The Chow rings of the algebraic groups $\mathrm{E}_{6}, \mathrm{E}_{7}$ ，and E_{8}

Masaki Nakagawa（中川 征樹）＊ Takamatsu National College of Technology高松工業高等専門学校

1 Introduction

Let G be a simply connected，simple algebraic group over the complex numbers \mathbb{C}, B a Borel subgroup and H a maximal torus contained in B ． Denote by \hat{H} the character group of H ．By taking the first Chern class of the homogeneous line bundle L_{χ} over the flag variety G / B associated to each character χ ，we define the characteristic homomorphism for G ，

$$
\begin{equation*}
c_{G}: S(\hat{H}) \longrightarrow A(G / B), \tag{1}
\end{equation*}
$$

where $S(\hat{H})$ is the symmetric algebra of \hat{H} and $A(G / B)=\oplus_{i \geq 0} A^{i}(G / B)$ is the Chow ring of the algebraic variety G / B ．

According to Grothendieck＇s remark（［6］，p．21，REMARQUES 2° ），the Chow ring $A(G)$ of G is obtained as the quotient of $A(G / B)$ by the ideal

Cohomology Theory of Finite Groups and Related Topics，August 27－31， 2007. 2000 Mathematics Subject Classification．Primary 14C15；Secondary 14M15．
Key words and phrases．Chow rings，algebraic groups，Schubert calculus，flag varieties．
＊Partially supported by the Grant－in－Aid for Scientific Research（C），Japan So－ ciety of the Promotion of Science．
generated by the image of \hat{H} under c_{G}. Following this remark, $A(G)$ for $G=\operatorname{SO}(\mathrm{n}), \operatorname{Spin}(\mathrm{n}), \mathrm{G}_{2}$, and F_{4} were computed by R. Marlin [8]. So the remaining simply connected simple groups are $\mathrm{E}_{6}, \mathrm{E}_{7}$, and E_{8}.

Problem 1.1 Determine the Chow rings of $\mathrm{E}_{6}, \mathrm{E}_{7}$, and E_{8}.

2 Computations of $A(G / B)$

In order to determine the Chow ring $A(G)$ of G following Grothendieck's remark, we have to compute the Chow ring $A(G / B)$ of the corresponding flag variety G / B. As for the Chow rings of flag varieties, the following fact is known.

Fact 2.1 The Chow ring $A(G / B)$ is isomorphic to the integral cohomology ring $H^{*}(G / B ; \mathbb{Z})$ via the cycle map.

In what follows, we consider the integral cohomology ring $H^{*}(G / B ; \mathbb{Z})$. As is well known, there are two different ways of describing the cohomology of G / B. Namely, the Borel presentation and the Schubert presentation, which we now recall.

Borel presentation

Let K be a maximal compact subgroup of G and $T=K \cap H$ a maximal torus of K. Then we have the diffeomorphism $G / B \cong K / T$ by the Iwasawa decomposition of G. According to Borel, there exists a fibration

$$
K / T \xrightarrow{\iota} B T \xrightarrow{\rho} B K,
$$

where $B T$ (resp. $B K$) denotes the classifying space of T (resp. K). The induced homomorphism in cohomology,

$$
\begin{equation*}
c=\iota^{*}: H^{*}(B T ; \mathbb{Z}) \longrightarrow H^{*}(K / T ; \mathbb{Z}) \tag{2}
\end{equation*}
$$

is called Borel's characteristic homomorphism and can be identified with the characteristic homomorphism (1). The Weyl group W of K acts naturally on T, hence on $H^{2}(B T ; \mathbb{Z})$. We extend this action of W to the whole $H^{*}(B T ; \mathbb{Z})$ and also to $H^{*}(B T ; \mathbb{F})=H^{*}(B T ; \mathbb{Z}) \otimes \mathbb{Z} \mathbb{F}$, where \mathbb{F} is any field. Then one of Borel's results can be stated as follows.

Theorem 2.2 Let \mathbb{F} be a field of characteristic zero. Then Borel's characteristic homomorphism induces an isomorphism,

$$
\bar{c}: H^{*}(B T ; \mathbb{F}) /\left(H^{+}(B T ; \mathbb{F})^{W}\right) \longrightarrow H^{*}(K / T ; \mathbb{F}),
$$

where $\left(H^{+}(B T ; \mathbb{F})^{W}\right)$ is the ideal of $H^{*}(B T ; \mathbb{F})$ generated by the W invariants of positive degrees.

