<table>
<thead>
<tr>
<th>Title</th>
<th>On eigenvalues of Cartan matrices (Cohomology Theory of Finite Groups and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kiyota, Masao</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2008, 1581: 41-44</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2008-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/81433</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
On eigenvalues of Cartan matrices

College of Liberal Arts and Sciences
Tokyo Medical and Dental University
Masao KIYOTA

1 Introduction

Let \(G \) be a finite group and let \((O, K, F)\) be a \(p \)-modular system which is large enough for \(G \). Let \(B \) be a block of \(FG \) with defect group \(D \). We study the Cartan matrix \(C \) of \(B \), especially the relations between eigenvalues and elementary divisors of \(C \). First we recall the definition of Cartan matrix of \(B \). Let \(S_1, \ldots, S_l (l = l(B)) \) be the set of simple \(B \)-modules and \(P_i \) be the projective cover of \(S_i \). The integers \(c_{ij} = \text{dim}_F \text{Hom}_{FG}(P_i, P_j) \) are called Cartan invariants and the \(l \) by \(l \) matrix \(C = (c_{ij}) \) is the Cartan matrix of \(B \). The following facts on the Cartan matrix \(C \) are well-known.

(Fact 1) The determinant of \(C \), \(\det C \), is a power of \(p \).
(Fact 2) \(C \) has the unique maximal elementary divisor, which is equal to \(|D| \), and the other elementary divisors are less than \(|D| \).
(Fact 3) All eigenvalues of \(C \) are positive real numbers, and the maximal eigenvalue is a simple root. It is called the Frobenius eigenvalue of \(C \), denoted by \(\rho(C) \).

In [K-M-W], we posed the following two conjectures on eigenvalues of \(C \).

(Conjecture 1) If \(\rho(C) = |D| \) holds, then is it true that the eigenvalues of \(C \) coincides with the elementary divisors of \(C \)?

(Conjecture 2) If \(\rho(C) \) is an integer, then is it true that \(\rho(C) = |D| \)?

In [K-M-W], we showed that Conjecture 1 is affirmative under one of the following three assumptions:
(a) \(G \) is \(p \)-solvable,
(b) \(D \triangleleft G \),
(c) \(B \) is finite type or tame type, i.e. \(D \) is cyclic, dihedral, semi-dihedral or quaternion.
Conjecture 2 is also proved under the condition (b) or (c). I can not prove it
under the condition (a).

In [W], Wada considered the following.

(Conjecture 3) Let $f_C(x)$ be the characteristic polynomial of C. Let

$$f_C(x) = f_1(x) \cdots f_t(x)$$

be the decomposition of $f_C(x)$ into monic irreducible polynomials in $\mathbb{Z}[x]$. Suppose $\rho(C)$ is a root of $f_1(x)$. Then, do we have a decomposition of the elementary divisors of C into t subsets E_1, \ldots, E_t with the following properties?

1. $\deg f_i = |E_i|$ \hspace{1cm} ($i = 1, \ldots, t$),
2. $f_i(0) = \pm \prod_{e \in E_i} e \hspace{1cm} (i = 1, \ldots, t)$,
3. $|D| \in E_i$.

Note that Conjecture 3 is a generalization of Conjecture 2. Wada proved in [W] that Conjecture 3 holds when B is finite type with $l(B) \leq 5$ or tame type. If Conjecture 3 is true, then many interesting properties of the Cartan matrix are derived from it. For example, Conjecture 3 implies that if C has an integer eigenvalue λ, then λ is an elementary divisor of C. It also implies that if C has k eigenvalues which are units in the ring of algebraic integers, then first k elementary divisors of C are all 1. The last statement on unit eigenvalues is proved without Conjecture 3.

2 Results

Proposition 1 (Nomura-Kiyota) Let C be the Cartan matrix of a block B. If C has k eigenvalues which are units in the ring of algebraic integers, then first k elementary divisors of C are all 1.

For the proof, we use the following lemma.

Lemma 2 rank(\overline{C}) = the number of multiplicity of 1 among the elementary divisors of C, where \overline{C} is the matrix over GF(p) defined by $C \pmod{p}$.

For p-solvable groups G, we have the following.

Proposition 3 Let C be the Cartan matrix of a block in p-solvable group. Let λ be an eigenvalue of C. If λ is a unit in the ring of algebraic integers, then we have $\lambda = 1$.
Proposition 3 comes from the following.

Proposition 4 Let C be the Cartan matrix of a block B. Suppose that every simple B-module is liftable. If λ is a unit in the ring of algebraic integers, then we have $\lambda = 1$.

3 Problems

Recall that (K,O,F) is a p-modular system. Let v be the corresponding valuation on K. We assume all eigenvalues of C are in O. We consider the following two conditions of the Cartan matrix C.

\((*)\) There exists a 1-1 correspondence between the eigenvalues of C and the elementary divisors of C preserving the valuation v. i.e. the correspondants have the same valuations.

\((**)\) There exists R in $\text{GL}_4(O)$ such that $R^{-1}CR$ is a diagonal matrix.

We remark that \((**)\) implies \((*)\) and that \((*)\) implies Conjecture 3 (except (3)). But \((*)\) does not hold in general, as the example $G = \text{SL}(2,5), \ p = 5$ shows. So we should study the following.

(Problem 1) What is the condition under which \((*)\) holds?

We can prove the following.

Proposition 5 If G is p-solvable and $l(B) = 2$, then \((**)\) holds.

So natural question arises.

(Problem 2) If G is p-solvable, then is it true that \((**)\) holds?
References

