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B-FILTRATION OF COHOMOLOGY OF GROUPS

NOBUAKI YAGITA
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1. INTRODUCTION

Let G be a compact Lie group, (e.g., finite group). The structure
of H*(BG;Z/p) seems very complicated, in general. Most cases are
difficult to write down it, even if it can be computable. So it may be
reasonable to consider an adequate filtration and the associated graded
algebra gr H*(BG;Z/p).

In this paper, we study natural filtrations such that

PI(F)CF, and B(F)C Fi

where P’ is the reduced power operation and (3 is the Bockstein opera-
tion. (We say such filtrations to be a S-filtration. For the precise defi-
- nition, see §2 bellow.) The S-filtration seems not unique. However, we
see it is determined uniquely for the cases G = (Z/p)", O3, PG L3, p*+2.
(However the ring structures of grH*(BG; Z/p) do not become more
simple.)
An example of g-filtrations is given in §6 by using the motivic coho-
mology H** (BG;Z/p) (over k = C). In fact we define the (motivic)
filtration such that z € F; if

T € @imow_Im(tc : H**(BG;Z/p) - H*(BG;Z/p))

where ic is the realization map. Moreover, we see that this filtration
coincides the coniveau filtration defined by Grothendieck [Bl-Og] for
cases (Z/p)*,On, PGL,.

2. (B-FILTRATION

Let p be a prime number. Let G be a compact Lie group (e.g., finite
group) and BG be their classifying spaces. |
Definition. We say that a filtration

O)=F.,CcFy,CF C..CFy,=H"(BG;Z/p)
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1s a [-filtration if it satisfies the following (1) — (5) ;

(1) It is natural for the induced map and the transfer. That is,
for f: G — G’ and an injection g : G — G of finite cokernel,
let F' be the filtration of H*(BG'; Z/p). Then

fY(F)CF and g.(F)C F,
(2) HY(BG;Z/p) C F,
(3) E : E? C F:i+j7
(4) Ch(G) C F, where Ch(G) is the Chern subring.

(5)  For the reduced and the (usual and higher) Bockstein oper- |
ations P’ and £,

PI(F)CF, and B(F)C Fi1.
Let us write the associated graded algebra
yrH*(BG;Z/p) = &;F;/F;.1 and gr'H*(BG;Z/p) = F;/F;_..
For each element z € H*(BG;Z/p), define the (weight) degree
w(z) =i when 0 # x € gr'H*(BG;Z/p).

First note that the §-filtration of a finite group is decided from that
of its Sylow p-subgroup. '

Lemma 2.1. Let G be a finite group, S. its Sylow p-subgroup and
i : S C G the inclusion. Let F;(G) and F;(S) be its B-filtration of G
and S. Then i F;(S) = F;(G).

Proof. From the property (1),
i F5(G) C i.Fy(S) € Fy(Q).

Let [G;S] = m the number prime to p. Then .3*F;(G) = mF;(G) =
F;(G). Hence we see i.F;(S) = F;(G). O

Quillen showed that the following restriction map r is an F-isomorphism
r: H(BG;Z/p) = limcsH*(BA;Z/p)

where A runs over a set of conjugacy classes of elementary abelian
p-subgroups of G. Here an F-isomorphism means that its kernel is
generated by nilpotent elements and for each z € H*(BG;Z/p) there
is s > 0 such that 27° € Im(r). Let Ch(G) be the Mackey closure
of Ch(G), which is recursively defined by transfers of Chern classes
from subgroups. From (1) and (4), we see Ch(G) C Fp. It is known
from Green-Leary [Gr-Le] that the inclusion Ch(G) C H*(BG;Z/p) is
F-epic . Hence we see ;



Lemma 2.2. Each element in gr'H*(BG;Z/p),i > 0 is nilpotent in
grH*(BG;Z/p).

