Hochschild cohomology ring of an order of a quaternion algebra

速水 孝夫 (Takao Hayami) 東京理科大学 理学部数学科

(Department of Mathematics, Science University of Tokyo)

Introduction

The cohomology theory of associative algebras was initiated by Hochschild [6], Cartan and Eilenberg [1] and MacLane [7]. Let R be a commutative ring and Λ an R-algebra which is a finitely generated projective R-module. If M is a Λ -bimodule (i.e., a $\Lambda^e = \Lambda \otimes_R \Lambda^{op}$ -module), then the nth Hochschild cohomology of Λ with coefficients in M is defined by $H^n(\Lambda, M) := \operatorname{Ext}_{\Lambda^e}^n(\Lambda, M)$. We set $HH^n(\Lambda) = H^n(\Lambda, \Lambda)$. The cup product gives $HH^*(\Lambda) := \bigoplus_{n\geq 0} HH^n(\Lambda)$ a graded ring structure with $1 \in Z\Lambda \simeq HH^0(\Lambda)$ where $Z\Lambda$ denotes the center of Λ . $HH^*(\Lambda)$ is called the Hochschild cohomology ring of Λ . It is known that the cup product coincides with the Yoneda product on the Ext-algebra. Note that the Hochschild cohomology ring $HH^*(\Lambda)$ is graded-commutative, that is, for $\alpha \in HH^p(\Lambda)$ and $\beta \in HH^q(\Lambda)$ we have $\alpha\beta = (-1)^{pq}\beta\alpha$. The Hochschild cohomology is an important invariant of algebras, however the Hochschild cohomology ring is difficult to compute in general.

Let G denote the generalized quaternion 2-group of order 2^{r+2} for $r \geq 1$:

$$Q_{2^r} = \langle x, y \mid x^{2^{r+1}} = 1, x^{2^r} = y^2, yxy^{-1} = x^{-1} \rangle.$$

We set $e=(1-x^{2^r})/2\in\mathbb{Q}G$ and denote xe by ζ , a primitive 2^{r+1} -th root of e. Then e is a centrally primitive idempotent of $\mathbb{Q}G$. The simple component $\mathbb{Q}Ge$ is just the ordinary quaternion algebra over the field $K:=\mathbb{Q}(\zeta+\zeta^{-1})$ with identity e, that is, $\mathbb{Q}Ge=K\oplus Ki\oplus Kj\oplus Kij$ where we set $i=x^{2^{r-1}}e$ and j=ye (see [2, (7.40)]). Note that $\zeta^k j=j\zeta^{-k}$ and $\zeta^{2^r}=-e$ hold. In the following we set $R=\mathbb{Z}[\zeta+\zeta^{-1}]$, the ring of integers of K, and we set $\Gamma=\mathbb{Z}Ge=R\oplus R\zeta\oplus Rj\oplus R\zeta j$. Note that R is a commuting parameter ring, because g commutes with g and g are g and g are g and g are g are g and g are g are g and g are g and g are g are g and g are g are g and g are g are g and g are g are g and g are g are g are g and g are g and g are g are g and g are g and g are g are g and g are g are g and g are g and g are g are g and g are g and g are g and g are g are g are g are g are g and g are g and g are g are g are g are g are g are g and g are g are g are g are g are g and g are g are g are g are g are g are g ar

We will give an efficient bimodule projective resolution of Γ , and we will determine the ring structure of the Hochschild cohomology $HH^*(\Gamma)$ by calculating the Yoneda products using this bimodule projective resolution. This paper is a summary of [3].

1 A bimodule projective resolution of Γ

In this section, we state a Γ^{e} -projective resolution of Γ . In general, $\Gamma \otimes \Gamma$ is a left Γ^{e} -module (i.e., a Γ -bimodule) by putting

$$(a \otimes b^{\circ}) \cdot (\gamma_1 \otimes \gamma_2) := a\gamma_1 \otimes \gamma_2 b$$

for all $a, b, \gamma_1, \gamma_2 \in \Gamma$. For each $q \geq 0$, let Y_q be a direct sum of q + 1 copies of $\Gamma \otimes \Gamma$. As elements of Y_q , we set

$$c_q^s = egin{cases} (0,\ldots,0,\underbrace{e\otimes e}_s,0,\ldots,0) & & ext{(if } 1\leq s\leq q+1), \ 0 & & ext{(otherwise)}. \end{cases}$$

