CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS

OH SANG KWON AND BYUNG GU PARK

ABSTRACT. The object of the present paper is to drive some properties of certain class $K_{n,p}(A,B)$ of multivalent analytic functions in the open unit disk E.

1. Introduction

Let A_p be the class of functions of the form

$$f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} z^{p+k}$$

which are analytic in the open unit disk $E = \{ z \in \mathbb{C} : |z| < 1 \}$. A function $f \in A_p$ is said to be p-valently starlike functions of order α of it satisfies the condition

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha \quad (0 \leq \alpha < p, z \in E).$$

We denote by $S^*_p(\alpha)$.

On the other hand, a function $f \in A_p$ is said to be p-valently close-to-convex functions of order α if it satisfies the condition

$$\text{Re} \left\{ \frac{zf'(z)}{g(z)} \right\} > \alpha \quad (0 \leq \alpha < p, z \in E),$$

for some starlike function $g(z)$. We denote by $C_p(\alpha)$.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. p-valently starlike functions of order α, p-valently close-to-convex functions of order α, subordination, hypergeometric series.
For \(f \in A_p \) given by (1.1), the generalized Bernardi integral operator \(F_c \) is defined by
\[
F_c(z) = \frac{c+p}{z^c} \int_0^z f(t)t^{c-1}dt = z^p + \sum_{k=1}^{\infty} \frac{c+p}{c+p+k} a_{p+k}z^{p+k} \quad (c+p > 0, z \in E).
\]

For an analytic function \(g \), defined in \(E \) by
\[
g(z) = z^p + \sum_{k=1}^{\infty} b_{p+k}z^{p+k}
\]
and Flett [3] defined the multiplier transform \(I^n \) for a real number \(\eta \) by
\[
I^n g(z) = \sum_{k=0}^{\infty} (p+k+1)^{-\eta} b_{p+k}z^{p+k} \quad (z \in E).
\]
Clearly, the function \(I^n g \) is analytic in \(E \) and
\[
I^n(J^\mu g(z)) = I^{n+\mu}g(z)
\]
for all real number \(\eta \) and \(\mu \).

For any integer \(n \), J. Patel and P. Sahoo [5] also defined the operator \(D^n \), for an analytic function \(f \) given by (1.1), by
\[
D^n f(z) = z^p + \sum_{k=1}^{\infty} \left(\frac{p+k+1}{1+p} \right)^{-n} a_{p+k}z^{p+k} = f(z) \ast z^{p-1} \left[z + \sum_{k=1}^{\infty} \left(\frac{k+1+p}{1+p} \right)^{-n} z^{k+1} \right] \quad (z \in E)
\]
where \(\ast \) stands for the Hadamard product or convolution.

It follows from (1.3) that
\[
z(D^n f(z))' = (p+1)D^{n-1}f(z) - D^n f(z). \tag{1.4}
\]

We also have
\[
D^0 f(z) = f(z) \quad \text{and} \quad D^{-1} f(z) = \frac{zf'(z) + f(z)}{p+1}.
\]
CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS

If \(f \) and \(g \) are analytic functions in \(E \), then we say that \(f \) is subordinate to \(g \) written \(f \prec g \) or \(f(z) \prec g(z) \), if there is a function \(w \) analytic in \(E \), with \(w(0) = 0 \), \(|w(z)| < 1 \) for \(z \in E \), such that \(f(z) = g(w(z)) \), for \(z \in E \). If \(g \) is univalent then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(E) \subset g(E) \).

Making use of the operator notation \(D^n \), we introduce a subclass of \(A_p \) as follows:

Definition 1.1. For any integer \(n \) and \(-1 \leq B < A \leq 1\), a function \(f \in A_p \) is said to be in the class \(K_{n,p}(A, B) \) if

\[
\frac{z(D^n f(z))'}{z^p} \prec \frac{p(1 + Az)}{1 + Bz}
\]

(1.5)

where \(\prec \) denotes subordination.

