SOME COMPLETE-TYPE MAPS (General and geometric topology today and their problems)

Bai, Yun-Feng; Miwa, Takuo

数理解析研究所講究録 (2008), 1578: 22-27

Kyoto University
SOME COMPLETE-TYPE MAPS

Yun-Feng Bai
Department of Mathematics, Shimane Univ. (Capital Normal Univ.)

1. Introduction

As well known, in the topological category TOP uniform spaces are studied as
the generalization of metric spaces, compact spaces and topological groups. In the
fibrewise category TOP_B with the base space B, the study of fibrewise uniform space
in TOP_B is found in James [5] Ch.3 and Konami-Miwa [6], [7]. Especially in [6] and
[7], they studied the fibrewise uniform spaces by using coverings, and proved in [7]
the equivalence of fibrewise uniform spaces by using entourages (in [5]) and their
one (in [7]). The study of metrizable maps in TOP_B is found in [11], [9], [2], [8] and
[3]. But for a metrizable map $p : X \rightarrow B$, the study of fibrewise uniformity on X
has not been done.

In this paper, we announce the existence of fibrewise uniformities on some metriz-
able maps, and study the relations between the completeness induced by a trivial
metric and the one defined by fibrewise uniformities. Further, we discuss the rela-
tions between completely metrizable maps and Čech-complete maps.

2. Preliminaries

In this section, we refer to the notions and notations in Fibrewise Topology. For
the definitions of undefined terms and notations, see [4], [3], [7] and [5].

Throughout this paper, we will use the abbreviation $nbd(s)$ for neighborhood(s).
Let B be a topological space with a fixed topology τ. For each $b \in B$, $N(b)$ is the
family of all open nbds of b, and N, Q, R and I are the sets of all natural numbers,
all rational numbers, all real numbers and the unit interval, respectively. In this
paper, we assume that (B, τ) is a regular space, all spaces are topological spaces
and all maps are continuous.

For a map $p : X \rightarrow B$ and each $b \in B$, the fibre over b is the subset $X_b = p^{-1}(b)$
of X. Also for each subset B' of B, we denote $X_{B'} = p^{-1}B'$. For a filter \mathcal{F} on X,
by a b-filter on X we mean a pair (b, \mathcal{F}) such that b is a limit point of the filter
$p_*(\mathcal{F})$ on B, where $p_*(\mathcal{F})$ is the filter generated by the family $\{p(F) | F \in \mathcal{F}\}$. By
an adherence point of a b-filter \mathcal{F} ($b \in B$) on X, we mean a point of the fibre X_b.
which is an adherence point of \(\mathcal{F} \) as a filter on \(X \). For a projection \(p : X \to B \) and \(W \subset B \), we use the notation \(X_W \times X_W = X_W^2 \) and \(X \times X = X^2 \). For \(D, E \subset X^2 \), \(D \circ E = \{(x, z) \mid \exists y \in X \text{ such that } (x, y) \in D, (y, z) \in E \} \) and \(D(x) = \{y | (x, y) \in D\} \). For a family \(\mathcal{U} \) of subsets of a set \(X \) and a subset \(A \) of \(X \), \(\mathcal{U}|_A = \{U \cap A | U \in \mathcal{U}\} \).

Next, according to [11] let us refer to (completely) trivially metrizable maps. For a map \(p : X \to B \) with a pseudometric \(\rho \) on \(X \) is called a trivial metric (T-metric, for short) on \(p \) if the restriction of \(\rho \) to every fibre \(p^{-1}(b), \, b \in B \), is a metric and \(p^{-1}\tau \cup \tau_{\rho} \), where \(\tau_{\rho} \) is the topology on \(X \) generated by \(\rho \), is a subbase of the topology of \(X \). A map \(p : X \to B \) is called trivially metrizable (a TM-map, for short) if there exists a T-metric on \(p \). A T-metric on a map \(p : X \to B \) is called complete (a CT-metric, or short) if

(*) For any \(b \)-filter \(\mathcal{F} \), \(b \in B \), on \(X \) containing elements of arbitrary small diameter, \(\mathcal{F} \) has adherence points.

A map \(p : X \to B \) is called completely trivially metrizable (a complete TM-map, for short) if there exists a CT-metric on it.

A map \(p : X \to B \) is called (resp. closely) parallel to a space \(Z \) if there exists an embedding \(e : X \to B \times Z \) such that \(p = \pi \circ e \), where \(\pi : B \times Z \to B \) is the projection (see [10]).

The following are proved in [11]: A map \(p : X \to B \) is a TM-map if and only if \(p \) is parallel to a metrizable map, and \(p \) is a complete TM-map if and only if it is closely parallel to a completely metrizable (i.e., metrizable by complete metric) space.