Then we have $Y_q = \bigoplus_{k=1}^{q+1} \Gamma c_q^k \Gamma$. Let $t = 2^r$. Define left Γ^e -homomorphisms $\pi : Y_0 \to \Gamma; c_0^1 \mapsto e$ and $\delta_q : Y_q \to Y_{q-1} \ (q > 0)$ given by

$$\delta_q(c_q^s) = \begin{cases} -\zeta c_{q-1}^s + c_{q-1}^s \zeta + (-1)^{(q-s)/2} \zeta j c_{q-1}^{s-1} j \zeta - c_{q-1}^{s-1} & \text{for } q \text{ even, } s \text{ even,} \\ \sum_{l=0}^{t-1} \zeta^{t-1-l} c_{q-1}^s \zeta^l + (-1)^{(q-s-1)/2} j c_{q-1}^{s-1} j + c_{q-1}^{s-1} & \text{for } q \text{ even, } s \text{ odd,} \end{cases}$$

$$\delta_q(c_q^s) = \begin{cases} \sum_{l=0}^{t-1} \zeta^{t-1-l} c_{q-1}^s \zeta^l + (-1)^{(q-s-1)/2} j c_{q-1}^{s-1} j + c_{q-1}^{s-1} & \text{for } q \text{ odd, } s \text{ even,} \end{cases}$$

$$\zeta c_{q-1}^s - c_{q-1}^s \zeta^l + (-1)^{(q-s)/2} \zeta j c_{q-1}^{s-1} j \zeta + c_{q-1}^{s-1} & \text{for } q \text{ odd, } s \text{ odd.} \end{cases}$$

$$\zeta c_{q-1}^s - c_{q-1}^s \zeta^l + (-1)^{(q-s)/2} \zeta j c_{q-1}^{s-1} j \zeta + c_{q-1}^{s-1} & \text{for } q \text{ odd, } s \text{ odd.} \end{cases}$$

Theorem 1. The above (Y, π, δ) is a Γ^{e} -projective resolution of Γ .

Proof. By the direct calculations, we have $\pi \cdot \delta_1 = 0$ and $\delta_q \cdot \delta_{q+1} = 0$ $(q \ge 1)$.

To see that the complex (Y, π, δ) is acyclic, we state a contracting homotopy. In general, it suffices to define the homotopy as an abelian group homomorphism. However, we can see that there exists a homotopy as a right Γ -module, which permits us to cut down the number of cases. We define right Γ -homomorphisms $T_{-1}: \Gamma \to Y_0$ and $T_q: Y_q \to Y_{q+1} \ (q \ge 0)$ as follows:

$$T_{-1}(\gamma) = c_0^1 \gamma$$
 (for $\gamma \in \Gamma$).

If $q(\geq 0)$ is even, then

$$T_{q}(\zeta^{k}c_{q}^{s}) = \begin{cases} 0 & (k = 0, \ s = 1), \\ \sum_{l=0}^{k-1} \zeta^{k-1-l}c_{q+1}^{1}\zeta^{l} & (1 \leq k < t, \ s = 1), \\ 0 & (s(\geq 2) \text{ even}), \\ -\zeta^{k}c_{q+1}^{s+1} & (s(\geq 3) \text{ odd}), \end{cases}$$

$$T_{q}(\zeta^{k}jc_{q}^{s}) = \begin{cases} (-1)^{q/2}c_{q+1}^{2}j & (k = 0, \ s = 1), \\ (-1)^{q/2}\left(\sum_{l=0}^{k-1} \zeta^{k-1-l}c_{q+1}^{1}\zeta^{l}j + \zeta^{k}c_{q+1}^{2}j\right) & (1 \leq k < t, \ s = 1), \\ \zeta^{k}jc_{q+1}^{s+1} & (s(\geq 2) \text{ even}), \\ 0 & (s(\geq 2) \text{ even}), \end{cases}$$

