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On special metrics characterizing
wi-strongly countable-dimensional spaces

Masahiro Matsumoto

1 Introduction

In this note, we characterize the class of w;-strongly countable-dimensional metriz-
able spaces by a special metric. A characterization of locally finite-dimensional
metrizable spaces is also obtained.

If every finite open cover of a metrizable space X has a finite open refinement of
order < n + 1, then X has covering dimension < n, dim X < n. For € > 0, we let
Se(z) denote the e-ball {y € X | p(z,y) < €} about z.

In [5], [6] and [7], J. Nagata gave a characterization of metrizable spaces of
dim < n by a special metric.

Theorem 1.1 (J. Nagata [5], [6], [7]) The following conditions are equivarent for
a metrizable space X :

(1) dim X < n.

(2) There is an admissible metric p satisfying the following condition: for every
€ > 0, every point z of X and every n + 2 many points vy, ..., UYns2 of X with
p(Sej2(x),4:) < € for each i = 1,...,n + 2, there are distinct natural numbers i and
J such that p(y;, y;) < €. .

(3) There is an admissible metric p satisfying the following condition: for every
point ¢ of X and every n+2 many points yy, ..., Yynsa of X, there are ditinct natural
numbers © and j such that p(yi, y;) < p(z, y;).

For the case of the separable metrizable spaces, J. de Groot [2] gave the following
characterization.

Theorem 1.2 (J. de Groot [2]) A separable metrizable space X has dimX < n
if and only if X can introduce an admissible totally bounded metric satisfying the
following condition:

For every point x of X and every n + 2 many points y, ..., yn+2 of X, there are
natural numbers i, j and k such that i # j and p(y;, ;) < p(z, yk)- '

Let N denote the set of all natural numbers. A metrizable space X is the
countable sum of finite-dimensional closed sets, we call X a strongly countable-
dimensional.

In [8], J. Nagata extended Theorems 1.1 and 1.2 to strongly countable-dimensional
metrizable spaces.



Theorem 1.3 (J. Nagata [8]) The following conditions are equivarent for a metriz-
able space X :

(1) X is strongly countable-dimensional.

(2) There is an admissible metric p satisfying the following condition: for every
point z of X, there is an n(z) € N such that for every n(z) + 2 many points
Y1, - Yn(z)+2 Of X, there are ditinct natural numbers i and j such that p(y;, y;) <
p(z, y;)-

(3) There is an admissible metric p satisfying the following condition: for every
point x of X, there is an n(z) € N such that for every n(z) + 2 many points
Y1, - Yn(z)+2 Of X, there are natural numbers i, j and k such that i # j and
p(¥i» ¥5) < p(x, yx).

In 3], Y. Hattori characterized the class of strongly countable-dlmensmnal spaces
by extending the condition (2) of Theorem 1.1.

Theorem 1.4 (Y. Hattori [3]) A metrizable space X is strongly countable-dimensional
if and only if X can introduce an admissible metric p satisfying the following con-
dition:

For every point z of X, there is an n(z) € N such that for every € > 0, and
every n + 2 many points yi, ..., Yn)+2 Of X with p(S.;2(x),yi) < € for each i =
1,...,n(z) + 2, there are distinct natural numbers i and j such that p(y;, y;) <e€.

2 A characterization of w;-strongly countable
-dimensional spaces

In this section, we characterize the class of w;-strongly countable-dimensional
metrizable spaces by a special metric. A characterization of locally finite-dimensional
metrizable spaces is also obtained. Theorem 2.4 and Theorem 2.5 are main theorems.

Definition 2.1 A metrizable space X is locally finite-dimensional if for every
point z € X there exists an open subspace U of X such that z € U and dimU < oo.

~ The first infinite ordinal number is denoted by w and w; is the first uncountable
ordinal number.

Definition 2.2 A metrizable spaée X is called an w;-strongly countable-dimensional
space if X = (J{FP: | 0 < € < &}, & < wi, where P is an open subset of
X —U{P, | 0<n< ¢} and dim P < oo.



For a metrizable space X and a non-negative integer n, we put
P, (X)= U{U | U is an open subspace of X and dimU < n}.

We notice that for each ordinal number o, we can put o = A(a) + n(a), where A\(a)
is a limit ordinal number or 0 and n(e) is a non-negative integer.

Definition 2.3 Let X be a metrizable space and « either an ordinal number >0
or the integer —1. Then strong small transfinite dimension sind of X is defined
as follows: |

(1) sind X = —1 if and only if X = 0.

(2) sind X < a if X is expressed in the form X = J{P; | £ < a}, where
Fe = Fye(X —U{P, | n < XOD.