Next we recall the Milnor operation @; which is inductively defined

as QQ = ﬁ and Qi+1 = [Qz, sz]. It is known that QzQJ = _QzQz and
Q? = 0. Let us write the exterior algebra ,

Q(n) = A(Qo, ceny Qn)

From the property (5), we see Q;F; C F;_;. Moreover Q;,...Q;, F; C
F;_s. Thus we have '

Lemma 2.3. Let H*(BG;Z/p) = @:;Q(n)G, with G, C Fn+1 where
Q(n)G, means the free Q(n)-module generated by Gn. Then

gT‘iH*(BG; Z/p) - ®i=n—sQi1 Qz, Gn-

That means if 0 # z € gr'H*(BG;Z/p) if and only if Qo..Qi—12 # 0
and Qo...Qi(z) = 0.

Proof. Let ' = Q;,...Q;,z for some 0 # = € G,. Then 2’ € F,_,.
Moreover - '

0% Qo..Qnz = (£)Qj,..Q5,_. 7

with (j1, ..., Gness 415 --» 8s) = (0,...,n). This implies z & Fp,_s—;. Thus
0+#2' € gr"*H*(BG;Z/p). O

Remark. If the condition (4) is weaken so that B(F;) C F; for
only the usual Bockstein operation, then letting w(x) = n as the
largest number n such that Q;,...Q;, (z) # 0, gives an example of such
filtrations.

3. EXAMPLES

We do not see that SB-filtrations are unique. However we give here
the cases where the B-filtration (so grH*(BG;Z/p)) is determined
uniquely.

At first consider the case G = Z/2. Of course H*(BZ/2;Z/2) =
Z/2[z] with deg(z) = 1. Since x> is represented as the first Chern

class ¢, of the canonical bundle, 22 € F,. Let us write 22 by y. Since

B(z) = v, we show w(z) > 1. But z € F1 from (2). So w(z) =1
exactly. Thus we have the isomorphism

grH*(BZ/2;Z/2) = Z/2[y) ® A(z)  w(y) =0, w(z) =1
as the case for odd prime. Indeed, we have

grH*((BZ/p)"; Z/p) = L/py1, -, Yn] ® A(21, -, Tn)

76



77

with B(z;) = y; for all primes p. Of course for i; < ... < i,
w(yzi,...z;,) =S, with0#y € Z/plya, - s Yn)-
Note that Q;(z) = y?' and each Q; is a derivation, and hence

Qo Qomr(y21--2) =y 5gn(js, o jn)sf V5 9% #0

where (j1, ..., js) are permutations of (0,...,s — 1).
For the n-th unitary group U,, it is immediate from (4),

FO = H*(BUn; Z/p) = Z/p[cl, AT) Cn]'

The mod 2 cohomology of the classifying space BO,, of the n-th
orthogonal group is

H*(BOn;Z/2) = H*((BZ/2)™; Z/2)5* = L/2[wy, ..., wn)]

where S, is the n-th symmetry group, w; is the Stiefel-Whiteney class
which restricts the elementary symmetric polynomial in Z/2[z, ..., Z,).
Each element w? is represented by Chern class ¢; of the induced rep-
resentation O(n ) C U(n). Let us write w? by ¢;.

Since Q;—1...Qo(w;) # 0, we see each w(w,) = i. However even the
module structure of gr* H*(BO,,; Z/2) seems complicated. W.S.Wilson
([Wi],[Ko-Ya]) found a good Q(i) = A(Qo, ..., @;)-module decomposi-
tion for X = BO,, namely,

H*(X; Z/2) = ®_1Q(Z)Gz with Qq...Q:G; € Z/Q[Cl, ceey Cn]

Here Gj_, is quite complicated , namely, it is generated by symmetric
functions ‘
Tgatt  gtipth | xi’.ﬁq, k+q<mn,
with 0 < 4; < ... <4 and 0 < j; < ... € j, ; and if the number of j
equal to 7, is odd, then there is some s < k such that 24, +2° < 27, <
24 + 2511
From Lemma 2.3 in the preceding section, we have

Proposition 3.1. If w(G;) =i+ 1, then we have the bidegree module
isomorphism
grH*(BO,;Z/2) = (grH*((BZ/2)"; Z/2))>" = (9:Q(%)G;).
We can prove the assumption w(G;) = i+1 for the motivic filtration,
which is an example of §-filtrations.

Since the direct decomposition of BOj3 is complicated to write, we
only write here that of SO; since O3 22 SO3 x Z/2.