If $q(\geq 1)$ is odd, then

$$T_q(\zeta^k c_q^s) = \begin{cases} 0 & (0 \le k \le t - 2, \ s = 1), \\ c_{q+1}^1 & (k = t - 1, \ s = 1), \\ 0 & (s(\ge 2) \text{ even}), \\ -\zeta^k c_{q+1}^{s+1} & (s(\ge 3) \text{ odd}), \end{cases}$$

$$T_q(\zeta^k j c_q^s) = \begin{cases} (-1)^{(q-1)/2} \left(c_{q+1}^1 j \zeta + \zeta^{t-1} c_{q+1}^2 j \zeta \right) & (k = 0, \ s = 1), \\ (-1)^{(q+1)/2} \zeta^{k-1} c_{q+1}^2 j \zeta & (1 \le k < t, \ s = 1), \\ \zeta^k j c_{q+1}^{s+1} & (s(\ge 2) \text{ even}), \\ 0 & (s(\ge 3) \text{ odd}). \end{cases}$$

Then by the direct calculations, we have

$$\delta_{q+1}T_q + T_{q-1}\delta_q = \mathrm{id}_{Y_q}$$

for $q \geq 0$. Hence (Y, π, δ) is a Γ^{e} -projective resolution of Γ .

2 Hochschild cohomology $HH^*(\Gamma)$

2.1 Module structure

In this section, we give the module structure of $HH^*(\Gamma)$. This is obtained by using the Γ^{e} -projective resolution (Y, π, δ) of Γ stated in Theorem 1. In the following we denote a direct sum of q copies of a module M by M^{q} .

First, we state the following lemma:

Lemma 1. Let ζ be a primitive 2^{r+1} -th root of 1 for any positive integer $r \geq 2$ and K the maximal real subfield $\mathbb{Q}(\zeta + \zeta^{-1})$ of $\mathbb{Q}(\zeta)$. Then $(\zeta + \zeta^{-1})^2$ divides 2 in R, where R denotes $\mathbb{Z}[\zeta + \zeta^{-1}]$, the ring of integers of K.

Proof. See [4, Lemma 1]. Note that $\zeta^{2^k} + \zeta^{-2^k}$ divides 2 in R for $0 \le k \le r - 2$.

If $r \geq 2$, we set $\eta_k = 2e/(\zeta^{2^k} + \zeta^{-2^k})$ for $0 \leq k \leq r-2$ in the following. Let $\eta = \eta_0$. In the following, we show that $e-\eta^2$ is an unit in R. If r=2, then we have $e-\eta^2=-e$. If $r\geq 3$, then we have

$$-(e-\eta^2)\prod_{k=1}^{r-2}(e+\eta_k)^2=-(e-\eta_{r-2}^2)=e,$$

because the equation $(e - \eta_{k-1}^2)(e + \eta_k)^2 = e - \eta_k^2$ holds for $1 \le k \le r - 2$. Therefore $e - \eta^2$ is an unit in R.

As elements of Γ^{q+1} , we set

$$\iota_q^s = \begin{cases} (0, \dots, 0, \overset{s}{\check{e}}, 0, \dots, 0) & \text{ (if } 1 \leq s \leq q+1), \\ 0 & \text{ (otherwise)}. \end{cases}$$

Then we have $\Gamma^{q+1} = \bigoplus_{k=1}^{q+1} \Gamma \iota_q^k$.

Applying the functor $\operatorname{Hom}_{\Gamma^{\bullet}}(-,\Gamma)$ to the resolution (Y,π,δ) , we have the following complex, where we identify $\operatorname{Hom}_{\Gamma^{\bullet}}(Y_q,\Gamma)$ with Γ^{q+1} using an isomorphism $\operatorname{Hom}_{\Gamma^{\bullet}}(Y_q,\Gamma) \to \Gamma^{q+1}$; $f \mapsto \sum_{k=1}^{q+1} f(c_q^k) \iota_q^k$:

