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The Chow rings of the algebraic groups
Eg, E7, and Eg

Masaki Nakagawa (9)!| TEH#) *
Takamatsu National College of Technology
e e

1 Introduction

Let G be a simply connected, simple algebraic group over the complex -
numbers C, B a Borel subgroup and H a maximal torus contained in B.
Denote by H the character group of H. By taking the first Chern class
of the homogeneous line bundle L, over the flag variety G/B associated
to each character x, we define the characteristic homomorphism for G,

cg: S(H) — A(G/B), (1)

where S(H) is the symmetric algebra of H and A(G/B) = ®i»0A*(G/B)
is the Chow ring of the algebraic variety G/B. ‘

According to Grothendieck’s remark ([6], p.21, REMARQUES 2°), the
Chow ring A(G) of G is obtained as the quotient of A(G/B) by the ideal
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generated by the image of H under cg. Following this remark, A(G) for
G = S0(n), Spin(n), G2, and F4 were computed by R. Marlin [8]. So the
remaining simply connected simple groups are Eg, E7, and Eg.

Problem 1.1 Determine the Chow rings of Eg, E7, and Eg.

2 Computations of A(G/B)

In order to determine the Chow ring A(G) of G following Grothendieck’s
remark, we have to compute the Chow ring A(G/B) of the corresponding
flag variety G/B. As for the Chow rings of flag varieties, the following
fact is known. '

Fact 2.1 The Chow ring A(G/B) is isomorphic to the integral cohomol-
ogy ring H*(G/B;Z) via the cycle map.

In what follows, we consider the integral cohomology ring H*(G/B; Z).
As is well known, there are two different ways of describing the cohomol-
ogy of G/B. Namely, the Borel presentation and the Schubert presenta-
tion, which we now recall.

Borel presentation

Let K be a maximal compact subgroup of G and T'= KN H a maximal
torus of K. Then we have the diffeomorphism G/B = K/T by the
Iwasawa decomposition of G. According to Borel, there exists a fibration

K/T —» BT £ BK,

where BT (resp. BK) denotes the classifying space of T' (resp. K). The
induced homomorphism in cohomology,

¢=: H*(BT;Z) — H*(K/T;Z) (2)

is called Borel’s characteristic homomorphism and can be identified with
the characteristic homomorphism (1). The Weyl group W of K acts
naturally on 7', hence on H2(BT;Z). We extend this action of W to the
whole H*(BT;Z) and also to H*(BT;F) = H*(BT;Z) ®z F, where F is
any field. Then one of Borel’s results can be stated as follows.
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Theorem 2.2 Let IF be a field of characteristic zero. Then Borel’s char-
acteristic homomorphism induces an isomorphism,

¢: H*(BT;F)/(H*(BT;F)V) — H*(K/T;F),

where (H*(BT;F)V) is the ideal of H*(BT;F) generated by the W-
invariants of positive degrees.

In particular, one can reduce the computation of the rational cohomol-
ogy ring H*(K/T;Q) to that of the ring of invariants H*(BT;Q)". In
order to determine the integral cohomology ring H*(K/T;Z), we need
further considerations. General description of H*(K/T;Z) by a minimal
system of generators and relations was given by H. Toda [12]. Up to now,
the following results have been available.

H*(SU(n+1)/T;Z) --- Borel (1953),
H*(SO(2n+1)/T;Z) --- Toda-Watanabe (1974),
H*(Sp(n)/T;Z) --- Borel (1953),
H*(SO(2n)/T;Z) .-+ Toda-Watanabe (1974),
H*(G2/T;Z) -+« Bott-Samelson (1955),
H*(F4/T;Z) -+« Toda-Watanabe (1974),
H*(Eg¢/T;Z) .-+ Toda-Watanabe (1974),
H*(E,/T;Z) -+-  Nakagawa (2001),
H*(Es/T;Z) .-+ Nakagawa (2007).

Remark 2.3 In the Borel presentation, the ring structure of H*(K/T; Z)
is relatively easy to obtain. However, the ring generators have little “ge-
ometric meaning” in this presentation.

