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1 Introduction
Let $G$ be a simply connected, simple algebraic group over the complex

numbers $\mathbb{C},$ $B$ a Borel subgroup and $H$ a maximal torus contained in $B$ .
Denote by $\hat{H}$ the character group of $H$ . By taking the first Chern class
of the homogeneous line bundle $L_{\chi}$ over the flag variety $G/B$ associated
to each character $\chi$ , we define the characteristic homomomphism for $G$ ,

$c_{G}$ : $S(\hat{H})arrow A(G/B)$ , (1)

where $S(\hat{H})$ is the symmetric algebra of $\hat{H}$ and $A(G/B)=\oplus_{i\geq 0}A^{i}(G/B)$

is the Chow ring of the algebraic variety $G/B$ .
According to Grothendieck’s remark ([6], p.21, REMARQUES $2^{Q}$ ), the

Chow ring $A(G)$ of $G$ Is obtained as the quotient of $A(G/B)$ by the ideal
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generated by the image of $\hat{H}$ under $cc$ . Following this remark, $A(G)$ for
$G=SO(n)$ , Spin(n), $G_{2}$ , and $F_{4}$ were computed by R. Marlin [8]. So .the
remaining simply connected simple groups are $E_{6},$ $E_{7}$ , and $E_{8}$ .

Problem 1.1 Determine the Chow $\Gamma\dot{b}ngs$ of $E_{6},E_{7}$ , and $E_{8}$ .

2 Computations of $A(G/B)$

In order to determine the Chow ring $A(G)$ of $G$ following Grothendieck’s
remark, we have to compute the Chow ring $A(G/B)$ of the corresponding
flag variety $G/B$ . As for the Chow rings of flag varieties, the following
fact is known.

Fact 2.1 The Chow ring $A(G/B)$ is $isomo7phic$ to the integral cohomol-
ogy ring $H^{*}(G/B;\mathbb{Z})$ via the cycle map.

In what follows, we consider the integral cohomology ring $H^{*}(G/B;\mathbb{Z})$ .
As is well known, there are two different ways of describing the cohomol-
ogy of $G/B$ . Namely, the Borel presentation and the Schuben presenta-
tion, which we now recall.

Borel presentation
Let $K$ be a maximal compact subgroup of $G$ and $T=K\cap H$ a maximal

tonlS of $K$ . Then we have the diffeomorphism $G/B$ cr $K/T$ by the
Iwasawa decomposition of $G$ . According to Borel, there exists a fibration

$K/Tarrow^{\iota}BTarrow^{\rho}BK$,

where $BT$ (resp. $BK$) denotes the classifying space of $T$ (resp. $K$). The
induced homomorphism in cohomology,

$c=\iota^{*}:$ $H^{*}(BT;\mathbb{Z})arrow H^{*}(K/T;\mathbb{Z})$ (2)

is called Borel’s characteristic homomorp hism and can be identified with
the characteristic homomorphism (1). The Weyl group $W$ of $K$ acts
naturally on $T$ , hence on $H^{2}(BT;\mathbb{Z})$ . We extend this action of $W$ to the
whole $H^{*}(BT;\mathbb{Z})$ and also to $H^{*}(BT;F)=H^{*}(BT;\mathbb{Z})\otimes zF$ , where $F$ is
any field. Then one of Borel’s results can be stated as follows.
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Theorem 2.2 Let $F$ be a field of characteristic zero. Then Borel’s char-
acteristic homomorphism induces an isomorphism,

$\overline{c}:H^{*}(BT;F)/(H^{+}(BT;F)^{W})arrow H^{*}(K/T;F)$ ,

where $(H^{+}(BT;F)^{W})$ is the ideal of $H^{*}(BT;F)$ generated by the W-
inva$r\dot{u}ants$ of positive degroes.

In particular, one can reduce the computation of the rational cohomol-
ogy ring $H$“ $(K/T;\mathbb{Q})$ to that of the ring of invariants $H^{*}(BT;\mathbb{Q})^{W}$ . In
order to determine the integral cohomology ring $H^{*}(K/T;\mathbb{Z})$ , we need
further considerations. General description of $H^{*}(K/T;\mathbb{Z})$ by a minimal
system of generators and relations was given by H. Toda [12]. Up to now,
the following results have been available.