For convenience, we write

\[
K_{n,p} \left(1 - \frac{2\alpha}{p}, -1 \right) = K_{n,p}(\alpha),
\]

where \(K_{n,p}(\alpha) \) denote the class of function \(f \in A_p \) satisfying the inequality

\[
\text{Re} \left\{ \frac{z(D^n f(z))'}{z^p} \right\} > \alpha \quad (0 \leq \alpha < p, \ z \in E).
\]

We also note that \(K_{0,p}(\alpha) \equiv C_p(\alpha) \) is the class of \(p \)-valently close-to-convex functions of order \(\alpha \).

In this present paper, we derive some properties of certain class \(K_{n,p}(A, B) \) by using the differential subordination.

2. Preliminaries and Main Results

In our present investigation of the general class \(K_{n,p}(A, B) \), we shall require the following lemmas.
Lemma 1 [4]. If the function \(p(z) = 1 + c_1 z + c_2 z^2 + \cdots \) is analytic in \(E \), \(h(z) \) is convex in \(E \) with \(h(0) = 1 \), and \(\gamma \) is complex number such that \(\text{Re} \ \gamma > 0 \). Then the Briot-Bouquet differential subordination

\[
p(z) + \frac{zp'(z)}{\gamma} \prec h(z)
\]

implies

\[
p(z) < q(z) = \frac{\gamma}{z^\gamma} \int_0^z t^{\gamma-1} h(t) dt \prec h(z) \quad (z \in E)
\]

and \(q(z) \) is the best dominant.

For complex number \(a, b \) and \(c \neq 0, -1, -2, \cdots \), the hypergeometric series

\[
2F_1(a, b; c; z) = 1 + \frac{ab}{c} z + \frac{a(a+1)b(b+1)}{2!c(c+1)} z^2 + \cdots
\] (2.1)

represents an analytic function in \(E \). It is well known by [1] that

Lemma 2. Let \(a, b \) and \(c \) be real \(c \neq 0, -1, -2, \cdots \) and \(c > b > 0 \). Then

\[
\int_0^1 t^{b-1}(1-t)^{c-b-1}(1-tz)^{-a} dt = \frac{\Gamma(b)\Gamma(c-b)}{\Gamma(c)} 2F_1(a, b; c; z),
\] (2.2)

\[
2F_1(a, b; c; z) = (1-z)^{-a} 2F_1 \left(a, c-b; c; \frac{z}{z-1} \right)
\]

and

\[
2F_1(a, b; c; z) = 2F_1(b, a; c; z).
\] (2.3)

Lemma 3 [6]. Let \(\phi(z) \) be convex and \(g(z) \) is starlike in \(E \). Then for \(F \) analytic in \(E \) with \(F(0) = 1 \), \(\frac{\phi*Fg}{\phi*g}(E) \) is contained in the convex hull of \(F(E) \).

Lemma 4 [2]. Let \(\phi(z) = 1 + \sum_{k=1}^\infty c_k z^k \) and \(\phi(z) \prec \frac{1 + Az}{1 + Bz} \). Then

\[
|c_k| \leq (A - B).
\]
CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS

Theorem 1. Let n be any integer and $-1 \leq B < A \leq 1$. If $f \in K_{n,p}(A, B)$, then

$$\frac{z(D^{n+1}f(z))'}{z^p} \prec q(z) \prec \frac{p(1+Az)}{1+Bz} \quad (z \in E), \quad (2.4)$$

where

$$q(z) = \begin{cases} 2F_1(1,p+1;p+2;-Bz) + \frac{p+1}{p+2}Az \frac{2F_1(1,p+2;p+3;-Bz)}{A}, & B \neq 0 \\ 1 + \frac{p+1}{p+2}Az, & B = 0 \end{cases} \quad (2.5)$$

and $q(z)$ is the best dominant of (2.4). Furthermore, $f \in K_{n+1,p}(\rho(p,A,B))$, where

$$\rho(p,A,B) = \begin{cases} p_2F_1(1,p+1;p+2;B) - \frac{p(p+1)}{p+2}A_2F_1(1,p+2;p+3;B), & B \neq 0 \\ 1 - \frac{p+1}{p+2}A, & B = 0. \end{cases} \quad (2.6)$$

