<table>
<thead>
<tr>
<th>Title</th>
<th>On special metrics characterizing ω_1-strongly countable-dimensional spaces (General and geometric topology today and their problems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Matsumoto, Masahiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2008), 1578: 4-10</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81383</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On special metrics characterizing \(\omega_1 \)-strongly countable-dimensional spaces

Masahiro Matsumoto

1 Introduction

In this note, we characterize the class of \(\omega_1 \)-strongly countable-dimensional metrizable spaces by a special metric. A characterization of locally finite-dimensional metrizable spaces is also obtained.

If every finite open cover of a metrizable space \(X \) has a finite open refinement of order \(\leq n + 1 \), then \(X \) has covering dimension \(\leq n \), \(\dim X \leq n \). For \(\varepsilon > 0 \), we let \(S_\varepsilon(x) \) denote the \(\varepsilon \)-ball \(\{ y \in X \mid \rho(x, y) < \varepsilon \} \) about \(x \).

In [5], [6] and [7], J. Nagata gave a characterization of metrizable spaces of \(\dim \leq n \) by a special metric.

Theorem 1.1 (J. Nagata [5], [6], [7]) The following conditions are equivalent for a metrizable space \(X \):

1. \(\dim X \leq n \).
2. There is an admissible metric \(\rho \) satisfying the following condition: for every \(\varepsilon > 0 \), every point \(x \) of \(X \) and every \(n + 2 \) many points \(y_1, \ldots, y_{n+2} \) of \(X \) with \(\rho(S_{\varepsilon/2}(x), y_i) < \varepsilon \) for each \(i = 1, \ldots, n + 2 \), there are distinct natural numbers \(i \) and \(j \) such that \(\rho(y_i, y_j) < \varepsilon \).
3. There is an admissible metric \(\rho \) satisfying the following condition: for every point \(x \) of \(X \) and every \(n + 2 \) many points \(y_1, \ldots, y_{n+2} \) of \(X \), there are distinct natural numbers \(i \) and \(j \) such that \(\rho(y_i, y_j) \leq \rho(x, y_k) \).

For the case of the separable metrizable spaces, J. de Groot [2] gave the following characterization.

Theorem 1.2 (J. de Groot [2]) A separable metrizable space \(X \) has \(\dim X \leq n \) if and only if \(X \) can introduce an admissible totally bounded metric satisfying the following condition:

For every point \(x \) of \(X \) and every \(n + 2 \) many points \(y_1, \ldots, y_{n+2} \) of \(X \), there are natural numbers \(i, j \) and \(k \) such that \(i \neq j \) and \(\rho(y_i, y_j) \leq \rho(x, y_k) \).

Let \(\mathbb{N} \) denote the set of all natural numbers. A metrizable space \(X \) is the countable sum of finite-dimensional closed sets, we call \(X \) a strongly countable-dimensional.

In [8], J. Nagata extended Theorems 1.1 and 1.2 to strongly countable-dimensional metrizable spaces.
Theorem 1.3 (J. Nagata [8]) The following conditions are equivalent for a metrizable space X:

1. X is strongly countable-dimensional.
2. There is an admissible metric ρ satisfying the following condition: for every point x of X, there is an $n(x) \in \mathbb{N}$ such that for every $n(x) + 2$ many points $y_1, \ldots, y_{n(x)+2}$ of X, there are distinct natural numbers i and j such that $\rho(y_i, y_j) \leq \rho(x, y_j)$.
3. There is an admissible metric ρ satisfying the following condition: for every point x of X, there is an $n(x) \in \mathbb{N}$ such that for every $n(x) + 2$ many points $y_1, \ldots, y_{n(x)+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\rho(y_i, y_j) \leq \rho(x, y_k)$.

In [3], Y. Hattori characterized the class of strongly countable-dimensional spaces by extending the condition (2) of Theorem 1.1.

