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1 Introduction
The Libor market model and Swap market model are inconsistent with each other in that they
can not be simultaneously descrIbed by $\log$-normal processes.

The market quots the at-the-money caps in term of their Black implied volatilitiae. Rom
these, one can infer caplet volatilites. Caplet implied volatilities give information about the
distribution of forward Libor. The market seems to assume that it is $\log$-normal with volatility.
At-the-money European swaptions are also quoted in term of their Black implied volatilitiae
which $g\ddagger ve$ information about distribution of swap rate. The Black model pricing is assumed
that forward swap rate follows $\log$-normal distribution.

The purpose of this paper is to build an arbitrage-hee lattice model for swaption, which
is consistent with Libor market model and which provides an implementation method for the
theoretical closed-form formula which is dlfficult to get numericIl solution. We furthermore
compare the aPproximations of swaptIon pricing between swap market model and binomial
lattice in thmretical and numerical aePect.

There are several papers on solving inconsistency of two market models. We can see the
swap volatility approximation by Libor volatility in Rebonate[5] or $Brigo[1]$ . These approaches
are mainly to adjest the swap volatility by using Libor volatilty. Recently, however, Davis and
Mataix-Pastor[2] have shown the possibility of negative forward Libor rate from coexistence
of Libor market model and Swap market model. This negative forward Libor could give us
arbitrage opportunity. Our approximation by lattice would make it possible to get arbitrage
opportunity.

The rest of this Paper is organized as follows. In Section 2we provide notation and introduce
Libor market model which is based on HJM model. In Section 3, we derive European payer
swaption price formula for Gaussian volatility. The formula is aweighted average of discount
bonds with Gaissian distribution weight. However, it is not easy taek to find numerical solution
of function which satisfy positivity of swaption. In section 4, we propose the numerical method
to get asolution of this function by binomial lattice, which uses the change of measure techique
based on Jamishidan [3]. In Section 5is devoted to numerical example of flat term structure
of Libor and volatility. After providing Swap market model with European payer swaption
formula, we compare numerical values of $coeffice\ddagger ent$ for discount bonds in the portfolio of
bonds replicating the swap. Finally, we dlscuss the replication strategy for arbitrage and closing
remarks.

2 Libor model
We assume HJM-model for discouted bond prices of maturity $T_{i},$ $\{B_{i}(t)\}_{0\leq t\leq T_{1}}$ under risk neutral
measure $Q$ ,

$dB_{i}(t),/B_{i}(t)=r(t)dt+\sigma^{i}(t)dW(t)$
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where the time span is $\delta=t_{i+1}-t_{i}$ , for $i=0,$ $\cdots,$ $N-1$ . Let $r(t)$ be spot rate and $\sigma^{i}(t)$ be
the volatility of discount bond. The bond price of maturity of $T_{i}$ at time $T_{m}$ is, for $t\leq T_{m}\leq T_{i}$

$B_{i}(T_{m})=B_{i}(t)$ exp $( \int_{t}^{T_{m}}r(s)ds+\int^{T_{m}}\sigma^{i}(s)dW(s)-\frac{1}{2}\int^{T_{m}}|\sigma^{i}(s)|^{2}ds)$ , (2.1)

and for the bond price of maturity $T_{i+1}$ is

$B_{i+1}(T_{m})=B_{i+1}(t)$ exp $( \int^{T_{m}}r(s)ds+\int^{T_{m}}\sigma^{1+1}(s)dW(s)-\frac{1}{2}\int^{T_{m}}|\sigma^{i+1}(s)|^{2}ds)$ . (2.2)

Let $L_{i}(t)$ be a forward Libor from $T_{i}$ to $T_{i+1}$ , then the Libor process is defined as

$L_{i}(t)= \delta^{-1}(\frac{B_{i}(t)}{B_{i+1}(t)}-1)$ .

