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For a prime p, let (K,0,k) be a p-modular system where O is a complete
discrete valuation ring having the residue field k of characteristic p which is -
algebraically closed and having the quotient field K of characteristic zero which
will be assumed to be large enough for any finite group we consider in this
article. Below, by a character, we mean a K-character.

Glauberman showed in [5] that there is a bijective correspondence between
the set Irr(G)S of all S-invariant irreducible characters of G and the set Irr(Cg(S))
of all irreducible characters of Cg(S), called the Glauberman correspondence
of characters, where G is a finite group and S is a finite solvable group such
that S acts on G via automorphism and (|G|, |S|) = 1, where |G| and |S| denote
the orders of G and S, respectively. When S is cyclic, a basic relation between
x € Irr(G)S and the Glauberman corresponding character 8, € Irr(Cg(S)) is

X(cs) = exBx(c), ®

where ¥ is a unique extension of x to the semi-direct product GxS satisfying
SCKer(det(x)), called the canonical extension, c is any element of Cg(S), s is
any generator of S and €, is a uniquely determined sign, see [5, Theorem 3].
Dade gives in [4] a new approach to the Glauberman correspondence with-
out considering the canonical extension and the relation (}) above, and partly
generalizes it: he gives in [4, Theorem 6.8] a bijective correspondence between
Irr(G)F and Irr(G’)E', where E is a finite group, G is a normal subgroup of
E such that E/G is cyclic, E' is a subgroup of E such that E = GE’, and
G' = GN E' (hence, G’ is normal in E’ and E’/G’ is isomorphic to the cyclic
group E/G) with the condition that Ej, the subset of E’ consisting of every el-
ement of E’ whose canonical image in E’ /G’ is a generator of E' /G, is a trivial
intersection subset of E with E’ as its normalizer, that is, E) N Ej’ is the empty
set for any t € E — E’. In fact, the correspondence of characters is given for
twisted group algebras of G and G’ over K. It is shown that, with the notations
above, when S is cyclic, the above conditions are satisfied by taking G % S, G,
Cg(S) x S and C¢(S) as E, G, E' and G', respectively ([4, Lemma 7.5]), and,
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in this case, Dade’s correspondence coincides with the Glauberman correspon-
dence ([4, Proposition 7.8]). We call the above correspondence of characters the
Glauberman-Dade correspondence.

Watanabe began in [11] a p-block-theoretical study of the Glauberman cor-
respondence and she showed that, when b is an S-invariant p-block of G with
an S-centralized defect group, the Glauberman correspondence induces a per-
fect isometry (for this notion, see {2]) between ZIrr(b) and ZIrr(w(b)) for some
uniquely determined p-block w(b) of G°.

In general, by the theorem of Broué ([2]), perfectly isometric p-blocks have
isomorphic centers, and so Z(OGb) ~ Z(OG3w(b)) as O-algebras.

On the other hand, in [8], Okuyama gives an explicit isomorphism between
the centers of OGb and OG3w(b) using the relation (}).

In this article, we note that, when |E/G]| is a prime, under the condition
analogous to the one of Watanabe (see, Condition 3.1), the Glauberman-Dade
correspondence induces a bijective correspondence between the characters be-
longing to the principal p-blocks of G and G’ (Proposition 3.3), and give an
explicit isomorphism between the centers of the principal p-block algebras of G
and G’ (Theorem 3.5) which coincides with the one given by Okuyama when
the hypotheses are the same. For a more general situation, see [10], and for
standard facts, see [7].

2

Below, we always assume the following:

Condition 2.1. E is a finite group with a normal subgroup G such that the
quotient group F = E /G is cyclic of prime order g. E’ is a subgroup of E such
that E = GE’. G’ is a normal subgroup of E’ defined by G’ = GN E’. Set
Es=E-Gand Ejg=F -G is a trivial intersection subset of E with E’
as its normalizer, that is, Ey N Ey" = @, the empty set, for any 7 € E — E'.

Take s € Ej. Then E =< G,s > and E/ =< G',s >.

Denote by 7 the canonical epimorphism from E to E/G, and set F = n(G) =
ng'(E') ~ E'/G', where mg: is the restriction of 7 to E'.