$H^{*}(SU(n+1)/T;\mathbb{Z})$ ... Borel (1953),
$H^{*}(SO(2n+1)/T;\mathbb{Z})$ . . . Toda-Watanabe (1974),
$H^{*}(Sp(n)/T;\mathbb{Z})$ ... Borel (1953),
$H^{*}(SO(2n)/T;\mathbb{Z})$ ... Toda-Watanabe (1974),
$H^{*}(G_{2}/T;\mathbb{Z})$ Bott-Samelson (1955),
$H^{*}(F_{4}/T;\mathbb{Z})$ Toda-Watanabe (1974),
$H^{*}(E_{6}/T;\mathbb{Z})$ $Toda_{r}$-Watanabe (1974),
$H^{*}(E_{7}/T;\mathbb{Z})$ Nakagawa (2001),
$H^{*}(E_{8}/T;\mathbb{Z})$ Nakagawa (2007).

Remark 2.3 In the Borel presentation, the $r\dot{\tau}ng$ structure of $H$“ $(K/T;\mathbb{Z}\cdot)$

is $7e$lativdy easy to obtain. However, the ring generators have liule ge-
ometnc meaning“ in this presentation.

Schubert presentation
As is well known, $G$ has the Bruhat decomposition,

$G= \prod B\dot{w}B$ ,
$w\in W$

where $\dot{w}$ denotes any representative of $w\in W$ . It induces a cell decom-
position,

$G/B= \prod_{w\in W}B\dot{w}B/B$
,
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where $X_{w}^{o}=B\dot{w}B/B\cong \mathbb{C}^{l(w)}$ is called the Schubert cell. Here $l(w)$ is
the length of the element $w\in W$ . The Schubert variety $X_{w}$ is defined
to be the closure of $X_{w}^{o}$ . Denote by $[X_{w}]\in H_{2l(w)}(G/B;\mathbb{Z})$ the image
of the fundamental class $[X_{w}]\in H_{2l(w)}(X_{w};\mathbb{Z})$ under the induced homo-
morphism by the inclusion $X_{w}arrow G/B$ . We define a cohomology class
$Z_{w}\in H^{2l(w)}(G/B;\mathbb{Z})$ as the Poincar\’e dual of $[X_{wow}]$ , where $w_{0}$ is the
longest element of $W$ . We call $Z_{w}$ the Schubert class. Then we have

Fact 2.4 The Schubert classes $\{Z_{w}\}_{w\in W}$ form an additive basis for $H^{*}(G/B;\mathbb{Z})$ .
We refer to $\{Z_{w}\}_{w\in W}$ as the Schube$rt$ basis.

Remark 2.5 In the Schubert presentation, the Schubert classes corre-
spond to the geometric objects-the Schubert varieties. However, the mul-
tiplicative stru cture among them is highly complicated,

Now we consider the following problem.

Problem 2.6 Establish a connection between the Borel presentation and
the Schubert presentation.

Our main tool is the d乙元ded difference operators introduced indepen-
dently by Bemstein-Gelftd-Gelftd [1] and Demazure [5].

Divided difference operators
First we need some notation.

$\Delta$ : the root system of $K$ with respect to $T$;

$\Delta^{+}$ : a set of positive roots;

$\Pi$ ; the system of simple roots;

$s_{\alpha}$ : the reflection corresponding to the simple root $\alpha\in\Pi$ .

Definition 2.7 (i) For each $\alpha\in\Delta$ , the operator

$\Delta_{\alpha}$ : $H^{*}(BT;\mathbb{Z})arrow H^{*}(BT;\mathbb{Z})$

is defined as

$\Delta_{\alpha}(u)=\frac{u-s_{\alpha}(u)}{u}$ for $u\in H^{*}(BT;\mathbb{Z})$ .
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(ii) For $w\in W$ , the operator $\Delta_{w}$ is defined as

$\Delta_{w}=\Delta_{\alpha_{1}}0\Delta_{\alpha_{2}}0\cdots 0\triangle_{\alpha_{k}}$ ,

where $w=s_{\alpha_{1}}s_{\alpha_{2}}\cdots s_{\alpha_{k}}(\alpha_{i}\in\Pi)$ is any reduced decomposition of $w$ .
One can show that the definition is well defined, i.e., independent of

the choice of a reduced decomposition of $w$ . Then Borel’s characteristic
homomorphism (2) can be described by the divided difference operators.