In particular, one can reduce the computation of the rational cohomology ring $H^{*}(K / T ; \mathbb{Q})$ to that of the ring of invariants $H^{*}(B T ; \mathbb{Q})^{W}$. In order to determine the integral cohomology ring $H^{*}(K / T ; \mathbb{Z})$, we need further considerations. General description of $H^{*}(K / T ; \mathbb{Z})$ by a minimal system of generators and relations was given by H. Toda [12]. Up to now, the following results have been available.

```
\(H^{*}(S U(n+1) / T ; \mathbb{Z}) \quad \cdots \quad\) Borel (1953),
\(H^{*}(S O(2 n+1) / T ; \mathbb{Z}) \quad \cdots \quad\) Toda-Watanabe (1974),
\(H^{*}(S p(n) / T ; \mathbb{Z}) \quad \cdots \quad\) Borel (1953),
\(H^{*}(S O(2 n) / T ; \mathbb{Z}) \quad \cdots\) Toda-Watanabe (1974),
\(H^{*}\left(G_{2} / T ; \mathbb{Z}\right) \quad \cdots \quad\) Bott-Samelson (1955),
\(H^{*}\left(F_{4} / T ; \mathbb{Z}\right) \quad \cdots \quad\) Toda-Watanabe (1974),
\(H^{*}\left(E_{6} / T ; \mathbb{Z}\right) \quad \cdots\) Toda-Watanabe (1974),
\(H^{*}\left(E_{7} / T ; \mathbb{Z}\right) \quad \cdots \quad\) Nakagawa (2001),
\(H^{*}\left(E_{8} / T ; \mathbb{Z}\right) \quad \cdots \quad\) Nakagawa (2007).
```

Remark 2.3 In the Borel presentation, the ring structure of $H^{*}(K / T ; \mathbb{Z})$ is relatively easy to obtain. However, the ring generators have little "geometric meaning" in this presentation.

Schubert presentation

As is well known, G has the Bruhat decomposition,

$$
G=\coprod_{w \in W} B \dot{w} B
$$

where \dot{w} denotes any representative of $w \in W$. It induces a cell decomposition,

$$
G / B=\coprod_{w \in W} B \dot{w} B / B
$$

where $X_{w}^{\circ}=B \dot{w} B / B \cong \mathbb{C}^{l(w)}$ is called the Schubert cell. Here $l(w)$ is the length of the element $w \in W$. The Schubert variety X_{w} is defined to be the closure of X_{w}°. Denote by $\left[X_{w}\right] \in H_{2 l(w)}(G / B ; \mathbb{Z})$ the image of the fundamental class $\left[X_{w}\right] \in H_{2 l(w)}\left(X_{w} ; \mathbb{Z}\right)$ under the induced homomorphism by the inclusion $X_{w} \hookrightarrow G / B$. We define a cohomology class $Z_{w} \in H^{2 l(w)}(G / B ; \mathbb{Z})$ as the Poincaré dual of $\left[X_{w_{0} w}\right]$, where w_{0} is the longest element of W. We call Z_{w} the Schubert class. Then we have

Fact 2.4 The Schubert classes $\left\{Z_{w}\right\}_{w \in W}$ form an additive basis for $H^{*}(G / B ; \mathbb{Z})$. We refer to $\left\{Z_{w}\right\}_{w \in W}$ as the Schubert basis.

Remark 2.5 In the Schubert presentation, the Schubert classes correspond to the geometric objects -the Schubert varieties. However, the multiplicative structure among them is highly complicated.

Now we consider the following problem.
Problem 2.6 Establish a connection between the Borel presentation and the Schubert presentation.

Our main tool is the divided difference operators introduced independently by Bernstein-Gelfand-Gelfand [1] and Demazure [5].