Choose once and for all an isomorphism F' ~ Hom(F, K*) of groups. Denote
by F' the cyclic group Hom(F, K*), and let ) be a generator of F. Then F acts
on Irr(E) by (A8)(z) = A(n(z))6(z) for § € Irr(E) and = € F, and on Irr(E’)
by (M\')(z') = A(wg/ (2'))0'(z") for ¢ € Irr(E’) and ' € E’. Note that a
primitive g-th root of unity A(7(s)) is in O*. (For a ring R, we denote by R*
the multiplicative group consisting of all units of R.)

Recall from [4, Proposition 1.19] the following correspondence. Similar for
E’ and G'. Note that for Proposition 2.2, we only need E/G being cyclic.

Proposition 2.2. (Dade) There is a bijective correspondence between Irr(G)®
and the set of reqular F'-orbits of irreducible characters of E. By this correspon—
dence, ¢ € Irr(G)E corresponds to ¥ =Irr(E | ¢) = { € Irr(E) | [% |&, dle # 0}
and ¢ =9 & for any v € ¥.
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We recall the correspondence of Dade in the case of |[E/G| being a prime
(for the statements under the condition that the order of the cyclic group E/G
is divided by several primes, see [4, Theorems 6.8 and 6.9]).

Theorem 2.3. (Dade) There is a bijection
Irr(G)F — Ir(G)F', ¢+ d(an (%)

which satisfies the following:
e When q is odd, there are a unique sign €, € {£1} and a unique bijection

Irr(E | ¢) — Irr(E' | d@r))s ¥ = ey (%)

such that . _
(%= X9) 1B = es(dhm) — N (¥m)) (xx)

holds for any i as generalized characters.

o When q is 2, if we choose a sign €4 arbitrary, there is a umque bijection
(%) such that (xxx) holds.

Moreover, X (¢gr)) = (\'9)(5r) (hence denoted by Aip(gry) for any i.

We call both the correspondences () and (*x) in Theorem 2.3 the Glauberman-
Dade correspondence of characters. We denote by ¢,(G) the character of Irr(G)Z

corresponding to ¢’ € Irr(G")E'.

In the remainder of this section, we rewrite the Glauberman-Dade corre-
spondence in terms of the elements of the group algebras (Proposition 2.6).

LetR € (IC 0O, k), H a finite group with a subgroup L, and rh € Rforh e H.
Denote by Prif an R-linear map from RH to RL defined by P her Thh) =
Ele 1 Til, which induces an R-linear map from Z(RH) to Z(RL). Denote by
Tr¥ an R-linear map from (RH)L(D Z(RL)) to Z(RH) defined by Trf () =
Zze[L\ m 7" for 7€ (RH )£, where (RH)Y is the subalgebra of RH cons1stmg
of all the elements fixed by the conjugation action by L and [L\H] is a set of
left coset representatives of L in H. For a conjugacy class C of H, we denote
C= > zcc T € RH. For 6 € Irr(H), we denote by ey the primitive idempotent
of Z(KH) corresponding to 6.

Denote by C(x) the conjugacy class of E containing z € E and by c(')
the conjugacy class of E' containing =’ € E'.

Since Ep = Use(p\g)(Eo)® (disjoint union), see [4, Lemma 6.5], we have:

Lemma 2.4. For z € Ey, it holds that:
(1) 158 = 155

(2) PrE.(0(@) = C(aY, Tk (C2)) = C(@).
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For ¢ € K, we denote by ¢ the complex conjugate of ¢ (we view K as a
subfield of the complex number field).

Lemma 2.5. Let ¢,¢ € Irr(G)Z, and let v, n € Irr(E) be extensions of ¢ and &,

respectively. Then, for z,y € Ej, we have ¥(z) n(y) = egee Yy (x) nE)(y).