Furthermore, if sind X is defined, we say that X has strong small transfinite
dimension. :

Clearly, a metrizable space X is locally finite-dimensional if and only if sind X <
w (R. Engelking [1]). And X is w;-strongly countable-dimensional if and only if
there is a & < w; such that sind X < &,. {

Theorem 2.4 is one of main theorems. Thus we characterize the class of w;-
strongly countable-dimensional metrizable spaces by a special metric.

Theorem 2.4 The following conditions are equivalent for a metrizable space X :

(a) X is an wy-strongly countable-dimensional space. '

(b) There are an admissible metric p for X, an ordinal number o < w, and a
family {X | 0 < B < a} of closed sets of X satisfing the following conditions: (b-1)
Xo=X, Xp D) Xpl for < B <aand Xp = n{Xﬁl I B < ,3} if B is a limit. (b-2)
For every point z of X there are an open neighborhood U(z) of z in Xp(z), where
B(z) = max{f | z € X}, and an n(z) € N such that for every e > 0, every point z'
of U(z) and every n(z) + 2 many points yi, ..., Yn(x)+2 of X with p(Sej2(z’),¥:) < €
for each i = 1,...,n(z) + 2, there are distinct natural numbers i and j such that
Py, y;) <e.

(c) There are an admissible metric p for X, an ordinal number a < w, and a
family {Xg | 0 < B < a} of closed sets of X satisfing the following conditions: (c-1)
Xo=X,XgDXg for B< P <aand Xg=\{Xpg | 8 < B} if B is a limit. (c-2)
For every point z of X there are an open neighborhood U(z) of z in Xg(,), where
B(z) = max{f | z € Xg}, and an n(z) € N such that for every point =’ of U(z) and
every n(z) + 2 many points yi, ..., Yn(z)+2 of X, there are distinct natural numbers i
and j such that p(y;, y;) < p(z', y;)-

(d) There are an admissible metric p for X, an ordinal number o < w; and a
family {Xg | 0 < B < a} of closed sets of X satisfing the following conditions: (d-1)
Xo=X, Xz D Xpl for 3 <G <a and Xg= n{Xﬁr | B < ,3} if B is a limit. (d~2)



For every point z of X there are an open neighborhood U(z) of z in Xpa(s), where
B(z) = max{B | z € X3}, and an n(z) € N such that for every point =’ of U(zx) and
every n(z) + 2 many points Y1, ..., Yn(z)+2 of X, there are natural numbers i, j and
k such that i # j and p(yi, y;) < p(2', yr)- ‘

Also Theorem 2.5 is one of main theorems. We characterize the class of locally
finite-dimensional metrizable spaces by a special metric.

Theorem 2.5 The following conditions are equivalent for a metrizable space X :

(a) X is a locally finite-dimensional space.

(b) There is an admissible metric p for X satisfing the following conditions: For
every point  of X, there are an n(z) € N and an open neighborhood U(z) of =
in X such that for every € > 0, every point =’ of U(z) and every n(z) + 2 many
POINLS Y1, ..o, Yn(z)+2 Of X with p(Ses2(2'), i) < € for each i = 1,...,n(x) + 2, there
are distinct natural numbers i and j such that p(y;, y;) < €.

(c) There is an admissible metric p for X satisfing the following conditions: For
every point = of X, there are an n(z) € N and an open neighborhood U(zx) of = in
X such that for every point ' of U(z) and every n(z) + 2 many points y1, ..., Ynz)+2
of X, there are distinct natural numbers i and j such that p(yi, y;) < p(z’, ;).

(d) There is an admissible metric p for X satisfing the following conditions: For
every point x of X, there are an n(z) € N and an open neighborhood U(z) of z in X
such that for every point =’ of U(z) and every n(z) +2 many points yi, ..., Ynz)+2 of
X, there are natural numbers i, j and k such that i # j and p(y;, y;) < p(2', Y).

To obtain those theorems, we need the following lemmas and theorems. Essen-
tially, the following lemma is the same as [3; Lemma 1.5]. By a minor modification
in the proof of [3; Lemma 1.5], we obtain the following lemma.

Lemma 2.6 ([3; Lemma 2.5], [8; Lemma 1]) Let n be a non-negative integer and
let {Fn | m =0, 1,..} be a closed cover of a metrizable space X such that dim Fp, <
(n—1)+m, F,, C Fipy1 form =0, 1,.... Then for every open cover U of X, there
are a sequence Vi, Vs, ... of discrete families of open sets of X and an open cover
W of X which satisfy the following conditions:

(1) U{Vx | k € N} is a cover of X.

(2) U{Vx | k£ € N} refines U. 4

(3) If W € W satisfies W N F,, # 0, then W meets at most one member of
Vi for k < (n40)+ (n+1) + ... + (n + m) and meets no member of Vi for
k>(n+0+(n+1)+..+(n+m).