Divided difference operators

First we need some notation.
Δ : the root system of K with respect to T;
Δ^{+}: a set of positive roots;
Π : the system of simple roots;
s_{α} : the reflection corresponding to the simple root $\alpha \in \Pi$.
Definition 2.7 (i) For each $\alpha \in \Delta$, the operator

$$
\Delta_{\alpha}: H^{*}(B T ; \mathbb{Z}) \longrightarrow H^{*}(B T ; \mathbb{Z})
$$

is defined as

$$
\Delta_{\alpha}(u)=\frac{u-s_{\alpha}(u)}{u} \text { for } u \in H^{*}(B T ; \mathbb{Z})
$$

(ii) For $w \in W$, the operator Δ_{w} is defined as

$$
\Delta_{w}=\Delta_{\alpha_{1}} \circ \Delta_{\alpha_{2}} \circ \cdots \circ \Delta_{\alpha_{k}},
$$

where $w=s_{\alpha_{1}} s_{\alpha_{2}} \cdots s_{\alpha_{k}}\left(\alpha_{i} \in \Pi\right)$ is any reduced decomposition of w.
One can show that the definition is well defined, i.e., independent of the choice of a reduced decomposition of w. Then Borel's characteristic homomorphism (2) can be described by the divided difference operators.
Theorem 2.8 (Bernstein-Gelfand-Gelfand [1], Demazure [5]) For a homogeneous polynomial $f \in H^{2 k}(B T ; \mathbb{Z})$, we have

$$
\begin{equation*}
c(f)=\sum_{w \in W, l(w)=k} \Delta_{w}(f) Z_{w} . \tag{3}
\end{equation*}
$$

In particular, for $\alpha \in \Pi$, we have

$$
c\left(\omega_{\alpha}\right)=Z_{s_{\alpha}}
$$

where ω_{α} denotes the fundamental weight corresponding to the simple root $\alpha \in \Pi$.

$3 \quad H^{*}\left(E_{l} / T ; \mathbb{Z}\right)(l=6,7,8)$

Let $\mathrm{E}_{l}(l=6,7,8)$ be the simply connected simple complex algebraic group of exceptional type, E_{l} its maximal compact subgroup and T a maximal torus of E_{l}. According to [4], we take the simple roots $\left\{\alpha_{i}\right\}_{1 \leq i \leq l}$ and denote by $\left\{\omega_{i}\right\}_{1 \leq i \leq l}$ the corresponding fundamental weights. Let $s_{i}(1 \leq i \leq l)$ denote the reflection corresponding to the simple root $\alpha_{i}(1 \leq i \leq l)$. Then the Weyl group $W\left(E_{l}\right)$ of E_{l} is generated by $s_{i}(1 \leq i \leq l)$. As usual, we regard roots and weights as elements of $H^{2}(B T ; \mathbb{Z})$. Following the notation in [11], [9], and [10], we put

$$
\begin{align*}
t_{l} & =\omega_{l}, \\
t_{i} & =s_{i+1}\left(t_{i+1}\right)(2 \leq i \leq l-1), \\
t_{1} & =s_{1}\left(t_{2}\right), \tag{4}\\
t & =\omega_{2}, \\
c_{i} & =\sigma_{i}\left(t_{1}, \ldots, t_{l}\right)(1 \leq i \leq l),
\end{align*}
$$

where $\sigma_{i}\left(t_{1}, \ldots, t_{l}\right)$ denotes the i-th elementary symmetric function in the variables t_{1}, \ldots, t_{l}. Then we have

$$
\begin{aligned}
H^{*}(B T ; \mathbb{Z}) & =\mathbb{Z}\left[\omega_{1}, \omega_{2}, \ldots, \omega_{l}\right] \\
& =\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{l}, t\right] /\left(c_{1}-3 t\right) .
\end{aligned}
$$

Since we consider the simply connected form of the groups, Borel's characteristic homomorphism restricted in degree 2 is an isomorphism:

$$
c=\iota^{*}: H^{2}(B T ; \mathbb{Z}) \longrightarrow H^{2}\left(E_{l} / T ; \mathbb{Z}\right) .
$$

Under this isomorphism, we denote the images of $t_{i}(1 \leq i \leq l)$ and t by the same symbols. Thus $H^{2}\left(E_{l} / T ; \mathbb{Z}\right)$ is a free \mathbb{Z}-module generated by $t_{i}(1 \leq i \leq l)$ and t with a relation $c_{1}=3 t$.