Theorem 1.4 (Y. Hattori [3]) A metrizable space X is strongly countable-dimensional if and only if X can introduce an admissible metric ρ satisfying the following condition:

For every point x of X, there is an $n(x) \in \mathbb{N}$ such that for every $\epsilon > 0$, and every $n+2$ many points $y_1, \ldots, y_{n(x)+2}$ of X with $\rho(S_{\epsilon/2}(x), y_i) < \epsilon$ for each $i = 1, \ldots, n(x) + 2$, there are distinct natural numbers i and j such that $\rho(y_i, y_j) < \epsilon$.

2 A characterization of ω_1-strongly countable-dimensional spaces

In this section, we characterize the class of ω_1-strongly countable-dimensional metrizable spaces by a special metric. A characterization of locally finite-dimensional metrizable spaces is also obtained. Theorem 2.4 and Theorem 2.5 are main theorems.

Definition 2.1 A metrizable space X is locally finite-dimensional if for every point $x \in X$ there exists an open subspace U of X such that $x \in U$ and $\dim U < \infty$.

The first infinite ordinal number is denoted by ω and ω_1 is the first uncountable ordinal number.

Definition 2.2 A metrizable space X is called an ω_1-strongly countable-dimensional space if $X = \bigcup \{P_\xi \mid 0 \leq \xi < \xi_0\}$, $\xi_0 < \omega_1$, where P_ξ is an open subset of $X - \bigcup \{P_\eta \mid 0 \leq \eta < \xi\}$ and $\dim P_\xi < \infty$.

For a metrizable space X and a non-negative integer n, we put

$$P_n(X) = \bigcup \{U \mid U \text{ is an open subspace of } X \text{ and } \dim U \leq n\}.$$

We notice that for each ordinal number α, we can put $\alpha = \lambda(\alpha) + n(\alpha)$, where $\lambda(\alpha)$ is a limit ordinal number or 0 and $n(\alpha)$ is a non-negative integer.

Definition 2.3 Let X be a metrizable space and α either an ordinal number ≥ 0 or the integer -1. Then *strong small transfinite dimension* sind of X is defined as follows:

1. $\text{sind}X = -1$ if and only if $X = \emptyset$.
2. $\text{sind}X \leq \alpha$ if X is expressed in the form $X = \bigcup \{P_{\xi} \mid \xi < \alpha\}$, where $P_{\xi} = P:\{P_{\eta} \mid \eta < \lambda(\xi)\}$.

Furthermore, if $\text{sind}X$ is defined, we say that X has *strong small transfinite dimension*.

Clearly, a metrizable space X is locally finite-dimensional if and only if $\text{sind}X \leq \omega$ (R. Engelking [1]). And X is ω_1-strongly countable-dimensional if and only if there is a $\xi_0 < \omega_1$ such that $\text{sind}X \leq \xi_0$.

Theorem 2.4 is one of the main theorems. Thus we characterize the class of ω_1-strongly countable-dimensional metrizable spaces by a special metric.

Theorem 2.4 The following conditions are equivalent for a metrizable space X:

(a) X is an ω_1-strongly countable-dimensional space.

(b) There are an admissible metric ρ for X, an ordinal number $\alpha < \omega_1$ and a family $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfying the following conditions: (b-1) $X_0 = X$, $X_{\beta} \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$ and $X_{\beta} = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit. (b-2) For every point x of X there is an open neighborhood $U(x)$ of x in $X_{\beta(x)}$, where $\beta(x) = \max \{\beta \mid x \in X_{\beta}\}$, and an $n(x) \in \mathbb{N}$ such that for every $\epsilon > 0$, every point x' of $U(x)$ and every $n(x) + 2$ many points $y_1, ..., y_{n(x)+2}$ of X with $\rho(S_{\epsilon/2}(x'), y_i) < \epsilon$ for each $i = 1, ..., n(x) + 2$, there are distinct natural numbers i and j such that $\rho(y_i, y_j) < \epsilon$.

