\epsilon > 0$,

$$\tilde{d}(x, y) \leq \epsilon \ (x, y \in X) \Rightarrow \tilde{d}(f(x), f(y)) = \lambda \tilde{d}(x, y).$$

Generally, we have the following problem.

Problem 2.6. Does Positively expansive maps expand strictly small distances?

In a case of graphs, we obtain the following partial answer to Problem 2.6.

Theorem 2.7. Let $f : X \to X$ be a positively expansive map of a compact connected graph $X = G$ (=1-dimensional compact polyhedron). Then for any $s > 1$, there exist an admissible metric \tilde{d} for X and positive numbers $\epsilon > 0, s > \lambda > 1$ such that

$$\tilde{d}(x, y) \leq \epsilon \ (x, y \in X) \Rightarrow \tilde{d}(f(x), f(y)) = \lambda \tilde{d}(x, y).$$
3 Expanding homeomorphisms of noncompact metric spaces

In this section, we deal with the case of noncompact metric spaces. We obtain the following theorem (cf. Example 1.1).

Theorem 3.1. Let \((X, d)\) be a (noncompact) metric space. If \(f : (X, d) \to (X, d)\) is an expanding homeomorphism, that is, there is \(\lambda > 1\) such that \(d(f(x), f(y)) \geq \lambda d(x, y)\) for \(x, y \in X\), then for any \(s > 1\) there is an admissible metric \(\tilde{d}\) for \(X\) and a positive number \(r (s > r > 1)\) such that \(f : (X, \tilde{d}) \to (X, \tilde{d})\) expands strictly distances with the expanding ratio \(r\), that is, for any \(x, y \in X\),

\[
\tilde{d}(f(x), f(y)) = r\tilde{d}(x, y).
\]

Remark 3.2. (Alexandroff-Urysohn's metrization theorem [7, Theorem 2.16]) It follows that \(D\) and \(d'\) in the proof of Theorem 3.1 satisfy the following condition: For any \(x, y \in X\),

\[
\frac{1}{4}D(x, y) \leq d'(x, y) \leq D(x, y).
\]

Remark 3.3. There is the following relations between the given metric \(d\) of Theorem 3.1 and the metric \(d'\) in the proof of Theorem 3.1:

(a) There are \(A > 0\) and \(\alpha > 0\) such that if \(d(x, y) \geq 1/2\) then

\[
d'(x, y) \leq Ad(x, y)^{\alpha}.
\]

(b) There are \(B > 0\) and \(\beta > 0\) such that if \(d(x, y) < 1/2\) then

\[
d'(x, y) \geq Bd(x, y)^{\beta}.
\]

4 Topological entropy of Ruelle expanding maps and upper box-counting dimension

In this section, we study the dynamical property which is related to Ruelle expanding map, positively expansive map, topological entropy and box-counting dimension. For a map \(f : X \to X\) of a compactum \(X\), we define the topological entropy \(h(f)\) of \(f\) as follows (see [1] and [6]): Let \(n\) be a natural number and \(\epsilon > 0\). A subset \(F\) of \(X\) is an \((n, \epsilon)\)-spanning set for \(f\) if for each \(x \in X\), there is \(y \in F\) such that

\[
\max\{d(f^i(x), f^i(y))| 0 \leq i \leq n - 1\} \leq \epsilon.
\]

Let \(r_n(f, \epsilon)\) be the smallest cardinality of all \((n, \epsilon)\)-spanning sets for \(f\). A subset \(E\) of \(X\) is an \((n, \epsilon)\)-separated set for \(f\) if for each \(x, y \in E\) with \(x \neq y\), there is \(0 \leq j \leq n - 1\) such that

\[
d(f^j(x), f^j(y)) > \epsilon.
\]
Let $s_n(f, \epsilon)$ be the maximal cardinality of all (n, ϵ)-separated sets for f. Put

$$\tau(f, \epsilon) = \limsup_{n \to \infty} \frac{1}{n} \log r_n(f, \epsilon)$$

and

$$s(f, \epsilon) = \limsup_{n \to \infty} \frac{1}{n} \log s_n(f, \epsilon).$$

Also, put

$$h(f) = \lim_{\epsilon \to 0} r(f, \epsilon).$$

It is well known that $h(f) = \lim_{\epsilon \to 0} s(f, \epsilon)$ and $h(f)$ is equal to the topological entropy of f which was defined by Adler, Konheim and McAndrew (see [1]).

Let (X, d) be a compact metric space and $b(\epsilon)$ the minimum cardinality of a covering of X by ϵ-balls. Put

$$D_d(X) = \limsup_{\epsilon \to 0} \frac{\log b(\epsilon)}{|\log \epsilon|} \in \mathbb{R} \cup \{\infty\}.$$

Similarly, put

$$D^\mu_d(X) = \liminf_{\epsilon \to 0} \frac{\log b(\epsilon)}{|\log \epsilon|} \in \mathbb{R} \cup \{\infty\}.$$

$D_d(X)$ is called the upper box-counting dimension of (X, d), and $D^\mu_d(X)$ is called the lower box-counting dimension of (X, d).

Let $p \geq 0$ be any real number. Given $\epsilon > 0$, let

$$m_p^\epsilon(X, d) = \inf \Sigma_{i=1}^{\infty} [\text{diam}(A_i)]^p$$

where $X = \bigcup_{i=1}^{\infty} A_i$ is any decomposition of X in a countable number of subset of diameter less than ϵ. Let

$$m_p(X, d) = \sup_{\epsilon > 0} m_p^\epsilon(X, d).$$

Finally, we denote by the Hausdorff dimension $\dim_H(X, d)$ of (X, d) the supremum of all real numbers p such that $m_p(X, d) > 0$. It is well known that $\dim X \leq \dim_H(X, d) \leq D_d(X) \leq D^\mu_d(X)$.