Then the integral cohomology ring of E_{6} / T is given as follows.
Theorem 3.1 ([11], Theorem B) The integral cohomology ring of E_{6} / T is

$$
H^{*}\left(E_{6} / T ; \mathbb{Z}\right)=\mathbb{Z}\left[t_{1}, \ldots, t_{6}, t, \gamma_{3}, \gamma_{4}\right] /\left(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}, \rho_{6}, \rho_{8}, \rho_{9}, \rho_{12}\right)
$$

where

$$
\begin{aligned}
\rho_{1} & =c_{1}-3 t, \\
\rho_{2} & =c_{2}-4 t^{2}, \\
\rho_{3} & =c_{3}-2 \gamma_{3}, \\
\rho_{4} & =c_{4}+2 t^{4}-3 \gamma_{4}, \\
\rho_{5} & =c_{5}-3 t \gamma_{4}+2 t^{2} \gamma_{3}, \\
\rho_{6} & =\gamma_{3}{ }^{2}+2 c_{6}-3 t^{2} \gamma_{4}+t^{6}, \\
\rho_{8} & =3 \gamma_{4}{ }^{2}-6 t \gamma_{3} \gamma_{4}-9 t^{2} c_{6}+15 t^{4} \gamma_{4}-6 t^{5} \gamma_{3}-t^{8}, \\
\rho_{9} & =2 c_{6} \gamma_{3}-3 t^{3} c_{6}, \\
\rho_{12} & =3 c_{6}^{2}-2 \gamma_{4}{ }^{3}+6 t \gamma_{3} \gamma_{4}{ }^{2}+3 t^{2} c_{6} \gamma_{4}+5 t^{3} c_{6} \gamma_{3}-15 t^{4} \gamma_{4}{ }^{2}-10 t^{6} c_{6} \\
& +19 t^{8} \gamma_{4}-6 t^{9} \gamma_{3}-2 t^{12} .
\end{aligned}
$$

Similar presentations of $H^{*}\left(E_{l} / T ; \mathbb{Z}\right)(l=7,8)$ are also obtained in [9] and [10].

Now we consider the following problem.

Problem 3.2 Find the relations between the ring generators $\left\{t_{1}, \ldots, t_{l}\right.$, $\left.t, \gamma_{3}, \gamma_{4}, \ldots\right\}$ in the Borel presentation and the Schubert basis $\left\{Z_{w}\right\}_{w \in W\left(E_{l}\right)}$ $(l=6,7,8)$.

We will show how to do this in the case of E_{6}. Since $c\left(\omega_{i}\right)=Z_{i}$ by Theorem 2.8, it follows immediately from (4) that

$$
\begin{align*}
t_{1} & =-Z_{1}+Z_{2}, \\
t_{2} & =Z_{1}+Z_{2}-Z_{3}, \\
t_{3} & =Z_{2}+Z_{3}-Z_{4}, \\
t_{4} & =Z_{4}-Z_{5}, \tag{5}\\
t_{5} & =Z_{5}-Z_{6}, \\
t_{6} & =Z_{6}, \\
t & =Z_{2} .
\end{align*}
$$

For $i=3,4$, we can put

$$
\gamma_{i}=\sum_{l(w)=i} a_{w} Z_{w}
$$

for some integers a_{w}. We will determine the coefficients a_{w}. By Theorem 3.1, we have

$$
\begin{align*}
& 2 \gamma_{3}=c_{3} \\
& 3 \gamma_{4}=c_{4}+2 t^{4} \tag{6}
\end{align*}
$$

Therefore $2 \gamma_{3}$ and $3 \gamma_{4}$ are contained in the image of c. Define the polynomials of $H^{*}(B T ; \mathbb{Z})$ by

$$
\begin{align*}
\delta_{3} & =c_{3} \\
\delta_{4} & =c_{4}+2 t^{4} \tag{7}
\end{align*}
$$

so that $c\left(\delta_{3}\right)=c_{3}\left(=2 \gamma_{3}\right), c\left(\delta_{4}\right)=c_{4}+2 t^{4}\left(=3 \gamma_{4}\right)$ in $H^{*}\left(E_{6} / T ; \mathbb{Z}\right)$. We apply the divided difference operators to the polynomials δ_{3} and δ_{4}.