Proof. Let

$$p(z) = \frac{z(D^{n+1}f(z))'}{pz^p} \quad (2.7)$$

where $p(z)$ is an analytic function with $p(0) = 1$.

Using the identity (1.4) in (2.7) and differentiating the resulting equation, we get

$$\frac{z(D^n f(z))'}{pz^p} = p(z) + \frac{zp'(z)}{p+1} \prec \frac{1+Az}{1+Bz} (\equiv h(z)). \quad (2.8)$$

Thus, by using Lemma 1 (for $\gamma = p+1$), we deduce that

$$p(z) \prec (p+1)z^{-(p+1)} \int_0^z \frac{t^p(1+At)}{1+Bt}dt (\equiv q(z))$$

$$= (p+1) \int_0^1 \frac{s^p(1+Asz)}{1+Bsz}ds = (p+1)Az \int_0^1 \frac{s^{p+1}}{1+Bsz}ds. \quad (2.9)$$
By using (2.2) in (2.9), we obtain

\[
p(z) \prec q(z) = \begin{cases}
2F_1(1,p+1;p+2;-Bz) \\
\frac{p+1}{p+2}Az_2F_1(1,p+2;p+3;-Bz), & B \neq 0 \\
1 + \frac{p+1}{p+2}Az, & B = 0.
\end{cases}
\]

Thus, this proves (2.5).

Now, we show that

\[
\text{Re} \; q(z) \geq q(-r) \quad (|z| = r < 1).
\] \hspace{1cm} (2.10)

Since \(-1 \leq B < A \leq 1\), the function \((1 + Az)/(1 + Bz)\) is convex (univalent) in \(E\) and

\[
\text{Re} \left(\frac{1 + Az}{1 + Bz} \right) \geq \frac{1 - Ar}{1 - Br} > 0 \quad (|z| = r < 1).
\]

Setting

\[
g(s,z) = \frac{1 + Asz}{1 + Bsiz} \quad (0 \leq s \leq 1, \; z \in E)
\]

and \(d\mu(s) = (p+1)s^p ds\), which is a positive measure on \([0, 1]\), we obtain from (2.9) that

\[
q(z) = \int_0^1 g(s, z)d\mu(s) \quad (z \in E).
\]

Therefore, we have

\[
\text{Re} \; q(z) = \int_0^1 \text{Re} \; g(s, z)d\mu(s) \geq \int_0^1 \frac{1 - Asr}{1 - Brs}d\mu(s)
\]

which proves the inequality (2.10).

Now, using (2.10) in (2.9) and letting \(r \to 1^-\), we obtain

\[
\text{Re} \left\{ \frac{z(D^{n+1}f(z))'}{z^p} \right\} > \rho(p, A, B),
\]
CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS

where

\[
\rho(p, A, B) = \begin{cases}
p_2F_1(1,p+1;p+2;B) \\
p(p+1) - \frac{p(p+1)}{p+2} A_2F_1(1,p+2;p+3;B), & B \neq 0 \\
p - \frac{p(p+1)}{p+2} A, & B = 0.
\end{cases}
\]

This proves the assertion of Theorem 1. The result is best possible because of the best dominant property of \(q(z)\).

Putting \(A = 1 - \frac{2\alpha}{p}\) and \(B = -1\) in Theorem 1, we have the following:

Corollary 1. For any integer \(n\) and \(0 \leq \alpha < p\), we have

\[K_{n,p}(\alpha) \subset K_{n+1,p}(\rho(p, \alpha)),\]

where

\[
\rho(p, \alpha) = p_2F_1(1,p+1;p+2;-1) - \frac{p(p+1)}{p+2}(1-2\alpha)_2F_1(1,p+2;p+3;-1).
\]

The result is best possible.

