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Coefficient conditions
for certain univalent functions

Toshio Hayami and  Shigeyoshi Owa

Abstract

For functions f(z) which belong to T(a), U(c), and CCx(a; g(z)) in the open unit disk
U, some interesting sufficient conditions for coefficient inequalities of f(z) are discussed.

1 Introduction

Let A denote the class of functions f(z) of the form

(1.1) f(z)=z+ i ap2"

n=2

which are analytic in the open unit disk U= {z € C: |z] < 1}.

Furthermore, let P be the class of functions p(z) of the form

(1:2) p(2) =1+ pnz"
| which are analytic in U.
If f(z) € A satisfies
2f'(2)
(1.3) Re ( ) ) >0 (2 €U),

then f(2) is said to be starlike in U.
We denote by S* all functions f(z) which are starlike in U. Also, K is said to be the class of
convex functions f(z) if f(z) € A satisfy

(1.4) Re (1 + zf:;iz))) >0  (z€U).
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We begin with the definitions for the subclasses T(a) , U(a) and CCx(a; g(2)) of A.
Definition 1.1 A function f(z) € A belongs to T(a) if and only if it satisfies

(1.5) R;ezgl > a (2€U)

for somea (0L a<1).

Definition 1.2 A function f(z) € A is in the class U(a) if and only if it satisfies
(1.6) Ref(z) >a  (z€U)

for somea (0L a<1l).

Definition 1.3 (see, for details, [2]) If f(z) € A satisfies

!
1.7 Ree"‘(f-]:-—(fl—a)>0 z€U
(17) s (z€U)
for some a (0 £ a <1), A (=% <A < §) and starlike function g(z) = 2 + 2 bnz", then f(2)
¢s said to be close-to-convezr of order a with respect to a fized starlike functwn g(2), and let
CCx(c; g(2)) denote the class of functions f(z) satisfying this condition.

Remark Replacing g(z) by f(z) in (1.7), we say that f(2) is said to be A-spiral of order  in
U, and write SP(A, a) defined by

SP()a) = { f(z) €A : Reed (‘;;(’;) ) > o}.

We need the following lemmas to prove our results.
Lemma 1.1 (see, [1], [3]) A function p(z) € P satisfies Re p(z) > 0 (2 € U) if and only if

(z€e )
for all |z| = 1.

Lemma 1.2 A function f(z) € A is in T(a) if and only if

(1.8) 14+ An™ 1 #0
n=2
tbhene +1
An=2tl0, (n22)



19

[ _
Proof.  Putting p(z) = I — aa for f(2) € T(a), we obtain that p(z) € P, and Re p(z) > 0.
Using Lemma 1.1, we have that
@ _,
_z T- =
T ¢x+l (for all |z| =1, z € U).

Then, we need not consider Lemma 1.1 for z = 0, because it follows that

z—-1
This implies that
(1.9) (z+1)f(2)+(1-2a~z)z#0.
It follows that (1.9) is equivalent to
(z+1) (z+§:anz”) +(1-2a-2z)z#0

n=2

or

= z+ 1 n—1
(1.10) 2(1 — a)z {1 + ; =™ } #0.
Dividing the both sides of (1.10) by 2(1 — a)z (z # 0), we know that
o T+ 1 n-1
1+Z:2(1 ~ )a,,z #0.
n=2

This completes the proof of lemma.

O

2 Coefficient conditions for functions in the classes 7 (o)

and CCx(a; g(2))

Our result for f(z) to be in 7(a) is contained in
Theorem 2.1 If f(z) € A satisfies the following condition

g::l{zkj(—l)*-’( .y )} (n2¢)

i=1

x

>

n=2

Jor some a (0 S a < 1), B €R and v € R, then f(z) € T(a).

Sl-a



Proof. Note that
(1-2)f £0, (1+2)"#0 (8, Y€R; z € ).

Hence if the following inequality
[+ )

(2.1) (1 + ZA,.z""l) (1-21+2)"#0
n=2

holds true, then we have

143" Ana™ £0,
n=2

which is the relation (1.8) of Lemma 1.2. We know that (2.1) is equivalent to

n=2 Lk=1 \ j=1

Therefore, if f(2) € A satisfies

EEEaem (L))
that is, that
2(1—a)§§{§<x+l)a(— )k—J(k j)}(n k)

A

e (62)+ (o)

J=1

)3

+lz|

S (L2 } (W% )l <1,

=1

1

then f(2) € T(a). This completes the proof of Theorem 2.1.

1
l—az

n=2

Putting # = v = 0 in Theorem 2.1, we see the following corollary.
Corollary 2.1 If f(2) € A satisfies

o0
dlaalS1-0
n=2

for some a (0 £ a < 1), then f(2) € T(a).

[ () () e

E{zerm (e2)s} (.
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Next, we derive the coefficient condition for f(2) to be in the class U(a).
Theorem 2.2 If f(2) € A satisfies the following condition

SIS (S (48, )m (2|51

for somea (0L a<1), B E€R, and vy €R, then f(z) € U(a).
Proof. Since f(z) elU(a) & zf'(2) € T(a) and

f(z) =z+f:a,,z" , 2f'(2) =z+§.°:na,.z”,

n=2 n=2

replacing a; of Theorem 2.1 with ja;, we prove the theorem. 0O

Taking # = v = 0 in Theorem 2.2, we obtain
Corollary 2.2 If f(z) € A satisfies

[+«

Zn|anl Sl-a

n=2

Jor some a (0 £ a < 1), then f(2) € U(a).

