On the isomorphisms between the centers of the princial p-block algebras induced by the Glauberman-Dade correspondence

Fuminori Tasaka (田阪文規)

Division of Mathematical Science and Physics, Chiba Univ. (千葉大学自然科学研究科)

1

For a prime p, let $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system where \mathcal{O} is a complete discrete valuation ring having the residue field k of characteristic p which is algebraically closed and having the quotient field \mathcal{K} of characteristic zero which will be assumed to be large enough for any finite group we consider in this article. Below, by a character, we mean a \mathcal{K} -character.

Glauberman showed in [5] that there is a bijective correspondence between the set $Irr(G)^S$ of all S-invariant irreducible characters of G and the set $Irr(C_G(S))$ of all irreducible characters of $C_G(S)$, called the Glauberman correspondence of characters, where G is a finite group and S is a finite solvable group such that S acts on G via automorphism and (|G|, |S|) = 1, where |G| and |S| denote the orders of G and S, respectively. When S is cyclic, a basic relation between $\chi \in Irr(G)^S$ and the Glauberman corresponding character $\beta_{\chi} \in Irr(C_G(S))$ is

$$\hat{\chi}(\mathsf{cs}) = \epsilon_{\chi} \beta_{\chi}(\mathsf{c}),$$
 (#)

where $\hat{\chi}$ is a unique extension of χ to the semi-direct product $G\rtimes S$ satisfying $S\subset Ker(\det(\hat{\chi}))$, called the *canonical extension*, c is any element of $C_G(S)$, s is any generator of S and ϵ_{χ} is a uniquely determined sign, see [5, Theorem 3].

Dade gives in [4] a new approach to the Glauberman correspondence without considering the canonical extension and the relation (\sharp) above, and partly generalizes it: he gives in [4, Theorem 6.8] a bijective correspondence between $Irr(G)^E$ and $Irr(G')^{E'}$, where E is a finite group, G is a normal subgroup of E such that E/G is cyclic, E' is a subgroup of E such that E=GE', and $G'=G\cap E'$ (hence, G' is normal in E' and E'/G' is isomorphic to the cyclic group E/G) with the condition that E'_0 , the subset of E' consisting of every element of E' whose canonical image in E'/G' is a generator of E'/G', is a trivial intersection subset of E with E' as its normalizer, that is, $E'_0 \cap E'_0{}^t$ is the empty set for any $t \in E - E'$. In fact, the correspondence of characters is given for twisted group algebras of E' and E' over E' ov

in this case, Dade's correspondence coincides with the Glauberman correspondence ([4, Proposition 7.8]). We call the above correspondence of characters the Glauberman-Dade correspondence.

Watanabe began in [11] a p-block-theoretical study of the Glauberman correspondence and she showed that, when b is an S-invariant p-block of G with an S-centralized defect group, the Glauberman correspondence induces a perfect isometry (for this notion, see [2]) between $\mathbb{Z}\operatorname{Irr}(b)$ and $\mathbb{Z}\operatorname{Irr}(w(b))$ for some uniquely determined p-block w(b) of G^S .

In general, by the theorem of Broué ([2]), perfectly isometric p-blocks have isomorphic centers, and so $Z(\mathcal{O}\mathsf{Gb}) \simeq Z(\mathcal{O}\mathsf{G}^\mathsf{S}w(\mathsf{b}))$ as \mathcal{O} -algebras.

On the other hand, in [8], Okuyama gives an explicit isomorphism between the centers of $\mathcal{O}Gb$ and $\mathcal{O}G^Sw(b)$ using the relation (\sharp).

In this article, we note that, when |E/G| is a prime, under the condition analogous to the one of Watanabe (see, Condition 3.1), the Glauberman-Dade correspondence induces a bijective correspondence between the characters belonging to the principal p-blocks of G and G' (Proposition 3.3), and give an explicit isomorphism between the centers of the principal p-block algebras of G and G' (Theorem 3.5) which coincides with the one given by Okuyama when the hypotheses are the same. For a more general situation, see [10], and for standard facts, see [7].

