<table>
<thead>
<tr>
<th>Title</th>
<th>Nonprincipal Block of $\text{SL}(2, q)$ (Cohomology Theory of Finite Groups and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yoshii, Yutaka</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2008年, 1581: 121-125</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81423</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Nonprincipal Block of $SL(2, q)$

Yutaka Yoshii (吉井 豊)
Division of Mathematical Science and Physics, Chiba Univ. (千葉大学自然科学研究科)

Abstract

We shall claim that Broué's abelian defect group conjecture holds for the nonprincipal p-block of $SL(2, p^n)$.

1 Introduction

Let G be a finite group and P a p-subgroup of G. The next theorem is one of the most important theorems on the block theory of finite groups:

Brauer's First Main Theorem. There is one to one correspondence between the blocks of kG with defect group P and the blocks of $kN_G(P)$ with defect group P.

The correspondence is called Brauer correspondence. The following conjecture is our main problem:

Broué's Abelian Defect Group Conjecture. Suppose that A is a block of kG with an abelian defect group P and that B is the Brauer correspondent of A (in $N_G(P)$). Then is A derived equivalent to B?

If $G = SL(2, q)$ where $q = p^n$, it has been proved that the conjecture is true for the principal block by T.Okuyama (see [6]). Even in the nonprincipal case, the conjecture was proved to be true for $n = 2$ by M.Holloway (see [4]), but it has not been known if the conjecture is true for $n \geq 3$ yet. However, it has turned out that it can be proved to be true even for $n \geq 3$ by imitating Okuyama's proof [6].

The Main Result. If $G = SL(2, q)$ where $q = p^n$, Broué's abelian defect group conjecture is true for the nonprincipal block of kG.
We shall explain about derived equivalences. Let k be an algebraically closed field of characteristic $p > 0$, let A and B be finite dimensional k-algebras, mod-A the category consisting of all finite dimensional right A-modules, proj-A the full subcategory of mod-A consisting of all finite dimensional right projective A-modules, $K^b(\text{mod-} A)$ the homotopy category consisting of all bounded complexes of finite dimensional right A-modules, and $K^b(\text{proj-} A)$ the homotopy category consisting of all bounded complexes of finite dimensional right projective A-modules. We say that A is derived equivalent to B if $K^b(\text{proj-} A)$ is equivalent to $K^b(\text{proj-} B)$ as triangulated categories. The next theorem is a criterion for derived equivalence:

Theorem (Rickard [7]). The following are equivalent.

(a) A is derived equivalent to B.

(b) There is a complex $T^* \in K^b(\text{proj-} A)$ with $B \cong \text{End}_{K^b(\text{proj-} A)}(T^*)$ such that

(i) $\text{Hom}_{K^b(\text{proj-} A)}(T^*, T^*[i]) = 0$ for any $i \neq 0$.

(ii) If $\text{add}(T^*)$ is the full subcategory of $K^b(\text{proj-} A)$ consisting of all direct summands of all direct sums of T^*, then it generates the triangulated category $K^b(\text{proj-} A)$.

We call T^* a tilting complex for A.

2 $SL(2, q)$

Set $G = SL(2, q)$ where $q = p^n$. In this section, we shall state some facts of representations of kG. Set

$$P = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle| b \in \mathbb{F}_q \right\},$$

$$D = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \middle| a \in \mathbb{F}_q^\times \right\},$$
and
\[H = N_G(P) = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \middle| a \in \mathbb{F}_q^\times, \ b \in \mathbb{F}_q \right\}, \]

where \(P \) is a Sylow \(p \)-subgroup of \(G \) and hence is isomorphic to the elementary abelian group \(C_p \times \cdots \times C_p \) (\(n \) times), \(D \) is isomorphic to \(C_{q-1} \), and \(H \) is the semidirect product \(P \rtimes D \).

Considering a nonprincipal block, we assume \(p \neq 2 \) in the rest of the article (if \(p = 2 \), \(kG \) has no nonprincipal blocks with full defect). Now we have the block decompositions \(kG = A_0 \oplus A_1 \oplus A_2 \), where \(A_0 \) is the principal block, \(A_1 \) is a nonprincipal block with full defect, and \(A_2 \) has defect zero, and \(kN_G(P) = B_0 \oplus B_1 \), where \(B_0 \) and \(B_1 \) are the Brauer correspondents of \(A_0 \) and \(A_1 \) respectively. It is well known that all nonisomorphic simple \(kG \)-modules are indexed by \(\{0, 1, 2, \cdots, q-1\} \), where \(\{0, 2, \cdots, q-3\} \), \(\{1, 3, \cdots, q-2\} \) and \(\{q-1\} \) correspond to \(A_0 \), \(A_1 \) and \(A_2 \) respectively, and all nonisomorphic simple \(kN_G(P) \)-modules are indexed by \(\{0, 1, 2, \cdots, q-2\} \), where \(\{0, 2, \cdots, q-3\} \) and \(\{1, 3, \cdots, q-2\} \) correspond to \(B_0 \) and \(B_1 \) respectively (see [3] or [6]).

3 Outline of Proof

Set \(\Lambda = \{0, 1, 2, \cdots, q-1\} \), \(I = I_{odd} = \{1, 3, 5, \cdots, q-2\} \). For \(\lambda \in \Lambda - \{q-1\} \), set
\[\tilde{\lambda} = \begin{cases} 0 & (\text{if } \lambda = 0) \\ q - 1 - \lambda & (\text{if } \lambda \neq 0), \end{cases} \]

and for a subset \(\Omega \subseteq \Lambda - \{q-1\} \), set \(\tilde{\Omega} = \{\tilde{\lambda}|\lambda \in \Omega\} \). Then for any simple \(kN_G(P) \)-module, \(T_\lambda \) is isomorphic to the dual module \(T_\lambda^* \) of \(T_\lambda \), and note that "\(\sim \)" is a permutation on \(\Lambda - \{q-1\} \) of order 2. Moreover, we define an equivalence relation "\(\sim \)" on \(\Lambda - \{q-1\} \) by
\[\lambda \sim \mu \overset{\text{def}}{\iff} \text{There exists some } j \in \{0, 1, \cdots, n-1\} \text{ such that } \lambda \equiv p^j \mu \pmod{q-1}. \]

Note that \(I \) is closed under the equivalence relation.

We define equivalence classes (with respect to "\(\sim \)") \(J_{-1}, J_0, J_1, \cdots, J_s \) as follows (cf. Okuyama [6, §2]):

Let \(J_{-1}, \tilde{J}_{-1} \) be empty sets (by convention), \(J_0 \) the class containing 1, and \(J_i \) the class containing the smallest \(\lambda_i \in \bigcup_{u=-1}^{i-1} (J_u \cup \tilde{J}_u) \) for \(i \geq 1 \). We repeat this procedure until \(s \) satisfies \(I = \bigcup_{u=-1}^{s} (J_u \cup \tilde{J}_u) \).
Now we can construct derived equivalent k-algebras $A^0, A^1, \ldots, A^s, A^{s+1}$ as follows (cf. Okuyama [6, §3]):

First, set $A^0 = A$. Then for $1 \leq t \leq s + 1$, we define A^t as an endomorphism algebra of a tilting complex for A^{t-1} determined by J_{t-1} which is seen in [6, §1].

Then, we can show that A^{s+1} is isomorphic to B as k-algebras like Okuyama [6, §3], so we obtain the main result.

References