Thus we obtain

$$
\begin{align*}
c_{3} & =2 Z_{342}+4 Z_{542} \\
& =2\left(Z_{342}+2 Z_{542}\right) \\
c_{4}+2 t^{4} & =3 Z_{1342}+6 Z_{3542}+6 Z_{6542} \tag{8}\\
& =3\left(Z_{1342}+2 Z_{3542}+2 Z_{6542}\right) .
\end{align*}
$$

By (6) and (8), we can express $\gamma_{i}(i=3,4)$ in terms of Schubert classes. Since $H^{*}\left(E_{6} / T ; \mathbb{Z}\right)$ is torsion free, we obtain

$$
\begin{aligned}
\gamma_{3} & =Z_{342}+2 Z_{542} \\
\gamma_{4} & =Z_{1342}+2 Z_{3542}+2 Z_{6542} .
\end{aligned}
$$

Moreover, we obtain

$$
\begin{align*}
Z_{342} & =-\gamma_{3}+2 t^{3}, \\
Z_{542} & =\gamma_{3}-t^{3}, \\
Z_{1342} & =\gamma_{4}-2 t \gamma_{3}+2 t^{4}, \tag{9}\\
Z_{3542} & =-\gamma_{4}+t \gamma_{3}, \\
Z_{6542} & =\gamma_{4}-t^{4} .
\end{align*}
$$

4 Computations of $A(G)$

In this section, we determine the Chow rings of the exceptional groups $\mathrm{E}_{6}, \mathrm{E}_{7}$, and E_{8}. Since we have the following commutative diagram,

we have

$$
\begin{aligned}
A(G) & =A(G / B) /\left(c_{G}(\hat{H})\right) \\
& =H^{*}(G / B ; \mathbb{Z}) /\left(c\left(H^{2}(B T ; \mathbb{Z})\right)\right. \\
& =H^{*}(G / B ; \mathbb{Z}) /\left(H^{2}(G / B ; \mathbb{Z})\right) \\
& =H^{*}(K / T ; \mathbb{Z}) /\left(H^{2}(K / T ; \mathbb{Z})\right) .
\end{aligned}
$$

Therefore we have only to compute the quotient ring of $H^{*}(K / T ; \mathbb{Z})$ by the ideal generated by $H^{2}(K / T ; \mathbb{Z})$. We will show how to do this for the case of E_{6}. By Theorem 3.1 and (9), we compute

$$
\begin{aligned}
H^{*}\left(E_{6} / T ; \mathbb{Z}\right) /\left(H^{2}\left(E_{6} / T ; \mathbb{Z}\right)\right) & =H^{*}\left(E_{6} / T ; \mathbb{Z}\right) /\left(t_{1}, \ldots, t_{6}, t\right) \\
& =\mathbb{Z}\left[\gamma_{3}, \gamma_{4}\right] /\left(2 \gamma_{3}, 3 \gamma_{4}, \gamma_{3}^{2}, \gamma_{4}^{3}\right) \\
& =\mathbb{Z}\left[Z_{542}, Z_{6542}\right] /\left(2 Z_{542}, 3 Z_{6542}, Z_{542}^{2}, Z_{6542}^{3}\right)
\end{aligned}
$$

In this way, we can compute the Chow rings of $\mathrm{E}_{l}(l=6,7,8)$. Let $T_{G}: A(G / B) \longrightarrow A(G)$ denote the natural projection and w_{0} the longest element of the Weyl group $W\left(E_{l}\right)(l=6,7,8)$. Then we have the following main result.

Theorem 4.1 (i) The Chow ring of E_{6} is

$$
A\left(\mathrm{E}_{6}\right)=\mathbb{Z}\left[X_{3}, X_{4}\right] /\left(2 X_{3}, 3 X_{4}, X_{3}^{2}, X_{4}^{3}\right),
$$

where $X_{3}=T_{\mathrm{E}_{6}}\left(X_{w_{0} 8_{5} \delta_{4} \varepsilon_{2}}\right)$ and $X_{4}=T_{\mathrm{E}_{6}}\left(X_{w_{0} 8_{8} 8_{5} s_{4} s_{2}}\right)$.
(ii) The Chow ring of E_{7} is