Taking \(p = 1\) in Corollary 1, we have the following:

Corollary 2. For any integer \(n\) and \(0 \leq \alpha < 1\), we have

\[K_n(\delta) \subset K_{n+1}(\delta(\alpha))\]

where

\[
\delta(\alpha) = 1 + 4(1-2\alpha) \sum_{k=1}^{\infty} \frac{1}{k+2}(-1)^k.
\]

Theorem 2. For any integer \(n\) and \(0 \leq \alpha < p\), if \(f(z) \in K_{n+1,p}(\alpha)\) then \(f \in K_{n,p}(\alpha)\) for \(|z| < R(p)\), where \(R(p) = \frac{-1 + \sqrt{1 + (p + 1)^2}}{p + 1}\).

The result is best possible.

Proof. Since \(f(z) \in K_{n+1,p}(\alpha)\), we have

\[
\frac{z(D^{n+1}f(z))'}{z^p} = \alpha + (p - \alpha)w(z), \quad (0 \leq \alpha < p),
\]

(2.13)
where \(w(z) = 1 + w_1 z + w_2 z + \cdots \) is analytic and has a positive real part in \(E \). Making use of the logarithmic differentiation and using identity (1.4) in (2.13), we get
\[
\frac{z(D^n f(z))'}{z^p} - \alpha = (p - \alpha) \left[w(z) + \frac{zw'(z)}{p+1} \right].
\]
(2.14)

Now, using the well-known by [5],
\[
\frac{|zw'(z)|}{\text{Re } w(z)} \leq \frac{2r}{1-r^2} \quad \text{and} \quad \text{Re } w(z) \geq \frac{1-r}{1+r} \quad (|z| = r < 1),
\]
in (2.14). We get
\[
\text{Re} \left\{ \frac{z(D^n f(z))'}{z^p} - \alpha \right\} = (p - \alpha) \text{Re } w(z) \left\{ 1 + \frac{1}{p+1} \frac{\text{Re } zw'(z)}{\text{Re } w(z)} \right\}
\geq (p - \alpha) \text{Re } w(z) \left\{ 1 - \frac{1}{p+1} \frac{|zw'(z)|}{\text{Re } w(z)} \right\}
\geq (p - \alpha) \frac{1-r}{1+r} \left\{ 1 - \frac{1}{p+1} \frac{2r}{1-r^2} \right\}.
\]

It is easily seen that the right-hand side of the above expression is positive if \(|z| < R(p) = \frac{-1 + \sqrt{1+(p+1)^2}}{p+1}\). Hence \(f \in K_{n,p}(\alpha) \) for \(|z| < R(p)\).

To show that the bound \(R(p) \) is best possible, we consider the function \(f \in A_p \) defined by
\[
\frac{z(D^{n+1} f(z))'}{z^p} = \alpha + (p - \alpha) \frac{1-z}{1+z} \quad (z \in E).
\]
Noting that
\[
\frac{z(D^n f(z))'}{z^p} - \alpha = (p - \alpha) \cdot \frac{1-z}{1+z} \left\{ 1 + \frac{1}{p+1} \frac{z}{(p+1)(1-z^2)} \right\}
= (p - \alpha) \cdot \frac{1-z}{1+z} \left\{ \frac{(p+1) + (p+1)z^2 - 2z}{(p+1) - (p+1)z^2} \right\}
= 0
\]
for \(z = \frac{-1 + \sqrt{1+(p+1)^2}}{p+1} \), we complete the proof of Theorem 2.