Dividing (2.1) by (2.2) and from the definition of Libor we get

$\frac{1+\delta L_{i}(T_{m})}{1+\delta L_{i}(t)}=\exp(\int_{t}^{T_{m}}[\sigma^{i}(s)-\sigma^{i+1}(s)]dW(s)-\frac{1}{2}\int^{T_{m}}[|\sigma^{i}(s)|^{2}-|\sigma^{i+1}(s)|^{2}]ds)$ (2.3)

In HJM-model the forward process of settlement time $T$ is modeled as

$df_{T}(t)=\mu_{T}(t)dt+\sigma_{T}(t)dW(t)$

where $\sigma_{T}$ is the volatility of forward process $\{f_{T}(t)\}$ . For the settlement time $T_{1}$ we write the
volatility $\sigma_{i}(t)$ instead of $\sigma_{T:}(t)$ . The bond price at $t$ of maturity $T$ in (2.1) divided by (2.2) and
let $B_{t}(t)=1$ , then

$B_{T}(t)= \frac{B_{T}(0)}{B_{t}(0)}$ exp $( \int_{0}^{t}(\sigma^{T}(s)-\sigma^{t}(s))dW(s)-\frac{1}{2}\int_{0}^{t}(|\sigma^{T}(s)|^{2}-|\sigma^{t}(s)|^{2})ds)$

Forward rate is defined as $f_{T}(t)=-\Phi\partial$ log $B_{T}(t)$ and then

$df_{T}(t)= \sigma^{T}(t)\frac{\partial}{\partial T}\sigma^{T}(t)dt-\frac{\partial}{\partial T}\sigma^{T}.(t)dW(t)$

By It\^o’s division rule

$\frac{d(B_{i}(t)/B_{i+1}(t))}{B_{i}(t)/B_{i+1}(t)}=$ ( $\sigma(t)$ 一 $\sigma^{i+1}(t)$ ) $(dW(t)-\sigma^{i+1}(t)dt)$

Under the risk adjusted measure $Q^{i+1}$

$\frac{dL_{i}(t)\delta}{1+\delta L_{i}(t)}=(\sigma^{i}(t)-\sigma^{i+1}(t))dW^{i+1}(t)$ ,

when we define the risk adjested Measure $Q^{i+1}$ by $dQ^{i+1}/dQ= \mathcal{E}(\int_{0}^{T_{i+1}}\sigma^{i+1}(t)dW(t))$ , then
$W^{i+1}(t)=W(t)- \int_{0}^{t}\sigma^{i+1}(s)ds$ is Brownian motion under $Q^{i+1}$ where $\mathcal{E}(\cdot)$ is stochastic expo-
nential.
Therefor Libor $L_{i}(t)$ is $Q^{i+1}$-martingale as,

$E_{t}^{i+1}[L_{i}(T_{m})]=L_{i}(t)$ .
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The Bond Volatility $\sigma^{T}(t)=-\int_{t}^{T}\sigma_{s}(t)ds$ and let $v_{i}(t)$ be the volatility of Libor $L_{i}(t)$ ;

$v_{i}(t)= \sigma^{i}(t)-\sigma^{i+1}(t)=-\int^{T_{i}}\sigma_{u}(t)du+\int^{T_{i+1}}\sigma_{u}(t)du=\int_{T}^{T_{i+1}}\sigma_{u}(t)du$

In section 4 of binomial lattice model we assume $v_{i}$ is constant for $(T_{i}, T_{i+1})$ and in numerical
experiment section 5 assume a constant $v=v_{i},$ $\forall i$ . Libor process is expressed under $Q^{i+1}$ from
(2.3) as follows,

$L_{i}(T_{m})= \delta^{-1}(1+\delta L_{i}(t))\exp\{\int^{T_{m}}v_{i}(s)dW^{i+1}(s)-\frac{1}{2}\int^{T_{m}}|v^{i}(s)|^{2}ds\}-1$

3 Swaption price of Gaussian volatility

The payer swaption is the option with strike swap rate $k$ and the maturity $T_{n}$ , where the
underlying swap contract starts from $T_{n}$ to $T_{N}$ and payment period $\delta=T_{i}-T_{i-1}$ , $i=$
$n+1,$ $\cdots,$ $N$ . The payment at the maturity is