H*(BSO3;Z/2) = Z/2[w;, ws, ws)/ (w1) = Z/2[ws, ws]

& Z./2[ca, cs){1, wa, w3 = Qows, wows = Q1wa}
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= Z/2[cy, c3]{ws, Qowz, Qrws, c5 = QoQrws} & Z/2|cy)

2 7,/2(cz, c3)Q(1) {w2} & Z,/2[c).

Of course, this case w(ws) = 2 and the assumption in the above propo-
sition is satisfied.

From here we consider the case p = odd. One of the easiest examples
is the case G = PGL3 and p = 3. The mod 3 cohomology is given by
([Ko-Ya],[Ve])

H*(BPGL3;Z/3) = (Z/3[y2]{y2} ® Z/3[ys]{1, ¥2, y3, y7}) ® Z/3[y12)]

where the suffice 5 of y; means its degree. It is known that 32,13, y2
and y;» are represented by Chern classes. The cohomology operations
are given
B p! B .
Y2 — Y3 > Y1 — Us
Hence Q1Qo(y2) = ys. (The element yg is not represented by a Chern
class.) Thus we see

Fo = (Z/3[y]{v3} ® Z/3lys]) ® Z/3[32].

Theorem 3.2. Let w(y,) = 2. Then the bidegree module
grH*(BPGL3;Z/3) is isomorphic to

(Z/3[y){y’} @ Z/3{1} & Z/3[ys] ® Q(1){y2}) ® Z/3[yr2].

In §10, we will study the motivic filtration of BPGL, for each odd
‘prime. ' ,

Next consider the extraspecial p-group E = pi™? for odd prime.
(The similar argument also holds for the dihedral group Dg = 2}2))
This group is a noncommutative group of exponent p such that there
is the central extension

0Z/p—-p? S Z/pdZ/p— 0.

The ordinary cohomology is known by Lewis ( see also Leary [Lew],
[Le], [Te-Yal), namely, ‘

H*"(BE)/p = (Z/plyr, v}/ (v2 — 118 OL/p{c2, ..., cp1}) O /plcy).

H*¥(BE) & Z/ply1, y2, {01, a2}/ (y102 — yaa1, yhaz — ar).

Here y1,y, are the 1-st Chern classes of 1-dimensional representation
induced from the map =, ¢; is the j-th Chern class of the inductive
p-dimensional representation from the maximal abelian subgroup (&
Z/p & Z/p). The 3-dimensional elements a; satisfies Q1(a;) = yicp.



Theorem 3.3. Let 0, : H*(BE;Z/p) — H*(BE)/p be the (higher)
Bockstein map. Then

grH*(BE;Z/p) = {1,0,'}(H"(BE)/p) — {9, '1}

where w(H**"(BE)/p) = 0,w(H**(BE)) = 1 and 8, ascents the
weight one. '

Proof. Since all elements in H**"( BE) are generated by Chern classes,
we have the isomorphism Fy = H***(BE)/p. We know H°%(BE) /p
is generated as an (H®'**(BE)/p)-module by two elements a;, ay such
that Q1(a;) = yic, [Te-Ya).

The mod p-cohomology is written additively

H*(BE; Z/p) = {1,8;*}H'(BE)/p.

All elements in H°*(BE) are just p-torsion and we can take a €
H?*(BE;Z/p) such that 8(a}) = a;. Since |ai| = 2, o} € F, from (2).
Hence we take w(a}) = 2 and so w(a;) = 1.

Next consider elements z = ;' (y), y € H***(BE)/p. If y €
(Ideal(y1,y2)), then 8, (y) = 3 x;b; for b; € H****(BE)/p, and hence
we can take w(8,'(y)) = 1. For other elements y = cic with ¢ €
Z/p|cp), we can prove ([Ly]) that those elements are represented by
transfer from a subgroup isomorphic to Z/p X Z/p. Therefore we can
also prove that w(d,*(y)) = 1. Thus we complete the proof. O

4. MOTIVIC FILTRATION

The motivic cohomology of the classifying space is defined as follows.
Let G be a linear algebraic group over k. Let V be a representation of
G such that G acts freely on V' — S for some closed subset S. Then
(V — 8)/G exists as a quasi-projective variety over k. According to
Totaro ([Tol]) and V.Voevodsky, define
The topological space BG(C) = lim((V — §)/G)(C) is homotopic to
the usual classifying space BG. Hence we write the C-value points
BG(C) simply by BG.