Putting \(n = -1, \ p = 1 \) and \(0 \leq \alpha < 1 \) in Theorem 2, we have the following:
CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS

Corollary 3. If $\text{Re } f'(z) > \alpha$, then $\text{Re } \{zf''(z) + 2f'(z)\} > \alpha$ for $|z| < \frac{-1 + \sqrt{5}}{2}$.

Theorem 3. (a) If $f \in K_{n,p}(A,B)$, then the function F_c defined by (1.2) belongs to $K_{n,p}(A,B)$.

(b) $f \in K_{n,p}(A,B)$ implies that $F_c \in K_{n,p}(\eta(p, c, A, B))$ where

$$
\eta(p, c, A, B) = \left\{ \begin{array}{ll}
 p_2F_1(1, p + c; p + c + 1; B) &
 \quad B \neq 0 \\
 -\frac{p(p + c)}{p + c + 1} A_2F_1(1, p + c + 1; p + c + 2; B), &
 \quad B \neq 0 \\
 p - \frac{p(p + c)}{p + c + 1} A, &
 \quad B = 0.
\end{array} \right.
$$

Proof. Let

$$
\phi(z) = \frac{z(D^n F_c(z))'}{pz^p}, \quad (2.15)
$$

where $\phi(z)$ is analytic function with $\phi(0) = 1$. Using the identity

$$
z(D^n F_c(z))' = (p + c) D^n f(z) - cD^n F_c(z) \quad (2.16)
$$
in (2.15) and differentiating the resulting equation, we get

$$
\frac{z(D^n f(z))'}{pz^p} = \phi(z) + \frac{z\phi'(z)}{p + c}.
$$

Since $f \in K_{n,p}(A,B)$,

$$
\phi(z) + \frac{z\phi'(z)}{p + c} < \frac{1 + Az}{1 + Bz}.
$$

By Lemma 1, we obtain $F_c(z) \in K_{n,p}(A,B)$. We deduce that

$$
\phi(z) < q(z) < \frac{1 + Az}{1 + Bz} \quad (2.17)
$$

where $q(z)$ is given (2.5) and $q(z)$ is best deminent of (2.17).

This proves the (a) part of theorem. Proceeding as in Theorem 3, the (b) part follows.

Putting $A = 1 - \frac{2\alpha}{p}$ and $B = -1$ in Theorem 2, we have the following:
Corollary 4. If \(f \in K_{n,p}(A,B) \) for \(0 \leq \alpha < p \), then \(F_c \in K_{n,p} \mathcal{H}(p,c,\alpha) \) where

\[
\mathcal{H}(p,c,\alpha) = p \cdot 2F_1(1,p+c;p+c+1;-1) - \frac{p+c}{p+c+1}(p-2\alpha)2F_1(1,p+c;p+c+1;-1).
\]

Setting \(c = p = 1 \) in Theorem 3, we get the following result.

Corollary 4. If \(f \in K_{n,p}(\alpha) \) for \(0 \leq \alpha < 1 \), then the function

\[
G(z) = \frac{2}{z} \int_0^z f(t)dt
\]

belongs to the class \(K_n(\delta(\alpha)) \), where \(\delta(\alpha) \) is given by (2.12).

Theorem 4. For any integer \(n \) and \(0 \leq \alpha < p \) and \(c > -p \), if \(F_c \in K_{n,p}(\alpha) \) then the function \(f \) defined by (1.1) belongs to \(K_{n,p}(\alpha) \) for \(|z| < R(p,c) = \frac{-1 + \sqrt{1 + (p+c)^2}}{p+c}\). The result is best possible.