(c) There are an admissible metric ρ for X, an ordinal number $\alpha < \omega_1$ and a family $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfying the following conditions: (c-1) $X_0 = X$, $X_{\beta} \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$ and $X_{\beta} = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit. (c-2) For every point x of X there are an open neighborhood $U(x)$ of x in $X_{\beta(x)}$, where $\beta(x) = \max \{\beta \mid x \in X_{\beta}\}$, and an $n(x) \in \mathbb{N}$ such that for every point x' of $U(x)$ and every $n(x) + 2$ many points $y_1, ..., y_{n(x)+2}$ of X, there are distinct natural numbers i and j such that $\rho(y_i, y_j) \leq \rho(x', y_j)$.

(d) There are an admissible metric ρ for X, an ordinal number $\alpha < \omega_1$ and a family $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfying the following conditions: (d-1) $X_0 = X$, $X_{\beta} \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$ and $X_{\beta} = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit. (d-2)
For every point x of X there are an open neighborhood $U(x)$ of x in $X_{\beta(x)}$, where
$\beta(x) = \max\{\beta \mid x \in X_{\beta}\}$, and an $n(x) \in \mathbb{N}$ such that for every point x' of $U(x)$ and
every $n(x) + 2$ many points $y_1, \ldots, y_{n(x)+2}$ of X, there are natural numbers i, j and
k such that $i \neq j$ and $\rho(y_i, y_j) \leq \rho(x', y_k)$.

Also Theorem 2.5 is one of main theorems. We characterize the class of locally
finit-dimensional metrizable spaces by a special metric.

Theorem 2.5 The following conditions are equivalent for a metrizable space X:

(a) X is a locally finite-dimensional space.

(b) There is an admissible metric ρ for X satisfying the following conditions: For every point x of X, there are an $n(x) \in \mathbb{N}$ and an open neighborhood $U(x)$ of x in X such that for every $\epsilon > 0$, every point x' of $U(x)$ and every $n(x) + 2$ many
points $y_1, \ldots, y_{n(x)+2}$ of X with $\rho(S_{\epsilon/2}(x'), y_i) < \epsilon$ for each $i = 1, \ldots, n(x) + 2$, there
are distinct natural numbers i and j such that $\rho(y_i, y_j) < \epsilon$.

(c) There is an admissible metric ρ for X satisfying the following conditions: For every point x of X, there are an $n(x) \in \mathbb{N}$ and an open neighborhood $U(x)$ of x in X such that for every point x' of $U(x)$ and every $n(x) + 2$ many points $y_1, \ldots, y_{n(x)+2}$ of X, there are distinct natural numbers i and j such that $\rho(y_i, y_j) \leq \rho(x', y_j)$.

(d) There is an admissible metric ρ for X satisfying the following conditions: For every point x of X, there are an $n(x) \in \mathbb{N}$ and an open neighborhood $U(x)$ of x in X such that for every point x' of $U(x)$ and every $n(x) + 2$ many points $y_1, \ldots, y_{n(x)+2}$ of X, there are natural numbers i, j and k such that $i \neq j$ and $\rho(y_i, y_j) \leq \rho(x', y_k)$.

To obtain those theorems, we need the following lemmas and theorems. Essentially, the following lemma is the same as [3; Lemma 1.5]. By a minor modification in the proof of [3; Lemma 1.5], we obtain the following lemma.

Lemma 2.6 ([3; Lemma 2.5], [8; Lemma 1]) Let n be a non-negative integer and
let $\{F_m \mid m = 0, 1, \ldots\}$ be a closed cover of a metrizable space X such that $\dim F_m \leq (n - 1) + m, F_m \subset F_{m+1}$ for $m = 0, 1, \ldots$. Then for every open cover \mathcal{U} of X, there
are a sequence $\mathcal{V}_1, \mathcal{V}_2, \ldots$ of discrete families of open sets of X and an open cover
\mathcal{W} of X which satisfy the following conditions:

1. $\bigcup\{\mathcal{V}_k \mid k \in \mathbb{N}\}$ is a cover of X.
2. $\bigcup\{\mathcal{V}_k \mid k \in \mathbb{N}\}$ refines \mathcal{U}.
3. If $W \in \mathcal{W}$ satisfies $W \cap F_m \neq \emptyset$, then W meets at most one member of
\mathcal{V}_k for $k \leq (n + 0) + (n + 1) + \ldots + (n + m)$ and meets no member of \mathcal{V}_k for
k > $(n + 0) + (n + 1) + \ldots + (n + m)$.