$A(T_{n})= \max(B_{n}(T_{n})-B_{N}(T_{n})-k\delta\sum_{i=n+1}^{N}B_{i}(T_{n}), 0)$

where, $B_{i}(T_{j})$ denotes the prioe at $T_{j}$ of bond of maturity time $T_{i}$ .
The bond price of maturity $T_{n}$ is 1 at time $T_{n}$ then $A(T_{n})= \max(1-V(T_{n}),0)$ is a put

option on bonds portfolio, where

$V(T_{n})=B_{N}(T_{n})+k \delta\sum_{i=n+1}^{N}B_{i}(T_{n})$

Under risk neutral measure $Q$ , the price of swaption at time $0$ is.
$S( O)=E^{Q}[\exp\{-\int_{0}^{T_{n}}r(s)ds\}A(T_{n})]$

Theorem 1 The swaption price of Gaussian volatility HJM model is given as follows,

$S( O)=B_{n}(0)N(d_{n})-B_{N}(0)N(d_{N})-k\delta\sum_{i=n+1}^{N}B_{i}(0)N(d_{i})$ (31)

where $d_{i}=d_{n}- \int_{0}^{T_{n}}(\sigma^{i}(s)-\sigma^{n}(s))ds$ , $i=n+1,$ $\cdots,$
$N$ and $d_{n}$ is the solution of equation;

$f(x)$ $=$ $\frac{B_{N}(0)}{B_{n}(0)}$ exn$\{v(O,T_{n}, T_{N})\sqrt{T_{n}}x-\frac{1}{2}v(0,T_{n},T_{N})^{2}T_{n}$

$+$ $k \delta\sum_{i=n+1}^{N}\frac{B_{1}(0)}{B_{n}(0)}$ exn$\{v(0,T_{n},T_{i})\sqrt{T_{n}}x-\frac{1}{2}v(0,T_{n},T_{i})^{2}T_{n}\}-1=0$ (3.2)

where let the variance process $v(t, T_{n}, T_{i})^{2}=r_{n^{\overline{-t}}}^{1_{\int_{t}^{T_{n}}}}|\sigma^{i}(t)-\sigma^{n}(t)|^{2}dt$ .
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Proof. Taking $B_{n}(t)$ as the numeraire for the payoff at time $T_{n}$ ;

$\frac{V(T_{n})-1}{B_{n}(T_{n})}$ $=$ $\frac{B_{N}(0)}{B_{n}(0)}\exp\{\int_{0}^{T_{n}}(\sigma^{N}(t)-\sigma^{n}(t))dW^{n}(t)-\frac{1}{2}\int_{0}^{T_{n}}|\sigma^{N}(t)-\sigma^{n}(t)|^{2}dt$

$+$ $k \delta\sum_{i=n+1}^{N}\frac{B_{i}(0)}{B_{n}(0)}\exp$ { $\int_{0}^{T_{n}}(\sigma^{i}(t)-\sigma^{n}(t))dW^{n}(t)$
一 $\frac{1}{2}\int_{0}^{T_{n}}|\sigma^{i}(t)-\sigma^{n}(t)|^{2}dt$} $-1$

Let $U_{n}$ be a standarad normal distributed variate, i.e. $U_{n}\sim N(0,1)$ and define the function;

$f(U_{n})$ $=$ $\frac{B_{N}(0)}{B_{n}(0)}\exp\{v(0,T_{nr}T_{N})\sqrt{T_{n}}U_{n}-\frac{1}{2}v(0,T_{n},T_{N})^{2}T_{n}$

$+$ $k \delta\sum_{i=n+1}^{N}\frac{B_{i}(0)}{B_{n}(0)}\exp\{v(0,T_{n},T_{i})\sqrt{T_{n}}U_{n}-\frac{1}{2}v(0,T_{n}, T_{i})^{2}T_{\mathfrak{n}}\}-1$

where the normal variate $\int_{0}^{T_{n}}(\sigma^{i}(t)-\sigma^{n}(t))dW^{n}(t)\sim N(0,v(O, T_{i}, T_{N})^{2}T_{n})$ .
The swaption price under risk neutral becomes as follows, with using the change of numeraire

technique as $dQ^{i}/dQ=B_{i}(T_{n})/B_{i}(0) \exp\{-\int_{0}^{T_{n}}r(s)ds\}$ , $i=n,$ $\cdots$ , $N$ ;

$S(O)$ $=$ $E^{Q}[ \exp\{-\int_{0}^{T_{\mathfrak{n}}}r(s)ds\}\max(1-V(T_{n}), 0)]$