Schubert presentation
As is well known, G has the Bruhat decomposition,

G =[] BuB,
wew
where 1 denotes any representative of w € W. It induces a cell decom-
position, ' |
G/B = [] BwB/B,
weWw
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where X7 = BwB/B = C) is called the Schubert cell. Here I(w) is
the length of the element w € W. The Schubert variety X,, is defined
to be the closure of X. Denote by [X,] € Hyyw)(G/B;Z) the image
~ of the fundamental class [X,] € Hyy)(Xw; Z) under the induced homo-
morphism by the inclusion X,, < G/B. We define a cohomology class
Zy € Hm(“’)(G/B;Z) as the Poincaré dual of [X,.], where wy is the
longest element of W. We call Z,, the Schubert class. Then we have

Fact 2.4 The Schubert classes {Zy}wew form an additive basis for H*(G/B; Z).
We refer to {Z,,}wew as the Schubert basis.

Remark 2.5 In the Schubert presentation, the Schubert classes corre-
spond to the geometric objects -the Schubert varieties. However, the mul-
tiplicative structure among them is highly complicated.

Now we consider the following problem.

Problem 2.6 Establish a connection between the Borel presentation and
the Schubert presentation.

Our main tool is the divided difference operators introduced indepen-
dently by Bernstein-Gelfand-Gelfand [1] and Demazure [5].

Divided difference operators

First we need some notation.

A: the root system of K with respect to T';
A*: a set of positive roots;
II: the system of simple roots;
Sq: the reflection corresponding to the simple root a € II.
Definition 2.7 (i) For each a € A, the operator
A, : H*(BT;Z) — H*(BT;Z)

is defined as

Ay(u) = 3:_29_(_12 for ue H*(BT;Z).
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(ii) For w € W, the operator A,, is defined as
Aw——'AalOAazO'"OAak,
where W = 84,84, * * * Sa, (4 € II) is any reduced decomposition of w.

One can show that the definition is well defined, i.e., independent of
the choice of a reduced decomposition of w. Then Borel’s characteristic
homomorphism (2) can be described by the divided difference operators.

Theorem 2.8 (Bernstéin-Gelfand-Gelfand [1], Demazure [5]) For
a homogeneous polynomial f € H*(BT;Z), we have

cf= D Au(f)Zw. (3)

weWw, l(w)=k

In particular, for o € T, we have
c(Wa) = Zsg,

where w, denotes the fundamental weight corresponding to the simple root
a € II.

3 HY(E/T;Z)(1=6,7,8)

Let E; (I = 6,7,8) be the simply connected simple complex algebraic
group of exceptional type, E; its maximal compact subgroup and T a
maximal torus of E;. According to [4], we take the simple roots {a;}1<i<i
and denote by {w;}i<i<i the corresponding fundamental weights. Let
s; (1 < 1 < l) denote the reflection corresponding to the simple root
a; (1 < i < 1). Then the Weyl group W(E;) of E; is generated by
s; (1 < i < I). As usual, we regard roots and weights as elements of
H?(BT;Z). Following the notation in [11}, [9], and [10], we put

t =_wz,'

ti =sipi(tiy1) 2<i<I-1),

t1 = s1(t2), (4)
i =wy,

Ci =0','(t1,...,t1) (1 SZSZ),



where o;(t1, . .., ;) denotes the i-th elementary symmetric function in the
variables t1,...,t. Then we have

H*(BT;Z) = Z{w, ws, . .. ,w)
= Z[th 12y, tl’t]/(cl - 3t) .

Since we consider the simply connected form of the groups, Borel’s
characteristic homomorphism restricted in degree 2 is an isomorphism:

c=*: H¥BT;2Z)—H*(E,/T;Z).

Under this isomorphism, we denote the images of t; (1 <7 <) and ¢ by
the same symbols. Thus H2(E;/T;Z) is a free Z-module generated by
t; (1 <i <) and t with a relation ¢; = 3t.

Then the integral cohomology ring of Eg/T is given as follows.
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Theorem 3.1 ([11], Theorem B) The integral cohomology ring of E¢/T

18

H*(EG/T’ Z) = Z[t1’ teey t57 t’ Y3 ’74]/(p1’ P2, P3, P4, P5, P6, P8, p97 p12)1

where
p1=C — 3t,
p2 = cy — 412,
ps = c3 — 213,

pa = Cq + 2t4 — 3y,
ps = c5 — 3tys + 28773,
pe = 3% + 2c5 — 3t?y, +t°,
ps = 3742 — 6tygys — 9tice + 15ty — 6t5y; — 2,
po = 2cevs — 3t3cs,
p12 = 32 — 274 + Btysys® + 3t2cevs + 5t3cevs — 15thy," — 10t%¢q
+ 198~ — 6t%y3 — 2t12.