$$\begin{split} \left(\operatorname{Hom}_{\varGamma^{\mathbf{e}}}(Y, \varGamma), \delta^{\#} \right) : \quad 0 \to \varGamma \xrightarrow{\delta_{1}^{\#}} \varGamma^{2} \xrightarrow{\delta_{2}^{\#}} \varGamma^{3} \xrightarrow{\delta_{3}^{\#}} \varGamma^{4} \xrightarrow{\delta_{4}^{\#}} \varGamma^{5} \to \cdots \,, \\ \delta_{q+1}^{\#}(\gamma \iota_{q}^{s}) = \begin{cases} -\sum_{l=0}^{t-1} \zeta^{t-1-l} \gamma \zeta^{l} \iota_{q+1}^{s} + ((-1)^{(q-s)/2} \zeta j \gamma j \zeta + \gamma) \iota_{q+1}^{s+1} & \text{for q even, s even,} \\ (\zeta \gamma - \gamma \zeta) \iota_{q+1}^{s} + ((-1)^{(q-s-1)/2} j \gamma j - \gamma) \iota_{q+1}^{s+1} & \text{for q even, s odd,} \\ -(\zeta \gamma - \gamma \zeta) \iota_{q+1}^{s} + ((-1)^{(q-s-1)/2} j \gamma j + \gamma) \iota_{q+1}^{s+1} & \text{for q odd, s even,} \\ \sum_{l=0}^{t-1} \zeta^{t-1-l} \gamma \zeta^{l} \iota_{q+1}^{s} + ((-1)^{(q-s)/2} \zeta j \gamma j \zeta - \gamma) \iota_{q+1}^{s+1} & \text{for q odd, s odd.} \end{cases} \end{split}$$

In the above, note that

$$\gamma \iota_{q}^{s} = \begin{cases} (0, \dots, 0, \overset{s}{\check{\gamma}}, 0, \dots, 0) & \text{ (if } 1 \leq s \leq q+1), \\ 0 & \text{ (otherwise),} \end{cases}$$

for $\gamma \in \Gamma$, and so on.

Theorem 2. (1) If r = 1, the \mathbb{Z} -module structure of $HH^n(\Gamma)$ is given as follows:

- (i) If n = 0, then $HH^0(\Gamma) = \mathbb{Z}$.
- (ii) If n=1, then $HH^1(\Gamma)=(\mathbb{Z}/2\mathbb{Z})^3$ with generators $\zeta j\iota_1^1,\ j\iota_1^1+\zeta j\iota_1^2,\ \zeta \iota_1^2$.
- (iii) If n=2, then $HH^2(\Gamma)=(\mathbb{Z}/2\mathbb{Z})^5$ with generators $\zeta\iota_2^1,\ \iota_2^1+\zeta\iota_2^2,\ j\iota_2^2,\ \zeta j\iota_2^2-j\iota_2^3,\ \iota_2^3$
- (iv) If n = 3, then $HH^3(\Gamma) = (\mathbb{Z}/2\mathbb{Z})^7$ with generators $j\iota_3^1$, $\zeta j\iota_3^1 j\iota_3^2$, ι_3^2 , $\zeta \iota_3^2 \iota_3^3$, $\zeta j\iota_3^3$, $j\iota_3^3 + \zeta j\iota_3^4$, $\zeta \iota_3^4$.
- $\begin{array}{l} \text{(v)} \ \ \textit{If} \ n=4k \ (k\neq 0), \ then \ HH^n(\Gamma)=(\mathbb{Z}/2\mathbb{Z})^{2n+1} \ \ \textit{with generators} \\ \\ \iota_n^{4l+1}, \ \zeta \iota_n^{4l+1}-\iota_n^{4l+2}, \ \zeta j\iota_n^{4l+2}, \ j\iota_n^{4l+2}+\zeta j\iota_n^{4l+3}, \ \zeta \iota_n^{4l+3}, \ \iota_n^{4l+3}+\zeta \iota_n^{4l+4}, \\ j\iota_n^{4l+4}, \ \zeta j\iota_n^{4l+4}-j\iota_n^{4l+5}, \ \iota_n^{4k+1}, \end{array}$

where $l = 0, 1, 2, \ldots, k - 1$.

where $l = 0, 1, 2, \dots, k$ and $m = 0, 1, 2, \dots, k-1$.

(vii) If
$$n = 4k + 2$$
 $(k \neq 0)$, then $HH^{n}(\Gamma) = (\mathbb{Z}/2\mathbb{Z})^{2n+1}$ with generators
$$\zeta\iota_{n}^{4l+1}, \ \iota_{n}^{4l+1} + \zeta\iota_{n}^{4l+2}, \ j\iota_{n}^{4l+2}, \ \zeta j\iota_{n}^{4l+2} - j\iota_{n}^{4l+3}, \ \iota_{n}^{4l+3},$$
$$\zeta\iota_{n}^{4m+4} - \iota_{n}^{4m+4}, \ \zeta j\iota_{n}^{4m+4}, \ j\iota_{n}^{4m+4} + \zeta j\iota_{n}^{4m+5},$$

where l = 0, 1, 2, ..., k and m = 0, 1, 2, ..., k - 1.