$=$ $E^{Q}[ \exp\{-\int_{0}^{T_{n}}r(s)ds\}(1-V(T_{n}))1_{\{1\geq V(T_{n})\}}]$

$=$ $E^{Q}[ \exp\{-\int_{0}^{T_{n}}r(s)ds\}(B_{n}(T_{n})-B_{N}(T_{n})-k\delta\sum_{i=1}^{n}B_{i}(T_{n}))1_{\{1\geq V(T_{n})\}}]$

$=$ $B_{n}(0)Q^{n}(V(T_{n}) \leq 1)-B_{N}(0)Q^{N}(V(T_{n})\leq 1)-k\delta\sum_{i=n+1}^{N}B_{i}(0)Q^{i}(V(T_{n})\leq 1)$

To compute $Q^{1}(V(T_{n})\leq 1)$ we use the function $f(x)$ ,
$Q^{n}(V(T_{n})\leq 1)=Q^{n}(f(U_{n})\leq f(d_{n}))$

Sinc$ef(d_{n})=0$ and $f(\cdot)$ is a montone increasing function and $U_{n}$ is a standard normal variate,

$Q^{n}(V(T_{n})\leq 1)=N(d_{n})$ .
On the other hand, $Q^{i}(V(T_{n})\leq 1)=Q^{i}(f(U_{n})\leq f(d_{n}))$ ,

$\frac{dQ^{i}}{dQ^{n}}|_{F_{t}}$ $=$ $\frac{B_{i}(t)}{B_{i}(0)}\exp\{-\int_{0}^{t}r(s)ds\}/(\frac{B_{n}(t)}{B_{n}(0)}\exp\{-\int_{0}^{t}r(s)ds\})$

$=$ $\frac{B_{i}(t)}{B_{n}(t)}\frac{B_{n}(0)}{B_{i}(0)}$

$=$ $ex.p\{\int_{0}^{t}(\sigma^{i}(s)-\sigma^{n}(s))dW^{n}(s)-\frac{1}{2}\int_{0}^{t}|\sigma^{i}(s)-\sigma^{n}(s)|^{2}ds\}$

By Girsanov theorem, $W^{i}(t)=W^{n}(t)- \int_{0}^{t}(\sigma^{i}(s)-\sigma^{n}(s))ds$ is Brownian motion under $Q^{i}$ .

$Q^{i}(V(T_{n})\leq 1)$ $=$ $Q^{i}(f(U_{n}- \int_{0}^{T_{n}}(\sigma^{i}(s)-\sigma^{0}(s))ds)\leq f(d_{n}-\int_{0}^{T_{\hslash}}(\sigma^{i}(s)-\sigma^{0}(s))ds))$

$N(d_{n}- \int_{0}^{T_{n}}(\sigma^{i}(s)-\sigma^{0}(s))ds)=N(d_{i})$

口
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4 Lattice model
The above described one factor swaption model has difficulty to find the solution of equation
(3.2) but we can easily $get$ the numerical solution by Binomial approximation of Libor model.
First see the main theorem of Libor model.

Theorem 2 The following equations are satisfied in transition probability in Libor binomial
model between $Q^{i}$ and $Q^{i+1}$ which are respectly martingale measures for $L_{i}(t)$ and $L_{i+1}(t)$ ,
where $q_{i}$ is upward transitinal probality in binomial tree in the measure $Q^{i}$ , and $q_{i+1}$ is that in
$Q^{i+1}$ .

$=$ $q_{i+1^{\frac{1+\delta L_{i}^{u}(t)}{1+\delta L_{1}(t)}}}$ (4.1)

$1-q_{i}$ $=$ $(1-q_{i+1}) \frac{1+\delta L_{i}^{d}(t)}{1+\delta L_{i}(t)}$ , (4.2)

where the binomial states are $L_{i}^{u}(t)$ and $L_{i}^{d}(t)$ .