Similar presentations of H*(E;/T;Z) (I = 7,8) are also obtained in [9]
and [10].
Now we consider the following problem.
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Problem 3.2 Find the relations between the ring generators {ti, ..., 1,

t, s, V4, - - -} in the Borel presentation and the Schubert basis {Zy }wew ()
(1=6,7,8).

We will show how to do this in the case of Es. Since c(w;) = Z; by
Theorem 2.8, it follows immediately from (4) that
t, =—2;+ 4,
to =21+ 2y — Zs,
ts = Zy+ Zs — Zs,

ta =24— 725, / (5)
ts = Zs5— Zs,

te = Zg,

t = Z,.

For 7 = 3,4, we can put |
Yi = Z a'wZ'w
l(w)=i
for some integers a,,. We will determine the coefficients a,,. By Theorem
3.1, we have |
' 273 =c3,

374 =c4+ 214, (6)

Therefore 2v; and 3+, are contained in the image of c. Define the poly-
nomials of H*(BT;Z) by

03 = cs,

(7)

0y = cq+2t4,

so that c(d3) = ca(= 27s),c(64) = cq + 2t*(= 3v4) in H*(Ee/T;Z). We
apply the divided difference operators to the polynomials 3 and d,.
Thus we obtain
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c3 = 22342 + 42542
= 2(Z342 + 2Z542),
cat 2t = 3Z1342 + 6Z3542 + 6 Zg542 ®)
= 3(Z1342 + 223542 + 2Z6542)-

By (6) and (8), we can express +; (i = 3,4) in terms of Schubert classes.
Since H*(Eg/T;Z) is torsion free, we obtain

Y3 = Zaaz + 27542,
Ya = Zi3a2 + 223542 + 2Z¢542.

Moreover, we obtain

Z3z = —v3+ 23,

Zsez =3t

Ziser = ya — 2ty + 24, 9)
Z3sa2 = —Ya+ 175,

Zesaz = s —tt

4 Computations of A(G)

In this section, we determine the Chow rings of the exceptional groups
Es, E7, and Eg. Since we have the following commutative diagram,

%,  A(G/B)

=

S(H)
H*(BT;Z) —— H*(G/B;Z),

we have
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A(G) = A(G/B)/(ca(H))
= H"(G/B;Z)/(c(H*(BT; Z))
= H*(G/B;Z)/(H*(G/B; Z))
= H*(K/T;Z)/(H*(K/T; Z)).
Therefore we have only to compute the quotient ring of H*(K/T;Z)

by the ideal generated by H?(K/T;Z). We will show how to do this for
the case of Eg. By Theorem 3.1 and (9), we compute

H*(Es/T;Z)/(H*(Ee/T;Z)) = H*(Es/T;Z)/(t1, - - -, te, 1)
= Z[vs, v4)/ (273, 372, 73, 73)
= Z| Zsa2, Zesa2)/ (22542, 3 Zgsa2, 25242, Z63542)'

In this way, we can compute the Chow rings of E; (I = 6,7,8). Let
T : A(G/B) — A(G) denote the natural projection and wy the longest
element of the Weyl group W (E;) (I = 6,7,8). Then we have the following
main result.

Theorem 4.1 (i) The Chow ring of Eg is
A(Ee) = Z[X3, X4)/(2X3,3X4, X3, X3),

where X3 = TEG (mesusz) and Xe= TEs (XWO80858482)'
(ii) The Chow ring of Eq is

A(E'{) = Z[XS’ X4, X5, XQ]
/(2X3, 3X4, 2X5, Xg’ 2X9a X52a XE? X92)?

where X3 = TE7 (Xwoasusg): X4 = TE-r (Xwnssa5s4sz): X5 = TE7 (X‘uma785858482))

Xg = TE1 (Xw0368584333780658482)'
(iii) The Chow ring of Eg is

A(ES) = Z[X3, X4’ X5) X6a Xga XlO, X15]
2X3,3X4,2X5,5X6, 2Xg, X2 — 3X0, X3,
/ ’2X15, X92, 3X]?0, X38, X%a + X]:.so + 2X65 ’

where X; = T, (%) (i = 3,4,5,6,9,10,15).
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Remark 4.2 (i) The result of Eg is not satisfactory. We determined
merely the ring structure of A(Es). At present, we are not able to express
the ring generators of H*(Eg/T;Z) in terms of Schubert classes.

(ii) For details on the computations for Eg and E,, see [7].
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