Let Q* denote the set of all rational numbers of the form 27™ +... +27™, where
my,...,m; are natural numbers satisfying 1 <m; < ... < my.

Essentially, the following lemma is the same as [3; Lemma 1.6]. By a minor
modification in the proof of [3; Lemma 1.6], we obtain the following lemma.



Lemma 2.7 ([3; Lemma 2.6], [8; Lemma 3]) Let n be a non-negative integer and
let {Fr, | m =0, 1,...} be a closed cover of a metrizable space X such that dim F,, <
(n—1)+m, Fy, C Fpqy form =0, 1,.... Then for every q € Q*, there is an open
cover S(q) which satisfies the following conditions:

(1) S(q) = U2, S*(q), where each S(q) is discrete in X.

(2) {St(z,S8(q)) | g € Q*} is a neighborhood base at z € X .

(3) Letp, q € Q* and p < q. Then S(p) refines S(q).

(4) Letp, g€ Q* andp < q. If S € S*(p) and Sz € S¥(q), then S, NSy =0 or
S1 C Ss.

(5) Letp, g€ Q* andp+q < 1. Let S, € S(p), S2 € S(g) and SN S, # 0.
Then there is an S3 € S(p + q) such that S U S, C Ss.

(6) For every g € Q* and every S € |U{S*(g) | ¢ > (n+0)+(n+1)+...+(n+m)},
SNFy,=0.

By Lemma 2.6 and Lemma 2.7, we obtain the following theorem.

Theorem 2.8 Let a be an ordinal number with a < wy; and let n be a non-negative
integer. The following conditions are equivarent for a metrizable space X :

(a) sind X < wa +n.

(b) There are an admissible metric p for X and a family {X5 | 0 < B < o}
of closed sets of X satisfing the following conditions: (b-1) Xo =X, Xg D Xp
for B< B <a, Xg=(\{Xp | B < B} if B is alimit, and Xq = 0 if n = 0.
(b-2) For every point z of X there are an open neighborhood U(z) of x in Xp(),
where B(z) = max{B | £ € X5}, and an n(z) € Ny such that for every € > 0,
every point ' of U(z) and every n(z) + 2 many points yi, ..., Ynz)+2 of X with
p(Ses2(2'), i) < € for each i = 1,...,n(x) + 2, there are distinct natural numbers i
and j such that p(yi, y;) < €, where '

[N, iff(z) <,
No@ = { (n—1}, ifB(z)=a

(c) There are an admissible metric p for X and a family {Xp | 0 < § < a} of
closed sets of X satisfing the following conditions: (c-1) Xo = X, Xg D Xpa for
BLB <a Xsg=Xpg | B < B} if B is alimit, and Xo = 0 ifn = 0. (c-2)
For every point z of X there are an open neighborhood U(z) of  in Xpa(z), where
B(z) = max{B | * € X}, and an n(z) € Np) such that for every point z' of
U(z) and every n(z) + 2 many points yi, ..., Yn(z)+2 of X, there are distinct natural
numbers i and j such that p(y;, y;) < p(z’, y;), where

[N, ifp(z)<aq,
No@ = { {n-1}, ifBx)=a.



Remark 2.9 Let {X; | 0 < 8 < a} be a family of closed sets of X satisfing
the condition (b-1). Then we shall show that for every point z of X, there is
a maximum element 5(z) of {8 | = € Xs}. Indeed, if z € Xy, then B(z) =
max{f | ¢ € X3, Aa) < B < a}. Now, we suppose that z € X)x(a), there is
& minimum element Gy > 0 of {8 | z ¢ Xs}. Assume that B is limit. By the
condition (b-1), z € ({Xp | B < Bo} = Xg,- This contradicts the definition of .
Therefore [ is not limit and hence 3(z) = G — 1.

By Theorems 1.2 and 2.8, we obtain the following theorem.

Theorem 2.10 Let a be an ordinal number with a < w; and let n be a non-negative
integer. The following conditions are equivarent for a compact metrizable space X :

(a) sind X < wa + n.

(d) There are an admissible totally bounded metric p for X and a family {X 5]0<
B < o} of closed sets of X satisfing the following conditions: (d-1) Xo = X,
Xg D Xg for < B <o, Xg={Xs | B < B} if B is a imit, and X, = 0
if n = 0. (d-2) For every point z of X there are an open neighborhood U(z) of =
in Xp(z), where B(z) = max{B | = € Xz}, and an n(z) € Np(,) such that for every
point ' of U(z) and every n(z)+2 many points yy, ..., Yn(z)+2 Of X, there are natural
numbers i, j and k such that i # j and p(yi, y;) < p(2, yk), where

_J N, ifp(z) <o,
Nt = { {n-1}, B =c.

By Theorems 2.8 and 2.10, we obtain the Main Theorem 2.4 and Theorem 2.5.
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