(viii) If
$$n = 4k + 3$$
 ($k \neq 0$), then $HH^n(\Gamma) = (\mathbb{Z}/2\mathbb{Z})^{2n+1}$ with generators $j\iota_n^{4l+1}$, $\zeta j\iota_n^{4l+1} - j\iota_n^{4l+2}$, ι_n^{4l+2} , $\zeta \iota_n^{4l+2} - \iota_n^{4l+3}$, $\zeta j\iota_n^{4l+3}$, $j\iota_n^{4l+3} + \zeta j\iota_n^{4l+4}$, $\zeta \iota_n^{4l+4}$, $\iota_n^{4m+4} + \zeta \iota_n^{4m+5}$,

where l = 0, 1, 2, ..., k and m = 0, 1, 2, ..., k - 1.

- (2) If $r \geq 2$, the R-module structure of $HH^n(\Gamma)$ is as follows:
 - (i) If n = 0, then $HH^0(\Gamma) = R$.
 - (ii) If n = 1, then $HH^1(\Gamma) = (R/(\zeta + \zeta^{-1})R)^3$ with generators $(j \eta \zeta j)\iota_1^1$, $(\zeta j \eta j)\iota_1^1 + (j \eta \zeta j)\iota_1^2$, $(e \eta \zeta)\iota_1^2$.
- (iii) If n=2, then $HH^2(\Gamma)=R/2^rR\oplus (R/(\zeta+\zeta^{-1})R)^4$, where the $R/2^rR$ summand is generated by $(e-\eta\zeta)\iota_2^1$ and the $(R/(\zeta+\zeta^{-1})R)^4$ summands are generated by $2^{r-1}\eta\zeta\iota_2^1+\zeta\iota_2^2$, $j\iota_2^2$, $\zeta j\iota_2^2-j\iota_2^3$, ι_2^3 .
- (iv) If n = 3, then $HH^3(\Gamma) = (R/(\zeta + \zeta^{-1})R)^7$ with generators $j\iota_3^1$, $\zeta j\iota_3^1 j\iota_3^2$, ι_3^2 , $2^{r-1}\eta\zeta\iota_3^2 + (\zeta \eta)\iota_3^3$, $(j \eta\zeta j)\iota_3^3$, $(\zeta j \eta j)\iota_3^3 + (j \eta\zeta j)\iota_3^4$, $(e \eta\zeta)\iota_3^4$.
- (v) If n = 4k $(k \neq 0)$, then $HH^n(\Gamma) = R/2^r R \oplus (R/(\zeta + \zeta^{-1})R)^{2n}$, where the $R/2^r R$ summand is generated by ι_n^1 and the $(R/(\zeta + \zeta^{-1})R)^{2n}$ summands are generated by

$$2^{r-1}\eta\zeta\iota_{n}^{4l+1} + (\zeta - \eta)\iota_{n}^{4l+2}, \ (j - \eta\zeta j)\iota_{n}^{4l+2}, \ (\zeta j - \eta j)\iota_{n}^{4l+2} + (j - \eta\zeta j)\iota_{n}^{4l+3}, \\ (e - \eta\zeta)\iota_{n}^{4l+3}, \ 2^{r-1}\eta\zeta\iota_{n}^{4l+3} + \zeta\iota_{n}^{4l+4}, \ j\iota_{n}^{4l+4}, \ \zeta j\iota_{n}^{4l+4} - j\iota_{n}^{4l+5}, \ \iota_{n}^{4l+5},$$

where $l = 0, 1, 2, \ldots, k-1$.

 $(\text{vi}) \ \ \textit{If} \ n = 4k+1 \ (k \neq 0), \ then \ HH^n(\Gamma) = (R/(\zeta+\zeta^{-1})R)^{2n+1} \ \ \textit{with generators}$ $(j-\eta\zeta j)\iota_n^{4l+1}, \ (\zeta j-\eta j)\iota_n^{4l+1} + (j-\eta\zeta j)\iota_n^{4l+2}, \ (e-\eta\zeta)\iota_n^{4l+2},$ $2^{r-1}\eta\zeta\iota_n^{4m+2} + \zeta\iota_n^{4m+3}, \ j\iota_n^{4m+3}, \ \zeta j\iota_n^{4m+3} - j\iota_n^{4m+4}, \ \iota_n^{4m+4},$ $2^{r-1}\eta\zeta\iota_n^{4m+4} + (\zeta-\eta)\iota_n^{4m+5},$

where l = 0, 1, 2, ..., k and m = 0, 1, 2, ..., k - 1.