Remark: By these, for a TM-map \(p : X \to B \) there exists a metric space \((M, \rho) \) and an embedding \(e : X \to B \times M \) such that \(p = \pi \circ e \). Then it is easy to see that we can define a T-metric (pseudometric) \(\rho' \) on \(X \) by \(\rho'(x, y) = \rho(\pi \circ e(x), \pi \circ e(y)) \), and vice versa. So, we can identify \(\rho \) on \(M \) and \(\rho' \) on \(X \) in the above meaning. In latter sections, we use the same notation \(\rho \) on \(M \) and on \(X \).

We shall conclude this section by referring to fibrewise uniformities according to [7]. First, we recall the following definition.

Definition 2.1. Let \(p : X \to B \) be a projection, and \(\Delta \) be the diagonal of \(X \times X \). A fibrewise entourage uniformity on \(X \) is a filter \(\Omega \) on \(X \times X \) satisfying the following four conditions:

1. \(\Delta \subset D \) for every \(D \in \Omega \).
2. Let \(D \in \Omega \). Then for each \(b \in B \) there exist \(W \in N(b) \) and \(E \in \Omega \) such that \(E \cap X_W^2 \subset D^{-1} \).
3. Let \(D \in \Omega \). Then for each \(b \in B \) there exist \(W \in N(b) \) and \(E \in \Omega \) such that

\[
(E \cap X_W^2) \circ (E \cap X_W^2) \subset D
\]

4. If \(E \subset X \times X \) satisfies that for each \(b \in B \) there exist \(W \in N(b) \) and \(D \in \Omega \) such that \(D \cap X_W^2 \subset E \), then \(E \in \Omega \).
Note that in [5] Section 12, a filter Ω on $X \times X$ satisfying (J1), (J2) and (J3) is called a fibrewise uniform structure on X. So, the notion of a fibrewise entourage uniformity is slightly stronger than one of a fibrewise uniform structure.

For a projection $p : X \to B$ and $W \in \tau$, let μ_W be a non-empty family of coverings of X_W. We say that $\{\mu_W\}_{W \in \tau}$ is a system of coverings of $\{X_W\}_{W \in \tau}$. (For this, we briefly use the notations $\{\mu_W\}$ and $\{X_W\}$). Let \mathcal{U} and \mathcal{V} be families of subsets of a set X. If \mathcal{V} refines \mathcal{U} in the usual sense, we denote $\mathcal{V} \prec \mathcal{U}$. Let us define the notion of fibrewise covering uniformity.

Definition 2.2. Let $p : X \to B$ be a projection, and $\mu = \{\mu_W\}$ be a system of coverings of $\{X_W\}$. We say that the system $\{\mu_W\}$ is a fibrewise covering uniformity (and a pair (X, μ) or $(X, \{\mu_W\})$ is a fibrewise covering uniform space) if the following conditions are satisfied:

(C1) Let \mathcal{U} be a covering of X_W and for each $b \in W$ there exist $W' \in N(b)$ and $\mathcal{V} \in \mu_W$ such that $W' \subset W$ and $\mathcal{V} \prec \mathcal{U}$. Then $\mathcal{U} \in \mu_W$.

(C2) For each $\mathcal{U}_i \in \mu_W$, $i = 1, 2$, there exists $\mathcal{U}_3 \in \mu_W$ such that $\mathcal{U}_3 \prec \mathcal{U}_i$, $i = 1, 2$.

(C3) For each $\mathcal{U} \in \mu_W$ and $b \in W$, there exist $W' \in N(b)$ and $\mathcal{V} \in \mu_W$ such that $W' \subset W$ and \mathcal{V} is a star refinement of \mathcal{U}.

(C4) For $W' \subset W$, $\mu_W \supseteq \mu_W|_{X_{W'}}$, where

$$\mu_W|_{X_{W'}} = \{U|_{X_{W'}}, U \in \mu_W\} \quad \text{and} \quad U|_{X_{W'}} = \{U \cap X_{W'}, U \in \mathcal{U}\}.$$

For a fibrewise entourage uniformity Ω on X, $D \in \Omega$ and $W \in \tau$, let $\mathcal{U}(D, W) = \{D(x) \cap X_W|x \in X_W\}$. Further let $\mu_W(\Omega)$ be the family of coverings \mathcal{U} of X_W satisfying that for each $b \in W$ there exist $W' \in N(b)$ and $D \in \Omega$ such that $W' \subset W$ and $\mathcal{U}(D, W') \prec \mathcal{U}$. Then the system $\mu(\Omega) = \{\mu_W(\Omega)\}$ is a fibrewise covering uniformity ([7] Proposition 3.7).