Prvof From Jamshidian’s theorem’

$E_{t}^{i}[L_{i}(t+ \Delta t)]=E_{t}^{i+1}[L_{i}(t+\Delta t)\frac{1+\delta L^{i}(t+\Delta t)}{1+\delta L^{i}(t)}]$

Sinc$eL_{i}(t)$ is $Q^{i+1}$ -martingale,

$E_{t}^{i}[L_{i}(t+ \Delta t)]=\frac{L_{i}(t)+\delta E^{1+1}[L_{i}^{2}(t+\Delta t)]}{1+\delta L_{i}(t)}$

By Binomial modeling assumption, the Libor moves in $0$ne step for measures $Q^{i+1}$ and $Q^{i}$ ;

$L_{i}(t+\Delta t)=\{\begin{array}{ll}L^{u} Q_{t}^{i+1}(\omega_{u})=q_{i+1} Q_{t}^{i}(\omega_{u})=q_{i}L^{d} (w_{d})=1-q_{i+1} Q_{t}^{i}(\omega_{d})=1-q_{i}\end{array}$

To simplify notations, we use $L^{i}$ instead of $L_{i}(t)$ .

$q^{i}L^{u}+(1-q^{i})L^{d}$ $=$ $\frac{L_{i}}{1+\delta L_{i}}+\frac{\delta}{1+\delta L_{i}}((L^{u})^{2}q_{i+1}+(L^{d})^{2}(1-q_{1+1}))$

$q_{i}(L^{u}-L^{d})$ $=$ $\frac{L_{i}-L^{d}(1+\delta L_{i})+\delta(L^{d})^{2}}{1+\delta L_{i}}+\delta q_{i+1^{\frac{(L^{u})^{2}-(L^{d})^{2}}{1+\delta L_{i}}}}$

Using the martingale measur$eq_{i+1}=(L_{i}-L^{d})/(L^{u}-L^{d})$ ,

$=$ $q_{i+1}( \frac{1-\delta L^{d}}{1+\delta L_{i}}+\frac{\delta L^{u}+\delta L^{d}}{1+\delta L_{i}})$ .

Then we get (4.1). The equation (4.2) is also obtained by using the martingale measure,

$1-q_{i}=1-q_{i+1} \frac{1+\overline{\delta}L^{u}}{1+\delta L_{i}}=(1-q_{i+1})\frac{1+\delta L^{d}}{1+\delta L_{i}}$

口

’see $Jamshldian[3]pp.25- 26$
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The forward bond price from $T_{n}$ to $T_{N}$ a $t$ is

$B(t;T_{n}, T_{N})= \frac{B_{N}(t)}{B_{n}(t)}=\frac{1}{\prod_{i=n}^{N-1}(1+\delta L_{i}(t))}$ , $t\leq T_{n}$

In the binomial lattice, the forward bond price at $t+\triangle t$ has two states,

1By $=$

$\prod_{i=n}^{N-1}(1+\delta L_{i}^{u})$

$B_{N}^{d}$ $=$ $\frac{1}{\prod_{i=n}^{N-1}(1+\delta L_{i}^{d})}$

$Q^{N}$ is called the terminal measur$e$ and the transition prbability $Q^{n}$ of Libor $L_{n}$ is changed to
$Q^{N}$ ,

$q_{n}/q_{N}= \prod_{i=n}^{N-1}\frac{1+\delta L_{i}^{u}}{1+\delta L_{i}}$

for upward state and

$(1-q_{n})/(1-q_{N})= \prod_{i=n}^{N-1}\frac{1+\delta L_{\dot{\iota}}^{d}}{1+\delta L_{i}}$

for the downward state. Swaption payoff at $T_{n}$ is $\max(1-V(T_{n}), 0)$ and the prlce at time $0$ is

$S(0)/B_{n}(0)$ $=$ $E^{n}[ \frac{(1-V(T_{n}))^{+}}{B_{n}(T_{n})}]$

$E^{n}[1_{\{1\geq V(T_{n})\}}]-E^{n}[ \frac{B_{N}(T_{n})}{B_{n}(T_{n})}1_{\{1\geq V(T_{n})\}}]-k\delta\sum_{i=n+1}^{N}E^{n}[\frac{B_{i}(T_{n})}{B_{n}(T_{n})}1_{\{1\geq V(\tau_{n}}\Re J3)$