Let Q^* denote the set of all rational numbers of the form $2^{-m_1} + \ldots + 2^{-m_t}$, where
m_1, \ldots, m_t are natural numbers satisfying $1 \leq m_1 < \ldots < m_t$.

Essentially, the following lemma is the same as [3; Lemma 1.6]. By a minor modification in the proof of [3; Lemma 1.6], we obtain the following lemma.
Lemma 2.7 ([3; Lemma 2.6], [8; Lemma 3]) Let n be a non-negative integer and let $\{F_m \mid m = 0, 1, \ldots \}$ be a closed cover of a metrizable space X such that $\dim F_m \leq (n-1) + m$, $F_m \subset F_{m+1}$ for $m = 0, 1, \ldots$. Then for every $q \in Q^*$, there is an open cover $S(q)$ which satisfies the following conditions:

1. $S(q) = \bigcup_{i=1}^{\infty} S^i(q)$, where each $S^i(q)$ is discrete in X.
2. $\{St(x, S(q)) \mid q \in Q^* \}$ is a neighborhood base at $x \in X$.
3. Let p, $q \in Q^*$ and $p < q$. Then $S(p)$ refines $S(q)$.
4. Let p, $q \in Q^*$ and $p < q$. If $S_1 \in S^i(p)$ and $S_2 \in S^i(q)$, then $S_1 \cap S_2 = \emptyset$ or $S_1 \subset S_2$.
5. Let p, $q \in Q^*$ and $p + q < 1$. Let $S_1 \in S(p)$, $S_2 \in S(q)$ and $S_1 \cap S_2 \neq \emptyset$. Then there is an $S_3 \subset S(p+q)$ such that $S_1 \cup S_2 \subset S_3$.
6. For every $q \in Q^*$ and every $S \in \bigcup\{S^i(q) \mid i > (n+0)+(n+1)+\ldots+(n+m)\}$, $S \cap F_m = \emptyset$.

By Lemma 2.6 and Lemma 2.7, we obtain the following theorem.

Theorem 2.8 Let α be an ordinal number with $\alpha < \omega_1$ and let n be a non-negative integer. The following conditions are equivalent for a metrizable space X:

(a) $\text{sind } X \leq \omega \alpha + n$.

(b) There are an admissible metric ρ for X and a family $\{X_\beta \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfying the following conditions: (b-1) $X_0 = X$, $X_\beta \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$, $X_\beta = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit, and $X_\alpha = \emptyset$ if $n = 0$. (b-2) For every point x of X there are an open neighborhood $U(x)$ of x in $X_\beta(x)$, where $\beta(x) = \max \{\beta \mid x \in X_\beta\}$, and an $n(x) \in N_{\beta(x)}$ such that for every $\epsilon > 0$, every point x' of $U(x)$ and every $n(x) + 2$ many points $y_1, \ldots, y_{n(x)+2}$ of X with $\rho(S_{\beta(x)}(x'), y_i) < \epsilon$ for each $i = 1, \ldots, n(x) + 2$, there are distinct natural numbers i and j such that $\rho(y_i, y_j) < \epsilon$, where

$$N_{\beta(x)} = \begin{cases} N, & \text{if } \beta(x) < \alpha, \\ \{n-1\}, & \text{if } \beta(x) = \alpha. \end{cases}$$