2

Below, we always assume the following:

Condition 2.1. E is a finite group with a normal subgroup G such that the quotient group F = E/G is cyclic of prime order q. E' is a subgroup of E such that E = GE'. G' is a normal subgroup of E' defined by $G' = G \cap E'$. Set $E_0 = E - G$ and $E'_0 = E' - G'$. E'_0 is a trivial intersection subset of E with E' as its normalizer, that is, $E'_0 \cap E'_0^{\tau} = \emptyset$, the empty set, for any $\tau \in E - E'$.

Take $s \in E'_0$. Then $E = \langle G, s \rangle$ and $E' = \langle G', s \rangle$.

Denote by π the canonical epimorphism from E to E/G, and set $F = \pi(G) = \pi_{E'}(E') \simeq E'/G'$, where $\pi_{E'}$ is the restriction of π to E'.

Choose once and for all an isomorphism $F \simeq \operatorname{Hom}(F, \mathcal{K}^{\times})$ of groups. Denote by \hat{F} the cyclic group $\operatorname{Hom}(F, \mathcal{K}^{\times})$, and let λ be a generator of \hat{F} . Then \hat{F} acts on $\operatorname{Irr}(E)$ by $(\lambda\theta)(x) = \lambda(\pi(x))\theta(x)$ for $\theta \in \operatorname{Irr}(E)$ and $x \in E$, and on $\operatorname{Irr}(E')$ by $(\lambda\theta')(x') = \lambda(\pi_{E'}(x'))\theta'(x')$ for $\theta' \in \operatorname{Irr}(E')$ and $x' \in E'$. Note that a primitive q-th root of unity $\lambda(\pi(s))$ is in \mathcal{O}^{\times} . (For a ring R, we denote by R^{\times} the multiplicative group consisting of all units of R.)

Recall from [4, Proposition 1.19] the following correspondence. Similar for E' and G'. Note that for Proposition 2.2, we only need E/G being cyclic.

Proposition 2.2. (Dade) There is a bijective correspondence between $\operatorname{Irr}(G)^E$ and the set of regular \hat{F} -orbits of irreducible characters of E. By this correspondence, $\phi \in \operatorname{Irr}(G)^E$ corresponds to $\Psi = \operatorname{Irr}(E \mid \phi) = \{\psi \in \operatorname{Irr}(E) \mid [\psi \downarrow_G^E, \phi]_G \neq 0\}$ and $\phi = \psi \downarrow_G^E$ for any $\psi \in \Psi$.

We recall the correspondence of Dade in the case of |E/G| being a prime (for the statements under the condition that the order of the cyclic group E/G is divided by several primes, see [4, Theorems 6.8 and 6.9]).

Theorem 2.3. (Dade) There is a bijection

$$\operatorname{Irr}(G)^E \longrightarrow \operatorname{Irr}(G')^{E'}, \qquad \phi \mapsto \phi_{(G')}$$
 (*)

which satisfies the following:

• When q is odd, there are a unique sign $\epsilon_{\phi} \in \{\pm 1\}$ and a unique bijection

$$\operatorname{Irr}(E \mid \phi) \longrightarrow \operatorname{Irr}(E' \mid \phi_{(G')}), \qquad \psi \mapsto \psi_{(E')}$$
 (**)

such that

$$(\psi - \lambda^i \psi) \downarrow_{E'}^E = \epsilon_{\phi}(\psi_{(E')} - \lambda^i(\psi_{(E')})) \tag{***}$$

holds for any i as generalized characters.

• When q is 2, if we choose a sign ϵ_{ϕ} arbitrary, there is a unique bijection (**) such that (***) holds.

Moreover, $\lambda^{i}(\psi_{(E')}) = (\lambda^{i}\psi)_{(E')}$ (hence denoted by $\lambda^{i}\psi_{(E')}$) for any i.