Using change of measure as (4.1),

$E^{n}[B(t+\Delta t;T_{n},T_{N})1_{\{1\geq V(T_{n})\}}|\mathcal{F}_{t}]$ $=$ $(q_{n}B_{N}^{u}+(1-q_{n})B_{N}^{d})1_{\{1\geq V(T_{n})\}}$

$=$ $\frac{q_{N}1_{\{1\geq V(T_{n})\}}^{u}+(1-q_{N})1_{\{1\geq V(T_{\mathfrak{n}})\}}^{d}}{\prod_{i=n}^{N-1}1+\delta L_{i}(t)}$

$=$ $B(t;T_{n}, T_{N})Q^{N}(1_{\{1\geq V(T_{n})\}})$

Then the unconditional expectation becomes

$E^{n}[ \frac{B_{N}(T_{n})}{B_{n}(T_{n})}1_{\{1\geq V(T_{\mathfrak{n}})\}}]=B(0, T_{n},T_{N})Q^{N}(\{1\geq V(T_{n})\})$

In general, by change of measure to $Q^{i}$ from $Q^{n}$ ,

$E^{n}[ \frac{B_{i}(T_{n})}{B_{n}(T_{n})}1_{\{1\geq V(T_{n})\}}]=B(0,T_{n},T_{i})Q^{i}(\{1\geq V(T_{n})\})$

Therefore (4.3) becomes

$S(0)/B_{n}(0)=Q^{n}( \{1\geq V(T_{n})\})-B(0,T_{n}, T_{N})Q^{N}(\{1\geq V(T_{n})\})-k\delta\sum_{i=n+1}^{N}B(O,T_{n}.T_{i})Q^{i}(\{1\geq V(T_{n})\})$

Then we get swaption pricing formula like (3.1),

$S(0)=B_{n}(0)Q^{n}( \{1\geq V(T_{n})\})-B_{N}(0)Q^{N}(\{1\geq V(T_{n})\})-k\delta\sum_{i=n+1}^{N}B_{i}(0)Q^{i}(\{1\geq V(T_{n})\})$

(4.4)

168



Theorem 3 The payer swaption price is in binomial model as foolows,

$S( O)=B_{n}(0)F_{n}(l^{*})-B_{N}(0)F_{N}(l^{*})-k\delta\sum_{i=n}^{N}B_{i}(0)F_{i}(l^{*})$ (4.5)

where $\iota*$ is the smallest integer which satisfies

$1- \frac{1}{\prod_{i=n}^{N-1}1+\delta L_{i}(T_{n})}$ $k \delta\sum_{i=n}^{N}\frac{1}{\prod_{i=n}^{j-1}1+\delta L_{i}(T_{n})}\geq 0$ (46)

$1+\delta Li(T_{n})$ $=$ $1+\delta L_{i}(0)u_{i}^{l}d_{i}^{n-l^{r}}$

where $L_{i}^{u}(T_{k+1})=L_{i}(T_{k})u_{i}$ and $L_{i}^{d}(T_{k+1})=L_{i}(T_{k})d_{i}$ are for $k\leq i$ . The binomial distribution
function is defin$ed$ as

$F_{i}(l)=1- \sum_{j=0}^{l}(\begin{array}{l}nj\end{array})q_{i}^{i}(1-q_{i})^{n-}$ .

Proof. For binomial lattice the probability in (4.4) is binomial distribution $F_{i}(l)$ . The positive
payoff condtion $1\geq V(T_{n})$ satisfies

$1-B( O,T_{n},T_{N})-k\delta\sum_{i=n+1}^{N}B(0,T_{n}, T_{i})\geq 0$

and it is (4.6). $\square$

5 Example of flat term structure and volatilty
The simplest case is of flat term strucure and flat volatility structure so as $Li(t)=L(t)$ and
$u_{i}=u$ , $d_{i}=d$ . The bond price at time $0$ is for the maturity $T_{i}$ due to flat term structure,

$B_{i}(0)= \frac{1}{(1+\delta L(0))^{i}}$ .