(c) There are an admissible metric ρ for X and a family $\{X_\beta \mid 0 \leq \beta \leq \alpha\}$ of closed sets of X satisfying the following conditions: (c-1) $X_0 = X$, $X_\beta \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$, $X_\beta = \bigcap \{X_{\beta'} \mid \beta' < \beta\}$ if β is a limit, and $X_\alpha = \emptyset$ if $n = 0$. (c-2) For every point x of X there are an open neighborhood $U(x)$ of x in $X_\beta(x)$, where $\beta(x) = \max \{\beta \mid x \in X_\beta\}$, and an $n(x) \in N_{\beta(x)}$ such that for every point x' of $U(x)$ and every $n(x) + 2$ many points $y_1, \ldots, y_{n(x)+2}$ of X, there are distinct natural numbers i and j such that $\rho(y_i, y_j) \leq \rho(x', y_j)$, where

$$N_{\beta(x)} = \begin{cases} N, & \text{if } \beta(x) < \alpha, \\ \{n-1\}, & \text{if } \beta(x) = \alpha. \end{cases}$$
Remark 2.9 Let \(\{X_\beta \mid 0 \leq \beta \leq \alpha \} \) be a family of closed sets of \(X \) satisfying the condition (b-1). Then we shall show that for every point \(x \) of \(X \), there is a maximum element \(\beta(x) \) of \(\{\beta \mid x \in X_\beta\} \). Indeed, if \(x \in X_{\lambda(\alpha)} \), then \(\beta(x) = \max\{\beta \mid x \in X_\beta, \lambda(\alpha) \leq \beta \leq \alpha\} \). Now, we suppose that \(x \in X_{\lambda(\alpha)} \), there is a minimum element \(\beta_0 > 0 \) of \(\{\beta \mid x \not\in X_\beta\} \). Assume that \(\beta_0 \) is limit. By the condition (b-1), \(x \in \cap\{X_\beta \mid \beta < \beta_0\} = X_{\beta_0} \). This contradicts the definition of \(\beta_0 \). Therefore \(\beta_0 \) is not limit and hence \(\beta(x) = \beta_0 - 1 \).

By Theorems 1.2 and 2.8, we obtain the following theorem.

Theorem 2.10 Let \(\alpha \) be an ordinal number with \(\alpha < \omega_1 \) and let \(n \) be a non-negative integer. The following conditions are equivalent for a compact metrizable space \(X \):

(a) \(\mathrm{ind} \ X \leq \omega\alpha + n \).

(d) There are an admissible totally bounded metric \(\rho \) for \(X \) and a family \(\{X_\beta \mid 0 \leq \beta \leq \alpha\} \) of closed sets of \(X \) satisfying the following conditions: \(\mathrm{(d-1)} \) \(X_0 = X \), \(X_\beta \supset X_\beta' \) for \(\beta \leq \beta' \leq \alpha \), \(X_\beta = \cap\{X_\beta' \mid \beta' < \beta\} \) if \(\beta \) is a limit, and \(X_\alpha = \emptyset \) if \(n = 0 \). \(\mathrm{(d-2)} \) For every point \(x \) of \(X \) there are an open neighborhood \(U(x) \) of \(x \) in \(X_{\beta(x)} \), where \(\beta(x) = \max\{\beta \mid x \in X_\beta\} \), and an \(n(x) \in N_{\beta(x)} \) such that for every point \(x' \) of \(U(x) \) and every \(n(x) + 2 \) many points \(y_1, \ldots, y_{n(x)+2} \) of \(X \), there are natural numbers \(i, j \) and \(k \) such that \(i \neq j \) and \(\rho(y_i, y_j) \leq \rho(x', y_k) \), where

\[
N_{\beta(x)} = \begin{cases}
\mathbb{N}, & \text{if } \beta(x) < \alpha, \\
\{n - 1\}, & \text{if } \beta(x) = \alpha.
\end{cases}
\]

By Theorems 2.8 and 2.10, we obtain the Main Theorem 2.4 and Theorem 2.5.

References

Masahiro Matsumoto
Institute of Mathematics
University of Tsukuba
Ibaraki, 305-8571 Japan
e-mail: masahiro@math.tsukuba.ac.jp