We still know the motivic cohomologies of BG,, and BZ/p. Since
BGL, is cellular, we have (Hu-Kriz [Hu-Kr])

H**(BGL,:Z/p) = L/plci, ..., ¢a) ® H** (pt; Z/D)
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where the Chern class ¢; with deg(c;) = (2i,4) are identified with the
elementary symmetric polynomial in H**((P*)"; Z/p). So we can de-
fine the Chern class p*(c;) € H**(BG;Z/p) for each representation
p:G— GL,.

Hereafter we assume k = C.

Definition. We define the motivic filtration of H*(BG; Z/p) by,

F, = Im(2™") = ©atc(H*"(BG; Z/p).

Note tc = cl : H** (X;Z/p) — H2(X;Z/p) identifying H%(X; Z/p) &
H*(X(C);Z/p) when k = C. Moreover the cycle map is identified with
xT*™  H (X, Z/p) = H™*(X; Z/p),

from the BL(*,p) condition. So we know F; C Fyy;.
Theorem 4.1. The motivic filtration is a B-filtration.

Proof. By the dimensional condition, we know
H***(BG;Z/p) =0 fori<DO.

This implies F_; = 0. By the BL(i, p) condition, we see F; = H*(BG; Z/p),
which is the condition (2) of the -filtration. Hence of course Fo =
H*(BG;Z/p). Thus the motivic filtration is indeed filtration of H*(BG; Z/p).

The condition (1) is satisfied, indeed H** (X;Z/p) has the Gysin
exact sequence and transfers. Of course the sum of the bidegrees are

(2% —n, %) + (24 =n',¥) = 2(x + +') — (n +n'), x + +),

which shows the condition (3). Since we can also define the Chern
class ¢; € H*(X;Z/p) from the above argument, we get (4), namely
Ch(G) C Fy. The existence of cohomology operations implies the
condition (5). a

Remark. The motivic filtration can be extend for all smooth X
‘and k£ C C but not only BG and k = C with changing the realization
map to the cycle map, and H*(X(C);Z/p) to H}(X;Z/p). Moreover
the condition (1) should be extended for each projective map g and
the condition (3) be changed cl(CH*(X)) = Fo.

From the above theorem, we can know some information of the mo-
tivic cohomology without using any theory of algebraic geometry (just
arguments in §2 or §3). In [Ya2], we define

W (X;Z)) = OmaH™(X; Z/p)/(Ker(tg™),

and compute them, for example, the cases X = BG stated in §3. In
fact, it is immediate that

h* (X;Z/p) = gr* " H*(X (C); Z/p) ® Z/pl7].



5. CONIVEAU FILTRATION

The motivic cohomology is known to be a cohomology of a com-
plex of some Zarisky sheaves. Recall that Z/p(n) ([Vol],[Vod]) is the
complex of sheaves in Zarisky topology such that H™"(X;Z/p) =
HZ,.(X;Z/p(n)). Let o be the obvious map of sites from Zarisky topol-
ogy to etale topology so that

Hg(X;Z/p) = H (X; ud") = Hp, (X, Rawa*Z/p(n)).

For ¥ < n, let T7<k+1Ra.a*Z/p(n) be the canonical truncation of
Ro,0*Z/p(n) of level k+ 1. Then we have the short exact sequence of
sheaves

0 = T<nRona*Z/p(n) — T<p+1Ra.a*Z/p(n) — z/p — 0
where Hz,, the Zarisky sheaf induced from the presheaf HZ,(V;Z/p)
for open subset V of X. The Beilinson and Lichtenbaum conjecture (
hence BL(n, p)condition ) (see [Vo4],[Vo5]) implies
Z/p(k) = T<py1 RouaZ/p(n) quasi equivalence.
Thus we get the long exact sequenée
— H™" (X, Z/p) = H™™(X;Z/p)

— HZ™(X; Hz),) — H™ (X, Z/p) = .
Hence we have the isomorphism ;

Lemma 5.1. ([Or-Vi-Vo], [Yai])
Hy X (X;Hy),) = H™ (X;Z/p)/ () ® Ker(r|H*"'~Y(X; Z/p).