We call both the correspondences (*) and (**) in Theorem 2.3 the Glauberman-Dade correspondence of characters. We denote by $\phi'_{(G)}$ the character of $Irr(G)^E$ corresponding to $\phi' \in Irr(G')^{E'}$.

In the remainder of this section, we rewrite the Glauberman-Dade correspondence in terms of the elements of the group algebras (Proposition 2.6).

Let $\mathcal{R} \in (\mathcal{K}, \mathcal{O}, k)$, H a finite group with a subgroup L, and $r_h \in \mathcal{R}$ for $h \in H$. Denote by \Pr_L^H an \mathcal{R} -linear map from $\mathcal{R}H$ to $\mathcal{R}L$ defined by $\Pr_L^H(\sum_{h \in H} r_h h) = \sum_{l \in L} r_l l$, which induces an \mathcal{R} -linear map from $Z(\mathcal{R}H)$ to $Z(\mathcal{R}L)$. Denote by \Pr_L^H an \mathcal{R} -linear map from $(\mathcal{R}H)^L (\supset Z(\mathcal{R}L))$ to $Z(\mathcal{R}H)$ defined by $\Pr_L^H(\tau) = \sum_{x \in [L \setminus H]} \tau^x$ for $\tau \in (\mathcal{R}H)^L$, where $(\mathcal{R}H)^L$ is the subalgebra of $\mathcal{R}H$ consisting of all the elements fixed by the conjugation action by L and $[L \setminus H]$ is a set of left coset representatives of L in H. For a conjugacy class C of H, we denote $\widehat{C} = \sum_{x \in C} x \in \mathcal{R}H$. For $\theta \in \operatorname{Irr}(H)$, we denote by e_θ the primitive idempotent of $Z(\mathcal{K}H)$ corresponding to θ .

Denote by C(x) the conjugacy class of E containing $x \in E$ and by C(x')' the conjugacy class of E' containing $x' \in E'$.

Since $E_0 = \bigsqcup_{t \in [E' \setminus E]} (E'_0)^t$ (disjoint union), see [4, Lemma 6.5], we have:

Lemma 2.4. For $x \in E'_0$, it holds that:

(1)
$$\frac{|C(x)|}{|E|} = \frac{|C(x)'|}{|E'|}$$
.

(2)
$$\operatorname{Pr}_{E'}^E(\widehat{C(x)}) = \widehat{C(x)'}, \operatorname{Tr}_{E'}^E(\widehat{C(x)'}) = \widehat{C(x)}.$$

For $c \in \mathcal{K}$, we denote by \overline{c} the complex conjugate of c (we view \mathcal{K} as a subfield of the complex number field).

Lemma 2.5. Let $\phi, \xi \in \operatorname{Irr}(G)^E$, and let $\psi, \eta \in \operatorname{Irr}(E)$ be extensions of ϕ and ξ , respectively. Then, for $x, y \in E'_0$, we have $\psi(x)$ $\overline{\eta(y)} = \epsilon_{\phi} \epsilon_{\xi} \ \psi_{(E')}(x) \ \overline{\eta_{(E')}(y)}$.

Proof. Let q be odd. Let $c, d \in \mathbb{Z}$ be such that $\pi(x) = \pi(s)^c$ and $\pi(y) = \pi(s)^d$. Let $c', d' \in \mathbb{Z}$ be such that $\underline{c'} = \underline{c}^{-1}$ and $\underline{d'} = \underline{d}^{-1}$ in $\mathbb{Z}/q\mathbb{Z}$ where the canonical image of $a \in \mathbb{Z}$ in the residue ring $\mathbb{Z}/q\mathbb{Z}$ is denoted by \underline{a} . By Theorem 2.3, we have

$$q \; \psi(x) \; \overline{\eta(y)} = \; \sum_{i=1}^{\frac{q-1}{2}} \left[\; (\psi - \lambda^{ic'} \psi)(x) \; \overline{(\eta - \lambda^{id'} \eta)(y)} \; \right]$$

$$=\epsilon_{\phi}\epsilon_{\xi}\sum_{i=1}^{\frac{q-1}{2}}\left[\;(\psi_{(E')}-\lambda^{ic'}\psi_{(E')})(x)\;\overline{(\eta_{(E')}-\lambda^{id'}\eta_{(E')})(y)}\;\right]=\;\epsilon_{\phi}\epsilon_{\xi}\;q\;\psi_{(E')}(x)\;\overline{\eta_{(E')}(y)}.$$