Conversely, for a fibrewise covering uniformity $\mu = \{\mu_W\}$, we can constructed a fibrewise entourage uniformity $\Omega(\mu)$ as follows ([7] Construction 3.8): For $\mathcal{U} \in \mu_W$, $D(\mathcal{U}) = \cup\{U_\alpha \times U_\alpha|U_\alpha \in \mathcal{U}\}$. Let $\Omega(\mu)$ be the family of all subsets $D \subset X \times X$ satisfying the following condition:

$$\Delta \subset D, \text{ and for every } b \in B \text{ there exist } W \in N(b) \text{ and } \mathcal{U} \in \mu_W \text{ such that } D(\mathcal{U}) \subset D.$$

Then $\Omega(\mu)$ is a fibrewise entourage uniformity ([7] Proposition 3.10). Further, we proved the following:

Theorem 2.3. ([7] Theorem 3.11) For a projection $p : X \to B$ and a fibrewise entourage uniformity Ω on X, we have $\Omega = \Omega(\mu(\Omega))$.

For a fibrewise entourage uniformity Ω on X and a fibrewise covering uniformity μ on X, let $\tau(\Omega)$ be the fibrewise topology induced by Ω ([5] Section 13) and $\tau(\mu)$ be the fibrewise topology induced by μ ([7] Proposition 3.8). Then $\tau(\Omega) = \tau(\mu(\Omega))$ and $\tau(\mu) = \tau(\Omega(\mu))$ ([7] Proposition 3.12).
3. Fibrewise covering uniformities on TM-maps

For a TM-map $p : X \to B$ parallel to a metric space (M, ρ), let $e : X \to B \times M$ be the embedding. For each $n \in \mathbb{N}$, let \mathcal{U}_n be the family $\{U(x, \frac{1}{n})|x \in M\}$, where $U(x, \frac{1}{n}) = \{y \in M|\rho(x, y) < \frac{1}{n}\}$ and $W_n = \{e^{-1}(B \times U)|U \in \mathcal{U}_n\}$. Then for each $W \in \tau$, let $\mu_W = \{U|\bigcup U = X_W\}$ and for each $b \in W$ there exists $n \in \mathbb{N}$ and $W' \in N(b)$ with $W' \subseteq W$ such that $W_n|_{X_{W'}} < U$.

Since μ_W and μ constructed above are induced by the metric ρ on M (on X), we call this $\mu = \{\mu_W\}$ a fibrewise covering uniformity on X induced by the metric ρ, and denoted by $\mu_\rho = \{\mu_W\}_\rho$. Further, by the construction of $\{W_n|n \in \mathbb{N}\}$ in the above, we say that the family $\{W_n|n \in \mathbb{N}\}$ is the standard developable covering (sd-covering, for short) on X induced by ρ. (Note that we exclusively use the notation $\{W_n|n \in \mathbb{N}\}$ as sd-covering induced by ρ in this paper.)

Theorem 3.1. For a TM-map $p : X \to B$ with a T-metric ρ, the system $\mu_\rho = \{\mu_W\}_\rho$ is a fibrewise covering uniformity on X induced by ρ.

4. Equivalence of some completeness on TM-maps

Definition 4.1. ([5] Definition 14.1) For a map $p : X \to B$, let Ω be a fibrewise entourage uniformity on X.

1. A subset M of X is said to be D-small, where $D \subseteq X^2$, if M^2 is contained in D.
2. A b-filter \mathcal{F}, where $b \in B$, is Cauchy if \mathcal{F} contains a D-small members for each $D \in \Omega$. (We call \mathcal{F} J-Cauchy with respect to Ω (w.r.t. Ω, for short), for convenience' sake.)

We shall define a new notion of Cauchy b-filter in fibrewise covering uniformity $\mu = \{\mu_W\}$ on X.

Definition 4.2. For a map $p : X \to B$, let $\mu = \{\mu_W\}$ be a fibrewise covering uniformity on X. A b-filter \mathcal{F}, where $b \in B$, is Cauchy if for each $W \in N(b)$ and $\mathcal{U} \in \mu_W$ there exist $F \in \mathcal{F}$ and $U \in \mathcal{U}$ such that $F \subseteq U$. (We call \mathcal{F} CU-Cauchy with respect to μ (w.r.t. μ, for short), for convenience' sake.)

Theorem 4.3. For a map $p : X \to B$, let Ω be a fibrewise entourage uniformity on X. Then for each $b \in B$, a b-filter \mathcal{F} is J-Cauchy w.r.t. Ω if and only if it is CU-Cauchy w.r.t. $\mu(\Omega)$.