The Libor is at $T_{n}$ is
$L_{i}(T_{n})=L(0)u^{l}d^{n-l}$ , $l=0,$ $\cdots$ , $n$

Because of assumption of flat volatility structure, the forward bond price at $T_{n}$ is

$B(T_{n}, T_{n}, T_{j})= \frac{1}{\prod_{i=n}^{j}1+\delta L_{i}(T_{n})}=\frac{1}{(1+\delta L(0)u^{l}d^{(n-l)})^{j-n}}$, $j=n+1,$ $\cdots,$
$N$

The minimal integer to satisfy (4.6) is

$N$

$1- \frac{1}{(1+\delta L(0)u^{l}d^{(n-l)})^{N-n}}-k\delta\sum_{j=n+1}\frac{1}{(1+\delta L(0)u^{l}d^{(n-l)})^{j-n}}$

$=$ $(1+ \delta L(0)u^{l}d^{(n-l)})^{N-n}-k\delta\sum_{j=n+1}^{N}(1+\delta L(0)u^{l}d^{(n-l)})^{N-j}-1\geq 0$

Let $a_{0}=-(1+k\delta),$ $a_{N-n}=1,$ $a_{i}=-k\delta$ , and $x=(1+\delta L(0)u^{l}d^{(n-l)})$ , then

$\sum_{i=0}^{N-n}a,,x^{i}=0$
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There exist a positive solution $x^{*}$ because only $a_{N-n}>0$ and others $a_{i}<0$ , by Decartes’ $r$ule
of signs. The number of upward moves becomes

$l^{*}= \min$ { $l\geq\log(x^{*}-1)/\delta L(0))-n$ log $d/(\log u$ –log $d)$ }

From (4.5) for flat term and volatility structure, the positive payment condition $\iota*$ is same for
all binominal distributions. Thus

$S( O)=B_{n}(0)F_{n}(l*)-B_{N}(0)F_{N}(l*)-k\delta\sum_{i=n}^{N}B_{i}(0)F_{i}(l^{*})$ (5.1)

where $F_{i}(l^{*})=1- \sum_{j=0}^{l^{*}}(\begin{array}{l}nj\end{array})\dot{\oint}_{1}(1-q_{i})^{n-j}$ and $q_{n}=(1-d)/(u-d),$ $q_{i}=q_{i+1}(1+\delta Lu)/(1+\delta L)$

5.1 Swap market model
Swap market model is utilized for calbration of implied volatility term structure. Let $B_{nN}(t)$

the portfolio value of discount bonds whose maturities are from $T_{n+1}$ to $T_{N}$ .

$B_{nN}(t)= \sum_{i=n+1}^{N}B_{i}(t)$

There exists the martingale measure $Q^{nN}$ whose numeraire is this portfolio. For any attainable
portfolio process $\{C(t)\}$

$E^{nN}[ \frac{C(T)}{B_{nN}(T)}|\mathcal{F}_{t}]=\frac{C(t)}{B_{nN}(t)}$

Payer Swaption payoff of swap rate $k$ at Maturity $T_{n}$ is $\max(B_{n}(T_{n})-B_{N}(T_{n})-k\delta B_{nN}(T_{n}), 0)$ ,
by taking the portfolio $B_{nN}(t)$ as numeraire, the swaption premium at $0$ is

$\frac{C(0)}{B_{nN}(0)}$ $=$ $E^{nN}[ \frac{\max(B_{n}(T_{n})-B_{N}(T_{n})-k\delta B_{nN}(T_{n}),0)}{B_{nN}(T_{n})}]$

$=$ $\delta F^{nN}\lrcorner[\max(S_{nN}(T_{n})-k, 0)]$

$whereS_{nN}(t)=\frac{B_{n}(t)-B_{N}(t)}{mar\delta B(t)k_{et}^{N}}isswaprateatt(0\leq t\leq T_{n}).Theswaprateisa1soQ^{nN_{-}}mandintheswapmode1theswaprateisassumedtobethe\log norma1process$

;
artingale

$dS_{nN}(t)=\theta(t)S_{nN}(t)dW_{nN}(t)$

where $W_{nN}(t)$ is Brownian process under $Q^{nN}$ . The swap rate at $T_{n}$ is

$S_{nN}(T_{n})=S_{nN}(0) \exp\{-\frac{1}{2}\int_{0}^{T_{n}}\theta^{2}(s)ds+\int_{0}^{T_{n}}\theta(s)dW_{nN}(s)\}$ .