In the case of q=2, we see that $\psi(x)=\epsilon_{\phi}\psi_{(E')}(x)$ since $(\psi-\lambda\psi)(x)=2\psi(x)$. Hence, the assertions follow. \square

With the notations in section 1, for cyclic $S = \langle s \rangle$, using (#), Okuyama showed in [8]

$$\Pr_{\mathsf{G}^{\mathsf{S}}}^{\mathsf{G}}(\mathsf{s}^{-1}\widehat{C(\mathsf{s})}e_{\chi}) = e_{\beta_{\chi}} \quad \text{for} \quad \chi \in \operatorname{Irr}(\mathsf{G})^{\mathsf{S}}.$$
 (*)

We can show the analogous statement which implies (\star) for |S| = q (without using (\sharp) since we treat the Glauberman-Dade correspondence):

Proposition 2.6. Let $x \in E'_0$. Then

(1)
$$\operatorname{Pr}_{E'}^E(\widehat{C(x)}e_{\phi}) = \widehat{C(x)'}e_{\phi(G')}$$
 for $\phi \in \operatorname{Irr}(G)^E$.

(2)
$$\operatorname{Tr}_{E'}^E(\widehat{C(x)'}e_{\phi'}) = \widehat{C(x)}e_{\phi'_{(G)}} \text{ for } \phi' \in \operatorname{Irr}(G')^{E'}.$$

Proof. Let $\psi \in Irr(E)$ be an extension of ϕ . Then,

$$\begin{split} \widehat{C(x)}e_{\phi} &= \widehat{C(x)} \sum_{i=0}^{q-1} e_{\lambda^{i}\psi} \\ &= \frac{|C(x)|}{\phi(1)} \sum_{i=0}^{q-1} \lambda^{i}\psi(x)e_{\lambda^{i}\psi} \\ &= \frac{|C(x)|}{\phi(1)} \frac{\phi(1)}{|E|} \sum_{i=1}^{q-1} \sum_{y \in E} \lambda^{i}\psi(x)\overline{\lambda^{i}\psi(y)}y \\ &= \frac{|C(x)|}{|E|} \sum_{z \in E_{0}, \ \pi(z) = \pi(x)} q\psi(x)\overline{\psi(z)}z. \end{split}$$

From this and Lemmas 2.4 and 2.5, the assertions follow immediately. \Box

In this section, we show that under Condition 3.1 below (this condition implies G' controls p-fusion in G), the Glauberman-Dade correspondence in the case |E/G| being a prime induces a one-to-one correspondence between the characters belonging to the principal (p-)blocks of G and G' (Proposition 3.3) and an isomorphism of the centers of the principal (p-)block algebras of G and G' (Theorem 3.5).

Condition 3.1. There is some Sylow *p*-subgroup of E which is contained in G' (hence, $p \neq q$) and centralized by some element s of E'_0 .

Below, we assume Condition 3.1 and take $s \in E'_0$ as in it.

A primitive idempotent of $Z(\mathcal{O}G)$ is called a block (idempotent) of G. Let b (resp. b') be the principal block (idempotent) of G (resp. G'). That is, a primitive idempotent of $Z(\mathcal{O}G)$ such that $\mathbf{1}_G(b) \neq 0$ where $\mathbf{1}_G$ is the trivial character of G. (We don't distinguish $\mathrm{Irr}(G)$ and $\mathrm{Irr}(\mathcal{K}G)$.) Denote $\mathrm{Irr}(b) = \{\phi \in \mathrm{Irr}(G) \mid \phi(b) \neq 0\}$. $\phi \in \mathrm{Irr}(b)$ is called a character belonging to the block b. Similar for the other groups and blocks.