Theorem 2.8 ($Bernstein-Gelfand-Gelfand[1]$ , Demazure [5]) For
a homogeneous polynomial $f\in H^{2k}(BT;\mathbb{Z})$ , we have

$c(f)= \sum_{w\in W,l(w)=k}\Delta_{w}(f)Z_{w}$
. (3)

In particular, for $\alpha\in\Pi_{f}$ we have

$c(\omega_{\alpha})=Z_{\epsilon_{\alpha}}$ ,

whe$re\omega_{\alpha}$ denotes the fundamental weight corresponding to the simple root
$\alpha\in\Pi$ .

3 $H^{*}(E_{l}/T;\mathbb{Z})(l=6,7,8)$

Let $E_{l}(l=6,7,8)$ be the simply connected simple complex algebraic
group of exceptional type, $E_{l}$ its maximal compact subgroup and $T$ a
maximal torus of $E_{l}$ . According to [4], we take the simple roots $\{\alpha_{i}\}_{1\leq i\leq l}$

and denote by $\{\omega_{i}\}_{1\leq i\leq l}$ the corresponding fundamental weights. Let
$s_{i}(1\leq i\leq l)$ denote the reflection corresponding to the simple root
$\alpha_{i}(1\leq i\leq l)$ . Then the Weyl group $W(E_{l})$ of $E_{l}$ is generated by
$s_{i}(1\leq i\leq l)$ . As usual, we regard roots and weights as elements of
$H^{2}(BT;\mathbb{Z})$ . Following the notation in [11], [9], and [10], we put

$t_{l}$ $=\omega_{l}$ ,

$t_{i}$ $=s_{i+1}(t_{i+1})(2\leq i\leq l-1)$ ,

$t_{1}$ $=s_{1}(t_{2})$ , (4)

$t$ $=\omega_{2}$ ,

$Q$ $=\sigma_{i}(t_{1}, \ldots,t_{l})(1\leq i\leq l)$ ,
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where $\sigma_{i}(t_{1}, \ldots, t_{l})$ denotes the i-th elementary symmetric function in the
variables $t_{1},$

$\ldots,$
$t_{l}$ . Then we have

$H^{*}(BT;\mathbb{Z})=\mathbb{Z}[\omega_{1}, \omega_{2}, \ldots, \omega_{l}]$

$=\mathbb{Z}[t_{1}, t_{2}, \ldots, t_{l}, t]/(c_{1}-3t)$ .

Since we consider the simply connected form of the groups, Borel’s
characteristic homomorphism restricted in degree 2 is an isomorphIsm:

$c=\iota^{*}:$ $H^{2}(BT;\mathbb{Z})-H^{2}(E_{l}/T;\mathbb{Z})$ .

Under this isomorphism, we denote the images of $t_{i}(1\leq i\leq l)$ and $t$ by
the same symbols. Thus $H^{2}(E_{l}/T;\mathbb{Z})$ is a free $\mathbb{Z}$-module generated by
$t_{i}(1\leq i\leq l)$ and $t$ with a relation $c_{1}=3t$ .

Then the integral cohomology ring of $E_{6}/T$ is given as follows.

Theorem 3.1 ([11], Theorem B) The integral cohomology ring of $E_{6}/T$

お

$H^{*}(E_{6}/T;\mathbb{Z})=\mathbb{Z}[t_{1}, \ldots, t_{6},t,\gamma_{3}, \gamma_{4}]/(\rho_{1}, \rho_{2},\rho_{3},\rho_{4}, \rho_{5},\rho_{6},\rho_{8}, \rho_{9},\rho_{12})$ ,

where

$\rho_{1}=c_{1}-3t$ ,
$\rho_{2}=c_{2}-4t^{2}$ ,
$\rho_{3}=c_{3}-2\gamma_{3}$ ,
$\rho_{4}=c_{4}+2t^{4}-3\gamma_{4}$ ,
$\rho_{5}=c_{5}-3t\gamma_{4}+2t^{2}\gamma_{3}$ ,
$\rho_{6}=\gamma_{3^{2}}+2c_{6}-3t^{2}\gamma_{4}+t^{6}$ ,
$\rho_{8}=3\gamma_{4^{2}}-6t\gamma_{3}\gamma_{4}-9t^{2}c_{6}+15t^{4}\gamma_{4}-6t^{5}\gamma_{3}-t^{8}$,
$\rho_{9}=2c_{6}\gamma_{3}-3t^{3}c_{6}$ ,