Proof. Let g be odd. Let ¢,d € Z be such that 7(z) = m(s)¢ and 7(y) = n(s)?.
Let ¢/,d’ € Z be such that ¢/ = ¢~ and d’ = d™* in Z/qZ where the canonical
image of a € Z in the residue ring Z/qgZ is denoted by a. By Theorem 2.3, we
have

s
g p(@) nW) = Y [ (¥~ XN ¢)(@) (n—X¥n)(y) ]
=1
1_T1-. . U Y] ——————
= egee O | (Ymr) — N Y@ (@) (e — A4 nen) W) 1 = epee g Y (@) nen (v)-
=1

In the case of ¢ = 2, we see that ¥(x) = egp(g) () since (¥ — M) (z) = 2¢(z).
Hence, the assertions follow. [J

With the notations in section 1, for cyclic S =< s >, using (§), Okuyama
showed in [8]

Prés (S“IC/'(;)ex) =eg, for x€ Irr(G)S. (%)

We can show the analogous statement which implies (x) for |S| = ¢ (without
using (f) since we treat the Glauberman-Dade correspondence):

Proposition 2.6. Let z € Ey. Then

(1) PrE, (C’J"(;)e,,,) = E(:c\)’ed,(c,) for ¢ € Irr(G)E.
(2) TE,(C(a)ey) = Claeq,, for ¢’ € Ire(G")E'.
Proof. Let ¢ € Irr(E) be an extension of ¢. Then,

g—1
C‘T(;)eda = C/'(;)Zemp

=0

C(z)| &= s
= l—(—ﬁ—((:;—))lz:ZOA zl)(x)e,\i,/,

~ () E| ;%*‘/’(if?)k Y(y)y

- CEl y wee-

lEl z€Eo, n{z)=7(x)

From this and Lemmas 2.4 and 2.5, the assertions follow immediately. [
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3

In this section, we show that under Condition 3.1 below (this condition implies
G’ controls p-fusion in G), the Glauberman-Dade correspondence in the case
|E/G| being a prime induces a one-to-one correspondence between the charac-
ters belonging to the principal (p-)blocks of G and G’ (Proposition 3.3) and
an isomorphism of the centers of the principal (p-)block algebras of G and G/
(Theorem 3.5).

Condition 3.1. There is some Sylow p-subgroup of E which is contained in G’
(hence, p # q) and centralized by some element s of Ej.

Below, we assume Condition 3.1 and take s € Ej as in it.

A primitive idempotent of Z(OG) is called a block (idempotent) of G. Let
b (resp. b’) be the principal block (idempotent) of G (resp. G’). That is, a
primitive idempotent of Z(OG) such that 15(b) # 0 where 1¢ is the trivial
character of G. (We don’t distinguish Irr(G) and Irr(KG).) Denote Irr(b) =
{¢ € Irr(G) | #(b) # 0}. ¢ € Irr(b) is called a character belonging to the block
b. Similar for the other groups and blocks.

By [3] (see also [1]), b has the following primitive idempotent decomposition

in Z(OEb): b= :’:& b;. In this situation, Irr(b)® = Irr(b) and the restriction
and some extension of the characters determine a one-to-one correspondence
between Irr(b) and Irr(;) for any i. Similar for b'.

We denote by by (resp. b'o) the principal block of E (resp. E'), and use” for
the extensions of characters in Irr(b) (resp. Irr(d’)) belonging to the principal
block, that is, Irr(Bo) = {|¢ € Irr(b)} (resp. Irr(¥o) = {F'|¢' € Irr(V')}).

Then, we see immediately that, for 0 < i < g — 1, a set {\'¢|¢ € Irr(b)}
(resp. {\i¢'|¢’ € Irr(¥')}) forms the set of characters of E (resp. E') belonging
to some block of E (resp. E’) and we may denote it by b; (resp. ¥;).

Lemma 3.2. (Osima [9] or see [6, Theorem 12.4.12]) For a finite group H and
6 € Irr(H), 0 belongs to the principal p-block of H if and only if Y H, 6(x) # 0,
where Hy is the set of elements of H with the order prime to p.

Proposition 3.3.
(1) Irr(t') = {$(c)l¢ € Irz(b)}

(2) Trr(85) ={(Xid)(m |Ni¢ € Irr(8:)} = {Nian |¢ € Irr(b)} for 0 <i < g1,
if we choose signs €y appropriately in the case ¢ = 2.