By [3] (see also [1]), b has the following primitive idempotent decomposition in $Z(\mathcal{O}Eb)$: $b = \sum_{i=0}^{q-1} \hat{b}_i$. In this situation, $Irr(b)^E = Irr(b)$ and the restriction and some extension of the characters determine a one-to-one correspondence between Irr(b) and $Irr(\hat{b}_i)$ for any i. Similar for b'.

We denote by \hat{b}_0 (resp. $\hat{b'}_0$) the principal block of E (resp. E'), and use for the extensions of characters in Irr(b) (resp. Irr(b')) belonging to the principal block, that is, $Irr(\hat{b}_0) = {\hat{\phi}|\phi \in Irr(b)}$ (resp. $Irr(\hat{b'}_0) = {\hat{\phi'}|\phi' \in Irr(b')}$).

Then, we see immediately that, for $0 \le i \le q-1$, a set $\{\lambda^i \hat{\phi} | \phi \in Irr(b)\}$ (resp. $\{\lambda^i \hat{\phi}' | \phi' \in Irr(b')\}$) forms the set of characters of E (resp. E') belonging to some block of E (resp. E') and we may denote it by \hat{b}_i (resp. $\hat{b'}_i$).

Lemma 3.2. (Osima [9] or see [6, Theorem 12.4.12]) For a finite group H and $\theta \in Irr(H)$, θ belongs to the principal p-block of H if and only if $\sum_{x \in H_{p'}} \theta(x) \neq 0$, where $H_{p'}$ is the set of elements of H with the order prime to p.

Proposition 3.3.

- (1) $Irr(b') = \{\phi_{(G')} | \phi \in Irr(b)\}$
- (2) $\operatorname{Irr}(\hat{b'}_i) = \{(\lambda^i \hat{\phi})_{(E')} | \lambda^i \hat{\phi} \in \operatorname{Irr}(\hat{b}_i)\} = \{\lambda^i \widehat{\phi_{(G')}} | \phi \in \operatorname{Irr}(b)\} \text{ for } 0 \leq i \leq q-1,$ if we choose signs ϵ_{ϕ} appropriately in the case q=2.

Proof. By Theorem 2.3 and Lemmas 2.4(1) and 3.2, for $\phi \in Irr(b)$ and $1 \le i \le q - 1$,

$$0 \neq \sum_{x \in E_{p'}} \hat{\phi}(x) = \sum_{x \in E_{p'}} (\hat{\phi} - \lambda^{i} \hat{\phi})(x) = \sum_{x \in (E_{0})_{p'}} (\hat{\phi} - \lambda^{i} \hat{\phi})(x)$$

$$= \epsilon_{\phi} \frac{|E|}{|E'|} \sum_{x' \in (E'_{0})_{p'}} (\hat{\phi}_{(E')} - \lambda^{i} \hat{\phi}_{(E')})(x') = \epsilon_{\phi} \frac{|E|}{|E'|} \sum_{x' \in E'_{p'}} (\hat{\phi}_{(E')} - \lambda^{i} \hat{\phi}_{(E')})(x').$$

Hence, $\hat{\phi}_{(E')}$ or $\lambda^i \hat{\phi}_{(E')}$ must belong to $\hat{b'}_0$, and so $\phi_{(G')} \in \operatorname{Irr}(b')$. If q = 2, we can choose ϵ_{ϕ} so that $\hat{\phi}_{(E')}$ belongs to the principal block $\hat{b'}_0$. If q is odd, we see that $\hat{\phi}_{(E')} \in \operatorname{Irr}(\hat{b'}_0)$ since $i \neq 0$ is arbitrary.

