Mapping theorems for C-spaces

We assume that all spaces are normal unless otherwise stated. We refer the readers to [2] for dimension theory.

In this note we study mapping theorems for C-spaces.

A space X is a C-space (an A-weakly infinite-dimensional space) if for every countable collection $\{G_i : i \in \mathbb{N}\}$ of open covers (two-element open covers, respectively) of X there exists a countable collection $\{H_i : i \in \mathbb{N}\}$ of collections of pairwise disjoint open subsets of X such that $H_i < G_i$ for every $i \in \mathbb{N}$ and $\bigcup_{i=1}^{\infty} H_i$ covers X (cf. [1]).

Evidently, every C-space is A-weakly infinite-dimensional. However, it is not known whether the converse is true.

Polkowski [5] proved the following theorem.

Theorem 1 (Polkowski [5]). If $f : X \to Y$ is a closed mapping of an A-weakly infinite-dimensional countably paracompact space X onto a space Y and there exists an integer $k \geq 1$ such that $|f^{-1}(y)| \leq k$ for every $y \in Y$, then Y is A-weakly infinite-dimensional.

We proved that the following theorem, which is an analogous result for C-spaces.
Theorem 2. If \(f : X \rightarrow Y \) is a closed mapping of a countably paracompact C-space \(X \) onto a paracompact space \(Y \) and there exists an integer \(k \geq 1 \) such that \(|f^{-1}(y)| \leq k \) for every \(y \in Y \), then \(Y \) is a C-space.

Problem. Does theorem 1 (or theorem 2) hold for closed mappings with finite fibers?

In [4], Pol proved the following theorem.

Theorem 3 (Pol [4]). If \(f : X \rightarrow Y \) is a continuous mapping of a compact metrizable space \(X \) onto a metrizable space \(Y \) such that \(|f^{-1}(y)| \leq \aleph_0 \) for every \(y \in Y \), then \(X \) is an A-weakly infinite-dimensional space (resp. a C-space) if and only if \(Y \) is an A-weakly infinite-dimensional space (resp. a C-space).

Does Theorem 3 remain true if we replace \(|f^{-1}(y)| \leq \aleph_0\) by \(|f^{-1}(y)| < c\)? In [5], Polkowski proved the following theorem.

Theorem 4 (Polkowski [5]). If \(f : X \rightarrow Y \) is a continuous mapping of a compact A-weakly infinite-dimensional space \(X \) onto a space \(Y \) such that \(|f^{-1}(y)| < c \) for every \(y \in Y \), then \(Y \) is A-weakly infinite-dimensional.

Similarly, the following theorem holds.

Theorem 5. If \(f : X \rightarrow Y \) is a continuous mapping of a compact C-space \(X \) onto a space \(Y \) such that \(|f^{-1}(y)| < c \) for every \(y \in Y \), then \(Y \) is a C-space.

On the other hand, Hattori and Yamada proved that the following theorem.

Theorem 6 (Hattori and Yamada [3]).

(i) If \(f : X \rightarrow Y \) is a closed mapping of a countably paracompact (or hereditarily normal) space \(X \) onto a C-space \(Y \) such that \(f^{-1}(y) \) is A-weakly infinite-dimensional for every \(y \in Y \), then \(X \) is A-weakly infinite-dimensional.

(ii) If \(f : X \rightarrow Y \) is a closed mapping of a paracompact space \(X \) onto a C-space \(Y \) such that \(f^{-1}(y) \) is a C-space for every \(y \in Y \), then \(X \) is a C-space.

Problem. Does Theorem 6(i) remain true if we replace '\(f^{-1}(y) \) is a C-space' by '\(f^{-1}(y) \) is A-weakly infinite-dimensional'?
References

Chieko Komoda
Department of Health Science, School of Health & Sports Science, Juntendo University
Inba, Chiba, 270-1695, Japan
E-mail address: chieko.komoda@sakura.juntendo.ac.jp