$\rho_{12}=3c_{6}^{2}-2\gamma_{4^{3}}+6t\gamma_{3}\gamma_{4^{2}}+3t^{2}c_{6}\gamma_{4}+5t^{3}c_{6}\gamma_{3}-15t^{4}\gamma_{4^{2}}-10t^{6}c_{6}$

$+19t^{8}\gamma_{4}-6t^{9}\gamma_{3}-2t^{12}$ .

Similar presentations of $H^{*}(E_{1}/T;\mathbb{Z})(l=7,8)$ are also obtained in [9]
and [10].

Now we consider the following problem.
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Problem 3.2 Find the relations between the Wing generators $\{t_{1},$ $\ldots,t_{l}$ ,
$t,\gamma_{3},$ $\gamma_{4},$ $\ldots$ } in the Borel presentation and the Schubert basis $\{Z_{w}\}_{w\in W(E_{l})}$

$(l=6,7,8)$ .

We will show how to do this in the case of $E_{6}$ . Since $c(\omega_{i})=Z_{i}$ by
Theorem 2.8, it follows immediately from (4) that

$t_{1}$ $=-Z_{1}+Z_{2}$ ,

$t_{2}$ $=Z_{1}+Z_{2}-Z_{3}$ ,

$t_{3}$ $=Z_{2}+Z_{3}-Z_{4}$ ,

$t_{4}=Z_{4}-Z_{5}$ , (5)
$t_{5}$ $=Z_{5}-Z_{6}$ ,

$t_{6}$ $=Z_{6}$ ,

$t$ $=Z_{2}$ .

For $i=3,4$, we can put

$\gamma_{i}=\sum_{l(w)=\dot{j}}a_{w}Z_{w}$

for some integers $a_{w}$ . We will determine the coefficients $a_{w}$ . By Theorem
3.1, we have

$2\gamma_{3}$ $=c_{3}$ ,
(6)

$3\gamma_{4}=c_{4}+2t^{4}$ .

Therefore $2\gamma_{3}$ and $3\gamma_{4}$ are contained in the image of $c$. Define the poly-
nomials of $H$“ $(BT;\mathbb{Z})$ by

$\delta_{3}$ $=c_{3}$ ,
(7)

$\delta_{4}$ $=c_{4}+2t^{4}$ ,

so that $c(\delta_{3})=c_{3}(=2\gamma_{3}),$ $c(\delta_{4})=c_{4}+2t^{4}(=3\gamma_{4})$ in $H^{*}(E_{6}/T;\mathbb{Z})$ . We
apply the divided difference operators to the polynomials $\delta_{3}$ and $\delta_{4}$ .

Thus we obtain

98



$c_{3}=2Z_{342}+4Z_{542}$

$=2(Z_{342}+2Z_{542})$ ,
(8)

$c_{4}+2t^{4}=3Z_{1342}+6Z_{3542}+6Z_{6542}$

$=3(Z_{1342}+2Z_{3542}+2Z_{6542})$ .

By (6) and (8), we can express $\gamma_{i}(i=3,4)$ in terms of Schubert classes.
Since $H^{*}(E_{6}/T;\mathbb{Z})$ is torsion free, we obtain

$\gamma_{3}$ $=Z_{342}+2Z_{642}$ ,

$\gamma_{4}$ $=Z_{1342}+2Z_{3542}+2Z_{6542}$ .

Moreover, we obtain

$Z_{342}$ $=-\gamma_{3}+2t^{3}$
)

$Z_{542}$ $=\gamma_{3}-t^{3}$ ,
$Z_{1342}$ $=\gamma_{4}-2t\gamma_{3}+2t^{4}$ , (9)
$Z_{3542}$ $=-\gamma_{4}+t\gamma_{3}$ ,

$Z_{6542}$ $=\gamma_{4}-t^{4}$ .