Hence, in any case, the Glauberman-Dade correspondence in Theorem 2.3 induces injections from Irr(b) to Irr(b') and from $Irr(\hat{b_0})$ to $Irr(\hat{b'_0})$.

Onto part also follows from the similar consideration.

Note that $\hat{\phi}_{(E')} = \widehat{\phi_{(G')}}$. The remaining statement follows from the commutativity of the action of \hat{F} and the Glauberman-Dade correspondence. \Box

Since $b = \sum_{\phi \in Irr(b)} e_{\phi}$ and $b' = \sum_{\phi' \in Irr(b')} e_{\phi'}$, by Propositions 2.6 and 3.3, we have:

Proposition 3.4.
$$\operatorname{Pr}_{E'}^E(\widehat{C(x)}b) = \widehat{C(x)'}b'$$
 and $\operatorname{Tr}_{E'}^E(\widehat{C(x)'}b') = \widehat{C(x)}b$

We see $\widehat{C(s)}b \in Z(\mathcal{O}Eb)^{\times}$ and $\widehat{C(s)'}b' \in Z(\mathcal{O}E'b')^{\times}$. In fact, $\widehat{C(s)}\hat{b}_i \in Z(\mathcal{O}E\hat{b}_i)^{\times}$ for any i, since $\omega_{\hat{b}_i}(\widehat{C(s)}\hat{b}_i) \neq 0$ by Condition 3.1 where $\omega_{\hat{b}_i}$ is a unique algebra homomorphism from the local algebra $Z(\mathcal{O}E\hat{b}_i)$ to k whose value at $\widehat{C(s)}\hat{b}_i$ is the canonical image in k of $\frac{|E|\lambda^i 1_E(s)}{|C_E(s)|\lambda^i 1_E(1)}$.

Note that $bb' \neq 0$. Denote $\gamma = (\widehat{C(s)'b'})^{-1}\widehat{C(s)}b \in (\mathcal{O}Ebb')^{E'}$ and let $\gamma' = \gamma^{-1} = (\widehat{C(s)}b)^{-1}\widehat{C(s)'b'}$ the inverse of γ in $(\mathcal{O}Ebb')^{E'}$. Here we mean $(\widehat{C(s)'b'})^{-1}$ the inverse of $\widehat{C(s)'b'}$ in $Z(\mathcal{O}E'b')$ and $(\widehat{C(s)}b)^{-1}$ the inverse of $\widehat{C(s)}b$ in $Z(\mathcal{O}Eb)$. Considering the grading given by π and noting $Z(\mathcal{O}Gb)$ is a local algebra, we see that $(\widehat{C(s)}b)^q \in Z(\mathcal{O}Gb)^{\times}$. Hence, we see $(\widehat{C(s)}b)^{-1}$ (similar for $(\widehat{C(s)'b'})^{-1}$) is a linear combination of the elements $x \in E$ such that $\pi(x) = \pi(s)^{q-1}$. Hence, $\gamma, \gamma' \in \mathcal{O}G$.

The following in the situation of the Glauberman correspondence appeared in [8].

Theorem 3.5. With the notations above, there is an \mathcal{O} -algebra isomorphism from $Z(\mathcal{O}Gb)$ to $Z(\mathcal{O}G'b')$ mapping $z \in Z(\mathcal{O}Gb)$ to $\operatorname{Pr}_{G'}^G(\gamma z)$. The inverse is given by the map sending $z' \in Z(\mathcal{O}G'b')$ to $\operatorname{Tr}_{G'}^G(\gamma'z')$.