Proof. By Theorem 2.3 and Lemmas 2.4(1) and 3.2, for ¢€Irr(b) and 1<i<g—1,
0# > d@) = D, (@=-XNd)=) = > ($-XN)(z)
:BEE ’ EEE ' zE(EQ)p

= e¢||Er‘| > (B = Xéw)@) = ez | /| D (B ~ X))

z'€(Ep)p z'€E,,
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Hence, ¢(E:) or )\‘c,b( By must belong to b, and so by € Irr(b' ). If g =2, we
can choose €4 so that ¢( g+) belongs to the principal block Vo. If ¢ is odd, we
see that ¢(g/) € Irr(Blo) since 4 # 0 is arbitrary.

Hence, in any case, the Glauberman-Dade correspondence in Theorem 2.3
induces injections from Irr(b) to Irr(b’) and from Irr(bg) to Irr(d’p).

Onto part also follows from the similar consideration.

Note that q3( By = qb,(G\) The remaining statement follows from the commu-

tativity of the action of F' and the Glauberman-Dade correspondence. [

Since b = 3 erre(s) €6 a0 O = 3" 4 cppr () €475 DY Propositions 2.6 and 3.3,
we have:

Proposition 3.4. Pr& (C(z)b) = O(2)'b’ and TrE (C(z)t') = C(z)b

We see C(s)b € Z(OEb)* and C(s)'t' € Z(OE'W)*. In fact, C(s)b; €
Z(OEb;)* for any i, since wy, (C(s)b;) # 0 by Condition 3.1 where wp, is a
unique algebra homomorphism from the local algebra Z(OEb;) to k whose value

at C(s)b is the canonical image in k of El%'lr?i%)(ﬁ

Note that bY # 0. Denote v = (C(s)'b')~ 1C(s)b € (OEbY')F and let
Y = (C(s)b) 1C'(s)’b’ the inverse of v in (OEbb’)E . Here we mean
(C'(s)'b’)"1 the inverse of C(s)’b’ in Z(OE'Y) and (C’(.s)b)‘1 the inverse of
C(s)b in Z(OEDb). Consxdermg the grading given by 7 and noting Z (OGb) is
a local algebra, we see that (C(s)b)q € Z(OGb)*. Hence, we see (C’(s)b)‘
(similar for (@’ b)~1) is a linear combination of the elements z € E such that
7(x) = w(s)9~1. Hence, v, v’ € OG.

The following in the situation of the Glauberman correspondence appeared

in [8].

Theorem 3.5. With the notations above, there is an 0 algebra tsomorphism
from Z(OGb) to Z(OG'V') mappzng z € Z(OGb) to Pr&,(yz). The inverse is
given by the map sending z’' € Z(OG'V) to TG (v'2).

Proof. Firstly, note that multiplying (C (s)’ ¥)1 to
C(s)'b'ep s, = C(s) epar, = PrE,(C(s)ey)
where ¢ € Irr(b) (see Proposition 2.6(1)), we have
ooy = Vepoy = = (C(s)'b')~PrE. (C(s)es)
= Prg:[(C(s)'t') "1 C(s)eq]
= Pr&/[(C(s)'t') " C(s)ey]
- = Pr&:(veq)-
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Similarly, multiplying (6"(?)1))”1 to
C(s)beg;, = Cls)eg;, = TrE(C(s)es)
where ¢’ € Irr(b') (see Proposition 2.6(2)), we have
€s(q, = begr, = (C(s)b) " TrE: (C(s)ey)
= TE [(C(s)b) sV es]
= Tr&[(C(s)b) ' C(s) ey]
=T (Yey).

Then, statements follow as in [8]. The K-linear map sending zx € Z(KGb)
to Prg(yzx) and the K-linear map sending zx € Z(KG'b @) to Tr& (v'zk)
are mutually inverse K-algebra isomorphisms between Z(XGb) and Z(KG'V'),
since {eq|¢ € Irr(b)} and {ey ., |¢ € Irr(b)} are orthogonal K-bases of Z(XGb)
and Z(KG'b') respectively. Moreover, since these maps send elements with

coefficient in O to elements with coefficient in O by definitions, these maps
restrict to O-algebra isomorphisms between Z(OGb) and Z(OG'Y). O
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