Proposition 4.1. (cf. [7], Theorem 3.2.9) Let $f : X \to X$ be a map of a compactum X with a metric d. Suppose that there exist positive numbers $\epsilon > 0$ and $1 \leq \lambda_2 \leq \lambda_1$ such that if $x, y \in X$ and $0 < d(x, y) \leq \epsilon$, then $\lambda_2 d(x, y) \leq d(f(x), f(y)) \leq \lambda_1 d(x, y)$. Then the following inequalities hold

$$D_d(X) \log \lambda_2 \leq h(f) \leq D_d(X) \log \lambda_1.$$

Dai-Zhou-Geng [4] and Misiurewicz [8] proved that the following interesting result.

Theorem 4.2. (Dai-Zhou-Geng [4] and Misiurewicz [8]) If $f : X \to X$ is a Lipshitz continuous map of a compactum (X, d) with Lipshitz constant λ, then the following equality holds

$$\frac{h(f)}{\log \lambda} \leq \dim_H(X, d).$$
Now, we obtain the following result.

Theorem 4.3. Let $f : X \to X$ be a map of a compactum X with a metric d. Suppose that there exist positive numbers $\epsilon > 0$ and $\lambda > 1$ such that if $x, y \in X$ and $d(x, y) \leq \epsilon$, then $d(f(x), f(y)) = \lambda d(x, y)$. Then the following equality holds

$$h(f) = D_d(X) \log \lambda.$$

In particular, the followings hold.

1. If $f : X \to X$ is a Ruelle expanding map of a compactum X and $s > 1$, then there exist an admissible metric d for X and a positive number $1 < \lambda \leq s$ such that $f : (X, d) \to (X, d)$ expands strictly small distances with the expanding ratio λ, and hence

$$\dim_H(X, d) = D_d(X) = D_d(X) = \frac{h(f)}{\log \lambda}.$$

2. If $f : G \to G$ is a positively expansive map of a graph G and $s > 1$, then there exist an admissible metric d for G and a positive number $1 < \lambda \leq s$ such that $f : (G, d) \to (G, d)$ expands strictly small distances with the expanding ratio λ, and hence

$$\dim_H(G, d) = D_d(G) = D_d(G) = \frac{h(f)}{\log \lambda}.$$

Remark 4.4. In [9], Pontrjagin and Schnirelmann proved that for any compactum X,

$$\dim X = \min\{D_d(X)\mid d \text{ is a metric for } X\},$$

where $\dim X$ denotes the topological dimension of X. Suppose that $\dim X \geq 1$ and a map $f : (X, d) \to (X, d)$ expands strictly small distances with an expanding ratio $\lambda > 1$. Then $0 < \log \lambda \leq h(f)/\dim X$, which implies that the set of expanding ratios of f are bounded. Note that there exist a sequence $\{\lambda_i\}_{i=1}^\infty$ of metrics for X such that $f : (X, d_i) \to (X, d_i)$ expands strictly small distances with an expanding ratio λ_i satisfying $\lambda_i > \lambda_{i+1}$ and $\lim_{i \to \infty} \lambda_i = 1$. Then $\lim_{i \to \infty} D_d(X) = \infty$, which implies that d_i is a "fractal" metric on X. In fact, we can consider that the space (X, d_i) has some sort of local self-similarity with respect to the inverse f^{-1} of f and the similarity ratio $1/\lambda_i$. In [5], we investigated the relation between metrics d, box-counting dimensions $D_d(X)$ and $D_d(X)$ of a separable metric space (X, d).

The topological entropy of endomorphisms of the n-dimensional torus T^n is well known and hence we have the following.

Corollary 4.5. Let $L : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map such that $L(\mathbb{Z}^n) \subset \mathbb{Z}^n$ and $|\lambda_i| > 1$ for each eigenvalue λ_i ($i = 1, 2, \ldots, n$) of L. Then the followings hold.

1. For any $s > 1$, there exists an admissible metric d for \mathbb{R}^n and a positive number λ with $s > \lambda > 1$ such that if $x, y \in \mathbb{R}^n$, then $d(L(x), L(y)) = \lambda d(x, y)$.

2. Let T^n be the n-dimensional torus and let $f : T^n \to T^n$ be the map induced by the linear map L. Then for any $s > 1$, there exists an admissible metric d for T^n and positive numbers $\epsilon > 0$ and $1 < \lambda < s$ such that if $x, y \in T^n$ and $d(x, y) \leq \epsilon$, then $d(f(x), f(y)) = \lambda d(x, y)$. Also,

$$\sum_{i=1}^{n} \log |\lambda_i| = \sum_{|\lambda_i| > 1} \log |\lambda_i| = h(f) = D_d(X) \log \lambda$$

and hence

$$\dim_H(X, d) = D_d(X) = D_d(X) = \frac{\sum_{i=1}^{n} \log |\lambda_i|}{\log \lambda}.$$

Acknowledgements. The authors would like to thank Prof. Kazuhiro, Sakai and Prof. Naoya, Sumi for the information of the information of the papers [4] and [8].

References

Chikara Fujita, Hisao Kato and Masahiro Matsumoto
Institute of Mathematics
University of Tsukuba
Ibaraki, 305-8571 Japan
e-mail: chikara@math.tsukuba.ac.jp