Proof. Firstly, note that multiplying $(\widehat{C(s)'}b')^{-1}$ to

$$\widehat{C(s)'}b'e_{\phi_{(G')}}=\widehat{C(s)'}e_{\phi_{(G')}}=\operatorname{Pr}_{E'}^E(\widehat{C(s)}e_{\phi})$$

where $\phi \in Irr(b)$ (see Proposition 2.6(1)), we have

$$\begin{split} e_{\phi_{(G')}} &= b'e_{\phi_{(G')}} = (\widehat{C(s)'b'})^{-1}\mathrm{Pr}_{E'}^E(\widehat{C(s)}e_{\phi}) \\ &= \mathrm{Pr}_{E'}^E[(\widehat{C(s)'b'})^{-1}\widehat{C(s)}e_{\phi}] \\ &= \mathrm{Pr}_{G'}^G[(\widehat{C(s)'b'})^{-1}\widehat{C(s)}e_{\phi}] \\ &= \mathrm{Pr}_{G'}^G(\gamma e_{\phi}). \end{split}$$

Similarly, multiplying $(\widehat{C(s)}b)^{-1}$ to

$$\widehat{C(s)}be_{\phi'_{(G)}} = \widehat{C(s)}e_{\phi'_{(G)}} = \operatorname{Tr}_{E'}^E(\widehat{C(s)'}e_{\phi'})$$

where $\phi' \in Irr(b')$ (see Proposition 2.6(2)), we have

$$\begin{split} e_{\phi'_{(G)}} &= b e_{\phi'_{(G)}} = (\widehat{C(s)}b)^{-1} \mathrm{Tr}_{E'}^E (\widehat{C(s)'} e_{\phi'}) \\ &= \mathrm{Tr}_{E'}^E [(\widehat{C(s)}b)^{-1} \widehat{C(s)'} e_{\phi'}] \\ &= \mathrm{Tr}_{G'}^G [(\widehat{C(s)}b)^{-1} \widehat{C(s)'} e_{\phi'}] \\ &= \mathrm{Tr}_{G'}^G (\gamma' e_{\phi'}). \end{split}$$

Then, statements follow as in [8]. The \mathcal{K} -linear map sending $z_{\mathcal{K}} \in Z(\mathcal{K}Gb)$ to $\Pr_{G'}^G(\gamma z_{\mathcal{K}})$ and the \mathcal{K} -linear map sending $z_{\mathcal{K}}' \in Z(\mathcal{K}G'b_{(G')})$ to $\Pr_{G'}^G(\gamma'z_{\mathcal{K}}')$ are mutually inverse \mathcal{K} -algebra isomorphisms between $Z(\mathcal{K}Gb)$ and $Z(\mathcal{K}G'b')$, since $\{e_{\phi}|\phi\in\operatorname{Irr}(b)\}$ and $\{e_{\phi_{(G')}}|\phi\in\operatorname{Irr}(b)\}$ are orthogonal \mathcal{K} -bases of $Z(\mathcal{K}Gb)$ and $Z(\mathcal{K}G'b')$ respectively. Moreover, since these maps send elements with coefficient in \mathcal{O} to elements with coefficient in \mathcal{O} by definitions, these maps restrict to \mathcal{O} -algebra isomorphisms between $Z(\mathcal{O}Gb)$ and $Z(\mathcal{O}G'b')$. \square

References

- [1] J. L. Alperin, Isomorphic blocks, J. Algebra 43 (1976), 694-698.
- [2] M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181-182 (1990), 61-92.
- [3] E. C. Dade, Remarks on isomorphic blocks, J. Algebra 45 (1977), 254-258.
- [4] E. C. Dade, A new approach to Glauberman's correspondence, J. Algebra 270 (2003), 583-628.
- [5] G. Glauberman, Correspondence of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465–1488.
- [6] G. Karpilovsky, Group Representations, Vol. 5 North-Holland Mathematics Studies 183, North-Holland Amsterdam, 1996.
- [7] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, Boston, 1989.
- [8] T. Okuyama, A talk at a Seminar in Ochanomizu Univ. on 5 November, 2005.
- [9] M. Osima, On some properties of group characters, Proc. Japan Acad. 36 (1960), 18-21.
- [10] F. Tasaka, preprint, 2006
- [11] A. Watanabe, The Glauberman character correspondence and perfect isometries for blocks of finite groups, J. Algebra 216 (1999), 548-565.