Proof. Since \(F_c \in K_{n,p}(\alpha) \), we write

\[
\frac{z(D^nF_c)'}{z^p} = \alpha + (p-\alpha)w(z), \tag{2.18}
\]

where \(w(z) \) is analytic, \(w(0) = 1 \) and \(\text{Re } w(z) > 0 \) in \(E \). Using (2.16) in (2.18) and differentiating the resulting equation, we obtain

\[
\text{Re } \left\{ \frac{z(D^n f(z))'}{z^p} - \alpha \right\} = (p-\alpha)\text{Re } \left\{ w(z) + \frac{zw'(z)}{p+c} \right\}. \tag{2.19}
\]

Now, by following the line of proof of Theorem 2, we get the assertion of Theorem 4.
CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS

Theorem 5. Let \(f \in K_{n,p}(A,B) \) and \(\phi(z) \in A_p \) convex in \(E \). Then

\[
(f \ast \phi(z))(z) \in K_{n,p}(A,B).
\]

Proof. Since \(f(z) \in K_{n,p}(A,B) \),

\[
\frac{z(D^n f(z))'}{pz^p} \prec \frac{1+Az}{1+Bz}.
\]

Now

\[
\frac{z(D^n(f \ast \phi)(z))'}{pz^p \ast \phi(z)} = \frac{\phi(z) \ast z(D^n f)'}{\phi(z) \ast pz^p} = \frac{\phi(z) \ast \frac{z(D^n f(z))'}{pz^p}pz^p}{\phi(z) \ast pz^p}.
\]

Then applying Lemma 3, we deduce that

\[
\frac{\phi(z) \ast \frac{z(D^n f(z))'}{pz^p}pz^p}{\phi(z) \ast pz^p} \prec \frac{1+Az}{1+Bz}.
\]

Hence \((f \ast \phi(z))(z) \in K_{n,p}(A,B)\).

Theorem 6. Let a function \(f(z) \) defined by (1.1) be in the class \(K_{n,p}(A,B) \). Then

\[
|a_{p+k}| \leq \frac{p(A-B)(p+k+1)^n}{(1+p)^n(p+k)} \quad \text{for} \quad k = 1, 2, \ldots.
\]

The result is sharp.

Proof. Since \(f(z) \in K_{n,p}(A,B) \), we have

\[
\frac{z(D^n f(z))'}{pz^p} \equiv \phi(z) \quad \text{and} \quad \phi(z) \prec \frac{1+Az}{1+Bz}.
\]

Hence

\[
z(D^n f(z))' = pz^p \phi(z) \quad \text{and} \quad \phi(z) = 1 + \sum_{k=1}^{\infty} c_k z^k.
\]
From (2.22), we have

$$z(D^n f(z))' = z \left(z^p + \sum_{k=1}^{\infty} \left(\frac{1+p}{p+k+1} \right)^n a_{p+k} z^{p+k} \right)'$$

$$= pz^p + \sum_{k=1}^{\infty} \left(\frac{1+p}{p+k+1} \right)^n (p+k)a_{p+k} z^{p+k}$$

$$= pz^p \left(1 + \sum_{k=1}^{\infty} c_k z^k \right).$$

Therefore

$$\left(\frac{1+p}{p+k+1} \right)^n (p+k)a_{p+k} = pc_k. \quad (2.23)$$

By using Lemma 4 in (2.23),

$$\left(\frac{1+p}{p+k+1} \right)^n (p+k)|a_{p+k}| \leq \frac{p(A-B)(p+k+1)^n}{p} = |c_k| \leq A - B.$$

Hence

$$|a_{p+k}| \leq \frac{p(A-B)(p+k+1)^n}{(1+p)^n(p+k)}. \quad (2.23)$$

The equality sign in (2.21) holds for the function f given by

$$(D^n f(z))' = \frac{pz^{p-1} + p(A-B-1)z^p}{1-z}. \quad (2.24)$$

Hence

$$\frac{z(D^n f(z))'}{pz^p} = \frac{1 + (A-B-1)z}{1-z} < \frac{1+A}{1+B}z \quad \text{for } k=1,2,\ldots.$$
CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS

REFERENCES

Oh Sang Kwon
Department of Mathematics, Kyungsung University
Busan 608-736, Korea
oskwon@ks.ac.kr