(vii) If n = 4k + 2 $(k \neq 0)$, then $HH^n(\Gamma) = R/2^r R \oplus (R/(\zeta + \zeta^{-1})R)^{2n}$, where the $R/2^r R$ summand is generated by $(e - \eta \zeta)\iota_n^1$ and the $(R/(\zeta + \zeta^{-1})R)^{2n}$ summands are generated by

$$2^{r-1}\eta\zeta\iota_n^{4l+1} + \zeta\iota_n^{4l+2}, \ j\iota_n^{4l+2}, \ \zeta j\iota_n^{4l+2} - j\iota_n^{4l+3}, \ \iota_n^{4l+3}, \ 2^{r-1}\eta\zeta\iota_n^{4m+3} + (\zeta - \eta)\iota_n^{4m+4}, \\ (j - \eta\zeta j)\iota_n^{4m+4}, \ (\zeta j - \eta j)\iota_n^{4m+4} + (j - \eta\zeta j)\iota_n^{4m+5}, \ (e - \eta\zeta)\iota_n^{4m+5}, \\$$

where l = 0, 1, 2, ..., k and m = 0, 1, 2, ..., k - 1.

(viii) If
$$n = 4k + 3$$
 $(k \neq 0)$, then $HH^n(\Gamma) = (R/(\zeta + \zeta^{-1})R)^{2n+1}$ with generators $j\iota_n^{4l+1}$, $\zeta j\iota_n^{4l+1} - j\iota_n^{4l+2}$, ι_n^{4l+2} , $2^{r-1}\eta\zeta\iota_n^{4l+2} + (\zeta - \eta)\iota_n^{4l+3}$, $(j - \eta\zeta j)\iota_n^{4l+3}$, $(\zeta j - \eta j)\iota_n^{4l+3} + (j - \eta\zeta j)\iota_n^{4l+4}$, $(e - \eta\zeta)\iota_n^{4l+4}$, $2^{r-1}\eta\zeta\iota_n^{4m+4} + \zeta\iota_n^{4m+5}$, where $l = 0, 1, 2, ..., k$ and $m = 0, 1, 2, ..., k-1$.

Proof. The proof is straightforward. However it is complicated.

2.2 Ring structure

In this subsection, we will determine the ring structure of the Hochschild cohomology ring $HH^*(\Gamma)$.

Recall the Yoneda product in $HH^*(\Gamma)$. Let $\alpha \in HH^n(\Gamma)$ and $\beta \in HH^m(\Gamma)$, where α and β are represented by cocycles $f_{\alpha}: Y_n \to \Gamma$ and $f_{\beta}: Y_m \to \Gamma$, respectively. There exists the commutative diagram of Γ^e -modules:

where μ_l $(0 \le l \le n)$ are liftings of f_{β} . We define the product $\alpha \cdot \beta \in HH^{n+m}(\Gamma)$ by the cohomology class of $f_{\alpha}\mu_n$. This product is independent of the choice of representatives f_{α} and f_{β} , and liftings μ_l $(0 \le l \le n)$.

First, we consider the case r=1. Note the Hochschild cohomology ring $HH^*(\Gamma)$ is graded-commutative. From Theorem 2 (1), $HH^*(\Gamma)$ is a commutative ring in this case. We take generators of $HH^1(\Gamma)$ as follows:

$$A = \zeta \iota_1^2, \ B = \zeta j \iota_1^1, \ C = j \iota_1^1 + \zeta j \iota_1^2.$$

Then we have 2A = 2B = 2C = 0. We calculate the Yoneda products. Then $HH^n(\Gamma)$ $(n \ge 2)$ is multiplicatively generated by A, B and C, and the equation $A^2 + B^2 + C^2 = 0$ holds. Moreover the relations are enough. Thus we can determine the ring structure of $HH^*(\Gamma)$ in the case r = 1 (see [3, Section 3.1] for details).