Lemma 2.1 A function f(2) € A is in CCx(a; g(2)) ¢f and only if

(2.2) 1+ i Bp2"1#£0

n=2

where

_nan+ (2(1 — a)e=* cos A — 1)b, + z(nay, — b,)

(2:3) Bn 2(1 — a)e=** cos A

et (%ﬁl —a) —i(l—a)sin A

Proof. Letting p(z) = T ajcos
0 (z € U). It follows from Lemma 1.1 that

e? (f‘(‘;‘—é-‘-;l - a) —i(l —a)sinA

, we see that p(z) € P and Re p(z) >

r—1

(2:4) (1 - a)cosA 7 z+1

(for all [z| =1, z € U).

Then, we need not consider Lemma 1.1 for z = 0, because it follows that

p(0)=1#

z—-1
z+1
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Since (2.4) implies that
(z+1) {*(2f'(2) — ag(2)) — i(1 — a)g(z) sin A} # (z — 1)(1 — a)g(z) cos A,
we obtain that
(2.5) (z 4+ 1)e*zf'(2) — aeg(z) ~ zaeg(z) — i(1 — a)g(z)sin A — iz(1 — a)g(z) sin A
#z(1 — a)g(z)cos A — (1 — a)g(z) cos A.
The relation (2.5) is equivalent to
(z +1)eP2f'(2) — aeg(z) — zae™g(z) — 3(1 — @)eg(z) + (1 — a)e™g(2) # 0

that is,
(14 2)e™zf'(2) + (e7** — ze™* — 2a cos N)g(2) # 0.

Note that the above relation can be weitten with

(z+1)e (z + Z na,,z") + (€7 — ze"* — 2acos \) (z + }: b,.z") #0

n=2 n=2

or

n(z + 1)a, + (e %> — 2 — 20e " cos A)bp _,,_;

(2.6) 2(1 - a)cosA z{1+z 31— a)ePcos X z }#-0.

n=2

Dividing the both sides of (2.6) by 2(1 — @) cos A z (2 # 0) and noting
(2.7) e ¥ = 14+ 2e ™ cos ),

we know that

0 :
na, + (2(1 — a)e=* — 1)b, + z(nap — bn) ,._;
1+ Z 2(1 — a)e~* cos A S #0.

n=2

This completes the proof of the lemma. O

Applying Lemma 2.1, we obtain
Theorem 2.3 If f(z) € A satisfies the following condstion

S5 o - e -y 0 (42} (24 )
i:{i:(ja,-— ;) (—=1)F ( k—[):j )} ( nzk ) ] §2(1;a)méA

fe=1 =1

+

o0

forsomea 0 S a<1), A —12'-<)\<§), BER,yeER and g(2) = 2+ Y b,z" € S*, then
n=2

f(2) € CCx(a; g(2)).
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Proof.  Applying the same method of the proof in Theorem 2.1, we know that f(z) belongs
to CCy(a; g(2)) if f(2) € A satisfies

1+ 5“: [i {Ek:Bi(—l)k_jCk—j} dn—k] #0

n=2 Lk=1 \ j=1

where ¢, = ( g ), dy, = ( Zz ) and B; is defined by (2.3).

Now, we consider that

o0 n k
2R {E B; ('l)k_jck—j} Aot
n=2 k=1 \ j=1
o n k. : .
_ ja; + (21 —o)e~?cos A — 1)b; + z(ja; — b;) i
- ; ;-1 {; 2(1 — a)e~*rcos A ’ (-1 c;,_,,} Oni
1 o n k ‘ y .
< 31— a)cos\ "z=:2 [ ;,zz; {;(]a,- +(2(1 — @)e ™ cos X — 1)b,-) (-1)* ‘c;,_j} dp—k
n k
e[S {30 - - b |
. k=1 \ j=1
< 1

This implies that if f(2) € A satisfies

f: [li {Zh:(ja,- +(2(1 —@)e™ cos A - 1)”5)("1)""j ( k Ej )} ( ek )

n=2 Llk=1 \ j=1

n k
+ 2{ G = b1 ( ,f_’,-v)} (W25 )] <201~ @)oos),
= J=
then f(z) € CCx(c; g(2)). This completes the proof of Theorem 2.3. : a

Considering g(z) = f(z) in Theorem 2.3 and noting (2.7), we have the following corollary.
Corollary 2.3 (see, [1], Thorem 3) If f(z) € A satisfies the following inequality

5[ -evn-oemnom (1)) (1)
S {3u-0en (42 Jorf ()

k=1 {j=1

+

] £2(1 -a)cos A
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forsomea (0L a<1), A (-3<A< %), B€R and v €R, then f(z) € SP(), a).

Furthermore, setting A = 0 in Theorem 2.3, we obtain the following condition for CCo(a; g(2)).
Corollary 2.4 If f(z) € A satisfies the following condition

S (2} (1)
E{Som-wer ()} (220)

Jorsomea (0L a<l),BeR, yERand g(z) =2+ io: b,z" € 8*, then f(z) € CCo(a; 9(2)).
’ n=2

+

]§2(1—-a)
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