<table>
<thead>
<tr>
<th>Title</th>
<th>Abundance of σ-compact non-compactly generated groups witnessed by the Bohr topology of an abelian group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Dikranjan, Dikran; Shakhmatov, Dmitri</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2008), 1578: 16-18</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81381</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Abundance of σ-compact non-compactly generated groups witnessed by the Bohr topology of an abelian group

Dikran Dikranjan

Dipartimento di Matematica e Informatica
Università di Udine, Via delle Scienze 206, 33100 Udine, Italy

Dmitri Shakhmatov

Graduate School of Science and Engineering
Division of Mathematics, Physics and Earth Sciences
Ehime University, Matsuyama 790-8577, Japan

Abstract

Answering negatively a question of Fujita and Shakhmatov [2], Tkachenko and Torres Falcón [6] have constructed an example of a countable (and thus, σ-compact) totally bounded group that is not compactly generated. We observe that any countable non-finitely generated abelian group G equipped with its Bohr topology fails to be compactly generated, thereby obtaining an abundant supply of totally bounded groups providing a counter-example to the question of Fujita and Shakhmatov [2].

A group G is finitely generated if G is algebraically generated by its finite subset.

A group G is called σ-compact provided that G can be represented as a union of a countable family of its compact subsets, and G is called compactly

*This manuscript is in its final form and will not be submitted for publication elsewhere.
1The first author was partially supported by MEC. MTM2006-02036 and FEDER FUNDS. e-mail: dikranja@dimi.uniud.it
2The second author was partially supported by the Grant-in-Aid for Scientific Research no. 19540092 by the Japan Society for the Promotion of Science (JSPS). e-mail: dmitri@dpc.ehime-u.ac.jp
generated if G is algebraically generated by its compact subset. One can easily see that a compactly generated group is σ-compact.

Fujita and Shakhmatov [2] proved that a σ-compact metric group is compactly generated. The same result also holds for a wider class of groups that contains both metric and locally compact groups, see [3].

Answering a question of Fujita and Shakhmatov [2], Tkachenko and Torres Falcón [6] have constructed an example of a countable (thus, σ-compact) totally bounded group that is not compactly generated. (Recall that a group G is totally bounded if it is (topologically and algebraically) isomorphic to a subgroup of some compact group.)

The main purpose of this note is to observe that any countable non-finitely generated abelian group G equipped with its Bohr topology fails to be compactly generated, thereby obtaining an abundant supply of totally bounded groups providing a counter-example to the question of Fujita and Shakhmatov [2].

Let G be an abelian group. The Bohr topology of G is the weakest group topology on G making all characters $\chi : G \to \mathbb{T}$ continuous, where \mathbb{T} is the torus group. The Bohr topology of G is totally bounded, and the group G equipped with this topology is usually denoted by $G^\#$. According to the celebrated result of Glicksberg [4], $G^\#$ has no infinite compact subsets. Thus, $G^\#$ is compactly generated if and only if $G^\#$ is finitely generated. This immediately yields the following

Theorem 1. Let G be a countable abelian group that is not finitely generated. Then $G^\#$ is a σ-compact totally bounded group that is not compactly generated.

It should be noted that there are only countably many finitely generated abelian groups, as every such group has the form

$$\mathbb{Z}^n \times \mathbb{Z}(m_1) \times \ldots \times \mathbb{Z}(m_k),$$

where n, m_1, \ldots, m_k are integer numbers and $\mathbb{Z}(k)$ denotes the cyclic group of order k. On the other hand, there are continuum many pairwise non-isomorphic countable abelian groups. (In fact, even the group \mathbb{Q} of rational numbers contains continuum many pairwise non-isomorphic subgroups.)

Corollary 2. Let G be a countable abelian group that is not isomorphic to a group of the form (1). Then $G^\#$ is a σ-compact totally bounded group that is not compactly generated.

Let us finish with some concrete examples.

Corollary 3. $\mathbb{Q}^\#$ is a (σ-compact) divisible totally bounded group that is not compactly generated.
Corollary 4. If G is a countably infinite torsion group, then $G\#$ is a (σ-compact) totally bounded group that is not compactly generated.

It follows from Corollary 4 that $(\mathbb{Q}/\mathbb{Z})\#$ is a (σ-compact) divisible totally bounded group that is not compactly generated.

Furthermore, from Corollary 4 one can easily obtain an infinite family of (σ-compact) non-compactly-generated totally bounded torsion groups that are pairwise non-homeomorphic even as topological spaces. Indeed, if G and H are countably infinite torsion groups of distinct prime exponent, then $G\#$ and $H\#$ are not homeomorphic as topological spaces ([5, 1]).

References