Next, we consider the case $r \geq 2$. The computation is similar to the case where r = 1, however it is more complicated. By Theorem 2 (2), we take generators of $HH^1(\Gamma)$ as follows:

$$A = (e - \eta \zeta)\iota_1^2, \ B = (j - \eta \zeta j)\iota_1^1, \ C = (\zeta j - \eta j)\iota_1^1 + (j - \eta \zeta j)\iota_1^2.$$

Then we have $(\zeta + \zeta^{-1})A = (\zeta + \zeta^{-1})B = (\zeta + \zeta^{-1})C = 0$. Note that products of A, B, C and $X \in HH^n(\Gamma)$ $(n \ge 0)$ are commutative, because $HH^*(\Gamma)$ is graded-commutative and the equations 2A = 2B = 2C = 0 hold. By calculating the Yoneda products we have the following proposition.

Proposition 2. If $r \geq 2$, then the following equations hold in $HH^2(\Gamma)$:

$$A^{2} = \iota_{2}^{3}, \ AB = j\iota_{2}^{2}, \ AC = \zeta j\iota_{2}^{2} - j\iota_{2}^{3}, \ B^{2} = 2^{r-1}\eta\zeta\iota_{2}^{1} + \zeta\iota_{2}^{2},$$
$$BC = 2^{r-1}\eta(e - \eta\zeta)\iota_{2}^{1}, \ C^{2} = 2^{r-1}\eta\zeta\iota_{2}^{1} + \zeta\iota_{2}^{2} + \iota_{2}^{3}.$$

In particular, generators of $HH^2(\Gamma)$ except $(e - \eta \zeta)\iota_2^1$ are generated by the products of A, B and C, and the equation $A^2 + B^2 + C^2 = 0$ holds.

In the following, we put $D=(e-\eta\zeta)\iota_2^1$ which is a generator of $HH^2(\Gamma)$, and then we have $2^rD=0$ and $BC=2^{r-1}\eta D$. Similarly, we calculate the Yoneda products. Then $HH^n(\Gamma)$ $(n\geq 3)$ is multiplicatively generated by A,B,C and D, and the relations are enough. Thus we can determine the ring structure of $HH^*(\Gamma)$ in the case $r\geq 2$ (see [3, Section 3.2] for details).

We state the ring structure of the Hochschild cohomology ring $HH^*(\Gamma)$ by summarizing these computations.

Theorem 3. (1) If r = 1, then the Hochschild cohomology ring $HH^*(\Gamma)$ is isomorphic to

$$\mathbb{Z}[A, B, C]/(2A, 2B, 2C, A^2 + B^2 + C^2),$$

where $\deg A = \deg B = \deg C = 1$.

(2) If $r \geq 2$, then the Hochschild cohomology ring $HH^*(\Gamma)$ is isomorphic to

$$R[A, B, C, D]/((\zeta + \zeta^{-1})A, (\zeta + \zeta^{-1})B, (\zeta + \zeta^{-1})C, 2^{r}D, A^{2} + B^{2} + C^{2}, BC - 2^{r-1}\eta D),$$

where $R = \mathbb{Z}[\zeta + \zeta^{-1}]$, $\deg A = \deg B = \deg C = 1$ and $\deg D = 2$.

Remark. In the case r = 1, this cohomology ring is already known by Sanada [8, Section 3.4]. In [8], he treats the Hochschild cohomology of crossed products over a commutative ring and its product structure using a spectral sequence of a double complex. As a special case, he determines the Hochschild cohomology ring of the quaternion algebra over \mathbb{Z} .

References

- [1] H. Cartan and S. Eilenberg, *Homological Algebra*, Princeton University Press, Princeton NJ, 1956.
- [2] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I. With applications to finite groups and orders, Wiley-Interscience, New York, 1981.
- [3] T. Hayami, Hochschild cohomology ring of an order of a simple component of the rational group ring of the generalized quaternion group, Comm. Algebra (to appear).
- [4] T. Hayami and K. Sanada, Cohomology ring of the generalized quaternion group with coefficients in an order, Comm. Algebra 30 (2002), 3611-3628.
- [5] T. Hayami and K. Sanada, On cohomology rings of a cyclic group and a ring of integers, SUT J. Math. 38 (2002), 185-199.

- [6] G. Hochschild, On the Cohomology Groups of an Associative Algebra, Ann. of Math. 46 (1945), 58-67.
- [7] S. MacLane, Homology, Springer-Verlag, New York, 1975.
- [8] K. Sanada, On the Hochschild cohomology of crossed products, Comm. Algebra 21 (1993), 2727– 2748