Zar
The filtration coniveau is given by
N°HZ (X;Z/p) = UzKer{H3(X;Z/p) — Hz(X — Z;Z/p) }
where Z runs in the set of closed subschemes of X of codim = c.

Grothendieck wrote down the E;-term of the spectral sequence in-
duced from the above coniveau filtration.

E(e)7™ 2 Hexo Hy  ¢(k(z); Z/p) = grH_; (X;Z/p)

where X (9 is the set of primes of codimension ¢ and k(z) is the func-
tion field of z. We can regard i, H; °(k(z); Z/p) as a constant sheaf

™—C(k(z); Z/p) on {z} and extend it by zero to X. Then the dif-
ferentials of the spectral sequence give us a complex on sheaves on

X

0 — HI

2, = Iex@izHG(k(2); Z/p) = Moexwi-He ' (k(2); Z/p)

- ... Hze,{(q)imHgt(k(m);Z/p) — 0.
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Bloch-Ogus [Bl-Og] proved that the above sequence of sheaves is exact
and the Fs-term is given by

B(c)§™* = Hg,, (X, Hy 7).

Theorem 5.2. ([Ya4]) For each bidegree (x,*'), let H** (X;Z/p) be
a finite group and the cycle map cl** injective. Then the coniveau
spectral sequence collapses from the E,-term, namely,

B EET = E G2/ (0)
Thus the motivic filtration is the coniveau filtration (changing degree)
Fi(H}(X;Z/p)) = ®u—2e=:N"H(X;Z/D).

Proof. Let cl** be injective for each (.¥'). Then Ker(r)|H** (X Z/p) =

0. From the preceding lemma, we have the isomorphism for E3** "_term
in the theorem.
From the injectivity of cl also, we see

@, H"(X;Z/p)/(r) = HH(X;Z/p).
Suppose d,(z) # 0 for some z € E;* and r > 2. Then
@srank, E5 % < @srank, By >° = rank, H (X Z/p).

(Here note that ranks are finite since all cohomology are finite.)

On the other hand, B = §r Hei(z; Z/p) where gr means the graded
algebra associated W1th the coniveau filtration. This is a contradiction.
Thus d,(z) = 0 for all z and 7 > 2. | O

For example, when X = (BZ/p)", the motivic filtration is the
coniveau one. We give here some geometric explanation as following.
Let € N°H7(X;Z/p). Take a closed subscheme K of X with
codim = c such that i*z = 0 for i* : H%(X;Z/p) = H}(X — Z,Z/p).
Consider the exact sequence

(¥) — Hy(X/X — K;Z/p) % H:t(X;Z/p) 5 Hu(X - K;Z/p) — .

Here we assume that the embedding 7 : K C X is regular. Since there
is the Thom isomorphism

Th: Hy *(K;Z/p) = H;,(X/X — K;Z/p),

we can take 2’ € HX %(K;Z/p) such that ¢*(Th(z')) = z. By BL(n, p)-
condition, we have x” € H*2¢*~2¢(K:Z/p) in the motivic cohomology

with cl**(z") = z’. We consider the Thom map in the motivic coho-
" mology |

H*——2c,*~—-2c(K; Z/p) f_h) H*,*;—C(Th(K); Z/p) o H*’*”C(X/X - K; Z/p)
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So we get the element £ = ¢*Th(z") € H**~¢(X;Z/p) with c[**¢(Z) =
z. Our case x = m and this means z € F,,,_o,.
Let L)) = (CV — {0})/Z/p the 2N-dimensional lens space so that

H*(L);Z/p) = (Z/ply] ® A(z))/(y¥*+',yVz). Let us write by j the
(regular) embedding

JiZ=L " x . x LT C X = (Ly )"

Recall the Gysin map j, is defined by ¢*T'h in the exact sequence (*).
Since j.(1) = y3*...yk~, we see that

z = Yyt .z, € Im(Ga)
C Ker(i*) C Nu*¥H*((LY)*™ Z/p).

This means that € F™ implies € N(™2)/2, When i1 + ... + i, = ¢,
the above elements z make a Z/p-basis of V¢ and the embeddings are
regular. Thus we have F,,_o. = N¢ as desired.
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