From this simplified assumption the swaption price is given by Black formula,

$C(O)=\delta B_{nN}(0)(S_{nN}(O)N(d_{1})-kN(d_{2}))$

where $d_{1}=\log(S_{nN}(0)/k)/v_{nN}(T_{n})+v_{nN}(T_{n})/2,$ $d_{2}=d_{1}-v_{nN}(T_{n})$ . The volatility is $v_{nN}(T_{n})=$

$\int_{0}^{T_{n}}\theta^{2}(s)ds$ . We compare the swaption premium (3.1)

$C(O)$ $=$ $\frac{\delta B_{nN}(0)}{\delta B_{nN}(0)}(B_{n}(0)-B_{N}(O))N(d_{1})-k\delta B_{nN}(0)N(d_{2})$

$=$ $B_{n}(0)N(d_{1})-B_{N}(0)N(d_{1})- \delta k\sum_{i=n+1}^{N}B_{i}(0)N(d_{2})$ (52)
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The difference is coeffients of bond prices $B_{i}(0)$ .

$d_{1}$ $=$ $( \log(B_{n}(0)-B_{N}(0))-\log(k\delta B_{nN}))/v_{nN}(T_{n})+\frac{1}{2}v_{nN}(T_{n})$

$d_{2}$ $=$ $d_{1}-v_{nN}(T_{n})$

The payer swaption price could take the general equation form;

$C( O)=B_{n}(0)c_{n}-B_{N}c_{N}-k\delta\sum_{i=n+1}^{N}B_{i}c_{i}$ (5.3)

We juxtapose coeffients of discount bonds in equations of (3.1),(4.5) and(5.2) in Table 1.

Table 1: Payer swaption coeffients
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5.2 The hedging strat$e$gy and numerical example

We calculate the payer swaption of 3 $\cross 7$ and 5 $\cross 5$ cases of flat Libor and volatilities strucure,
where Libor are (i) 2% (ii) 5% and the volatilities are $(a)0.4(b)0.2$ . These maturities are $3\cross 7$

swaption for strike swap-rates for case of (i) are 1%, 2% and 3%. For the case of (ii) strike
swap-rates are 4%, 5% and 6%. We compare the binomial lattice, Monte Carlo method and
Black formula which assumption is Swap market model.

Table 2: Payer Swaption prices

all swaption prices are Basis point(1/100%) unit and M.C.are Monte Carlo Method which
are provided by Dr. Yasuoka, Mizuho Information&Reseach Insitute, (100,000 runs))
Lattice method prices are 1000 node for a year and total steps are $1000\cross x$ for swaption maturity
$x$ years.

From inconsistency of Libor market model and Swap market model, we could have arbtrage
opportunity if we had constructed a hedging strat$e$gy. Davis [2] has shown the existence of
negative libor rate in the case of coexistense of Libor and swap market models.

For the swaption if we take Gaussian model, the hedging strategy is as follows,

$dC(t)=N(d_{n})dB_{n}(t)-N(d_{N})dB_{N}(t)-k \delta\sum_{i=n+1}^{N}N(d_{i})dB_{i}(t)$

which is $e$asily shown. Delta hedging is change of the portfolio which is $N(d_{i})$ unit of bond of
maturity $T_{i}$ .

The hedging strategy of swap market model is obtained from (5.2)

$dC(t)=N(d_{1})dB_{n}(t)-N(d_{1})dB_{N}(t)-k \delta.\sum_{i=n+1}^{N}N(d_{2})dB_{i}(t)$
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Provided the longer term interest is changed, the delta hedging of swap market model is not
senstive due to the same delta $N(d_{2})$ for all $dB_{l}(t)$ . The price differences are caused by coeffients
$c_{i}$ as Table 1. We calculate coefficient for 3x7 swaption (volatity=40%, interest=2%, strike=2%).

Table 3: Payer swaption $co$effients

In this data case, we can see in Table 3 the $B_{n}(t)$ trading amount is excessive and other
maturity bonds trading is insufficient in swap market model. For this case we could take arbitrage
opportunity if change of longer term interest shift upward and we trad$e$ swaption and the hedging
strategy of bonds.
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