For a space X, let $\Psi = \{\Phi_\alpha|\alpha \in \Lambda\}$ be a family of families of subsets of X. We say that a family Ψ of subsets of X is subordinated to the family Ψ if for each $\alpha \in \Lambda$ there exists $U_\alpha \in \Phi_\alpha$ and $V \in \Psi$ such that $V \subseteq U_\alpha$.

Definition 4.4. Let $p : X \to B$ be a TM-map with a T-metric ρ.

1. ([11]) The map p is complete if for any b-filter F, $b \in B$, on X subordinated to the sd-covering $\{W_n | n \in N\}$ induced by ρ, it has adherence points. (We call this "complete" P-complete, and also call this b-filter satisfying this condition P-Cauchy w.r.t. ρ.)

2. ([5] Definition 14.10) The map p is complete if for each $b \in B$ any J-Cauchy b-filter F w.r.t. $\Omega(\mu_\rho)$ converges. (We call this "complete" J-complete.)

Theorem 4.5. For a TM-map $p : X \to B$ with a T-metric ρ and each $b \in B$, a b-filter F is a P-Cauchy w.r.t. ρ if and only if it is a J-Cauchy w.r.t. Ω_ρ.

5. COMPLETE TM-MAPS AND ČECH-COMPLETE MAPS

Definition 5.1. A T_2-compactifiable map $p : X \to B$ is Čech-complete if for each $b \in B$, there exists a countable family $\{A_n\}_{n \in N}$ of open (in X) covers of X_b with the property that every b-filter F which is subordinated to the family $\{A_n\}_{n \in N}$ has an adherence point.

Proposition 5.2. (1) ([1] Theorem 6.1) Every locally compact map is Čech-complete.

(2) ([1] Theorem 4.1) For T_2-compactifiable maps $p : X \to B$, $q : Y \to B$ and a perfect morphism $f : p \to q$, p is Čech-complete if and only if q is Čech-complete.

Lemma 5.3. Every TM-map $p : X \to B$ is a $T_{3\frac{1}{2}}$-map.

By this lemma, every TM-map is $T_{3\frac{1}{2}}$-compactifiable. For complete TM-maps, we can prove the following.

Theorem 5.4. If $p : X \to B$ is a complete TM-map, then p is Čech-complete.

6. MT-MAPS AND SOME PROBLEMS

About the relations of TM-maps and MT-maps, we have the following.

(a) A closed TM-map is an MT-map.

(b) There exists a compact MT-map which is not a TM-map.

(c) There exists (complete) TM-maps which are not closed, so not MT-maps.

Theorem 6.1. If $p : X \to B$ is a closed TM-map, then p is an MT-map.
As discussed in section 5, there seems to exist many problems about relations between metrizable maps and completeness. As an attempt to the problems, we define a new notion of D-complete MT-maps. For an MT-map $p : X \to B$, we use the following notation: $\{{\mathcal{U}_n(b)}_{n\in N}|b \in B\}$ is a p-development, where $\{{\mathcal{U}_n(b)}_{n\in N}|b \in B\}$ is a b-development. First, we recall some definitions and theorems of MT-maps according to [3].

Definition 6.2. (1) ([3] Def. 2.8) For a map $p : X \to B$, a sequence $\{{\mathcal{U}_n}\}_{n \in N}$ of open (in X) covers of $X_b, b \in B$, is said to be a b-development if for every $x \in X_b$ and every $U \in N(x)$, there exists $n \in N$ and $W \in N(b)$ such that $x \in st(x, \mathcal{U}_n) \cap X_W \subset U$. The map p is said to have a p-development if it has a b-development for every $b \in B$.
(2) ([3] Def. 2.9) A closed map $p : X \to B$ is said to be an MT-map if it is collectionwise normal and has a p-development.

Definition 6.3. For an MT-map $p : X \to B$ equipped with p-development $\{{\mathcal{U}_n(b)}_{n \in N}|b \in B\}$, we call p D-complete with respect to the p-development if for each $b \in B$ every b-filter \mathcal{F} subordinated to $\{{\mathcal{U}_n(b)}_{n \in N}|b \in B\}$ has adherence points.

Problem 6.4. For an MT-map $p : X \to B$, let $\{{\mathcal{U}_n(b)}_{n \in N}|b \in B\}$ be a p-development.
(1) Is there a fibrewise (covering) uniformity on X related to the p-development?
(2) If Problem (1) had an affirmative answer, then is the J-completion of p w.r.t. the fibrewise (covering) uniformity on X equivalent to D-completion?

REFERENCES