4 Computations of $A(G)$

In this section, we determine the Chow rings of the exceptional groups
$E_{6}$ , E7, and $E_{8}$ . Since we have the following commutative diagram,

$H^{*}(BT;\mathbb{Z})S(\hat{H})\underline{\simeq}\downarrowarrow^{arrow c_{G}c}H^{*}(G/B;\mathbb{Z})A(G/B)\downarrow\underline{\simeq}$

we have
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$A(G)=A(G/B)/(c_{G}(\hat{H}))$

$=H^{*}(G/B;\mathbb{Z})/(c(H^{2}(BT;\mathbb{Z}))$

$=H^{*}(G/B;\mathbb{Z})/(H^{2}(G/B;\mathbb{Z}))$

$=H^{*}(K/T;\mathbb{Z})/(H^{2}(K/T;\mathbb{Z}))$ .
Therefore we have only to compute the quotient ring of $H^{*}(K/T;\mathbb{Z})$

by the ideal generated by $H^{2}(K/T;\mathbb{Z})$ . We will show how to do this for
the case of $E_{6}$ . By Theorem 3.1 and (9), we compute

$H^{*}(E_{6}/T;\mathbb{Z})/(H^{2}(E_{6}/T;\mathbb{Z}))=H^{*}(E_{6}/T;\mathbb{Z})/(t_{1}, \ldots,t_{6},t)$

$=\mathbb{Z}[\gamma_{3},\gamma_{4}]/(2\gamma_{3},3\gamma_{4},\gamma_{3}^{2}, \gamma_{4}^{3})$

$=\mathbb{Z}[Z_{542}, Z_{6542}]/(2Z_{542},3Z_{6542}, Z_{542}^{2}, Z_{6542}^{3})$ .

In this way, we can compute the Chow rings of $E_{l}(l=6,7^{\cdot}, 8)$ . Let
$T_{G}$ : $A(G/B)arrow A(G)$ denote the natural projection and $w_{0}$ the longest
element of the Weyl group $W(E_{l})(l=6,7,8)$ . Then we have the following
main result.

Theorem 4.1 (i) The Chow $rng$ of $E_{6}$ is

$A(E_{6})=\mathbb{Z}[X_{3}, X_{4}]/(2X_{3},3X_{4}, X_{3}^{2},X_{4}^{3})$ ,

where $X_{3}=T_{E_{6}}(X_{wo\epsilon\epsilon\epsilon_{42}})$ and $X_{4}=T_{E_{6}}(X_{wo\epsilon 0\epsilon_{5}\epsilon_{4}\epsilon_{2}})$ .
(ii) The Chow $r\dot{\eta}ng$ of E7 is

$A(E_{7})=\mathbb{Z}[X_{3},X_{4}, X_{5}, X_{9}]$

$/(2X_{3},3X_{4},2X_{5},X_{3}^{2},2X_{9}, X_{5}^{2}, X_{4}^{3},X_{9}^{2})$ ,

where $X_{3}=T_{E_{7}}(X_{w_{0}\epsilon_{5}\epsilon_{4}\epsilon_{2}}),$ $X_{4}=T_{E_{7}}(X_{w_{0}\epsilon_{6}\epsilon_{6}\epsilon_{4^{g}2}}),$ $X_{5}=T_{E_{7}}(X_{w_{0}\epsilon\tau\epsilon q\epsilon_{6}\epsilon_{4}\epsilon_{2}})$ ,
$X_{9}=T_{E_{7}}(X_{w_{0}\iota_{6}\epsilon\epsilon s_{4}\epsilon s\epsilon\tau\epsilon\alpha\epsilon\epsilon\epsilon_{4^{g}2}})$ .

(iii) The Chow ring of $E_{8}$ is

$A(E_{8})=\mathbb{Z}[X_{3},X_{4},X_{5}, X_{6}, X_{9},X_{10},X_{15}]$

where $X_{i}=T_{E_{8}}(\gamma_{i})(i=3,4,5,6,9,10,15)$ .
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Remark 4.2 (i) The result of $E_{8}$ is not satisfactory. We determined
merely the ring structure of $A(E_{8})$ . At present, we are not able to express
the $r\dot{\iota}ng$ generators of $H^{*}(E_{8}/T;\mathbb{Z})$ in terms of Schubert classes.

(ii) For details on the computations for $E_{6}$ and $E_{7}$ , see $[\eta$ .
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