$$
\begin{aligned}
A\left(\mathrm{E}_{7}\right)=\mathbb{Z} & {\left[X_{3}, X_{4}, X_{5}, X_{9}\right] } \\
& \quad /\left(2 X_{3}, 3 X_{4}, 2 X_{5}, X_{3}^{2}, 2 X_{9}, X_{5}^{2}, X_{4}^{3}, X_{9}^{2}\right)
\end{aligned}
$$

where $X_{3}=T_{\mathrm{E}_{7}}\left(X_{w_{0} 8_{5} 8_{4} 8_{2}}\right), X_{4}=T_{\mathrm{E}_{7}}\left(X_{w_{0} 8_{6} \sigma_{5} 8_{4} \varepsilon_{2}}\right), X_{5}=T_{\mathrm{E}_{7}}\left(X_{w_{0} \varepsilon_{7} 8_{8} 8_{5} \delta_{4} \varepsilon_{2}}\right)$, $X_{9}=T_{E_{7}}\left(X_{w_{0} 8_{8} 8_{5} 8_{4} 8_{3} 8_{7} 8_{6} 8_{5} 5_{4} 8_{2}}\right)$.
(iii) The Chow ring of E_{8} is

$$
\begin{aligned}
A\left(\mathrm{E}_{8}\right)=\mathbb{Z} & {\left[X_{3}, X_{4}, X_{5}, X_{6}, X_{9}, X_{10}, X_{15}\right] } \\
& /\binom{2 X_{3}, 3 X_{4}, 2 X_{5}, 5 X_{6}, 2 X_{9}, X_{5}^{2}-3 X_{10}, X_{4}^{3},}{2 X_{15}, X_{9}^{2}, 3 X_{10}^{2}, X_{3}^{8}, X_{15}^{2}+X_{10}^{3}+2 X_{6}^{5}},
\end{aligned}
$$

where $X_{i}=T_{E_{B}}\left(\gamma_{i}\right)(i=3,4,5,6,9,10,15)$.

Remark 4.2 （i）The result of E_{8} is not satisfactory．We determined merely the ring structure of $A\left(\mathrm{E}_{8}\right)$ ．At present，we are not able to express the ring generators of $H^{*}\left(E_{8} / T ; \mathbb{Z}\right)$ in terms of Schubert classes．
（ii）For details on the computations for E_{6} and E_{7} ，see［7］．

参考文献

［1］I．N．Bernstein，I．M．Gelfand and S．I．Gelfand，Schubert cells and the cohomology of the spaces G / P ，L．M．S．Lecture Notes vol． 69 Cambridge Univ．Press，1982，115－140．
［2］A．Borel，Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts，Ann．of Math． 57 （1953），115－207．
［3］R．Bott and H．Samelson，Application of the theory of Morse to the symmetric spaces，Amer．J．Math． 80 （1958），964－1029．
［4］N．Bourbaki，Groupes et Algèbre de Lie IV－VI，Masson，Paris， 1968.
［5］M．Demazure，Invariants symmétriques des groupes de Weyl et tor－ sion，Invent．Math． 21 （1973），287－301．
［6］A．Grothendieck，Torsion homologique et sections rationnelles，Ex－ posé 5 in Anneaux de Chow et applications，Séminaire C．Chevalley， 1958，Multigraphié，Secrétariat Mathematique，Paris．
［7］S．Kaji and M．Nakagawa，The Chow rings of the algebraic groups E_{6} and E_{7} ，arXiv：math．AT／07093702．
［8］R．Marlin，Anneaux de Chow des groupes algebriques $S O(n), \operatorname{Spin}(n), G_{2}$ et F_{4}, \quad Publications Math．d＇Orsay，95－7419 （1974）．
［9］M．Nakagawa，The integral cohomology ring of E_{7} / T ，J．Math． Kyoto Univ． 41 （2001），303－321．
［10］M．Nakagawa，The integral cohomology ring of E_{8} / T ，in preparation．
[11] H. Toda and T. Watanabe, The integral cohomology ring of F_{4} / T and E_{6} / T, J. Math. Kyoto Univ. 14 (1974), 257-286.
[12] H. Toda, On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ. 15 (1975), 185-199.

