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Introduction

The cohomology theory of associative algebras was initiated by Hochschild [6], Cartan
and Eilenberg (1] and MacLane {7]. Let R be a commutative ring and A an R-algebra which
is a finitely generated projective R-module. If M is a A-bimodule (i.e., a A* = A ®p A°P-
module), then the nth Hochschild cohomology of A with coefficients in M is defined
by H"(A, M) := Ext}.(A, M). We set HH*(A) = H"(A,A). The cup product gives
HH*(A) := @,5, HH™(A) a graded ring structure with 1 € ZA ~ HH°(A) where ZA
‘denotes the center of A. HH*(A) is called the Hochschild cohomology ring of A. It
is known that the cup product coincides with the Yoneda product on the Ext-algebra.
Note that the Hochschild cohomology ring HH*(A) is graded-commutative, that is, for
a € HH?(A) and 8 € HH?(A) we have a8 = (—1)*Ba. The Hochschild cohomology is
an important invariant of algebras, however the Hochschild cohomology ring is difficult
to compute in general.

Let G denote the generalized quaternion 2-group of order 2"+2 for r > 1:

Q2r = (:B,y | $2r+1 = 1,:1:2" = yz,yxy_l — a;_l)_

We set e = (1 — 22")/2 € QG and denote ze by ¢, a primitive 2"+1-th root of e. Then
e is a centrally primitive idempotent of QG. The simple component QGe is just the
ordinary quaternion algebra over the field K := Q(C + ¢~!) with identity e, that is,
QGe = K ® Ki® Kj ® Kij where we set i = 2% e and j = ye (see [2, (7.40)]). Note
that ¢¥j = j¢* and (¥ = —e hold. In the following we set R = Z[¢ + ¢~!], the ring of
integers of K, and we set I' = ZGe = R® R( ® Rj ® R(j. Note that R is a commuting
parameter ring, because y commutes with z + z=!. Then I' is an R-order of QGe. In
particular if r = 1, I' = Ze @ Zi ® Zj & Zij is just the ordinary quaternion algebra over
Z with identity e. ,

We will give an efficient bimodule projective resolution of I', and we will determine the
ring structure of the Hochschild cohomology H H*(I") by calculating the Yoneda products
using this bimodule projective resolution. This paper is a summary of [3].

1 A bimodule projective resolution of I

In this section, we state a I"*-projective resolution of I'.
In general, I' ® I' is a left I"*-module (i.e., a I"-bimodule) by putting

(@a®b%) - (71 ®@70) := ay; @ 2b



for all a,b,71,72 € I'. For each ¢ > 0, let Y, be a direct sum of g + 1 copies of ' ® I'. As
elements of Y,, we set

©,...,0,e®e€,0,...,0) (ifl1<s<g+1),

cs _ \V-/
q 8
0 (otherwise).
Then we have Y, = @21} Fc"F Let t = 2". Define left I">-homomorphisms 7 : Y, —
Iieg—>eand §g: Y, = Yo (q>0) given by
(-Cc;_l + 51+ (-1)@2Ge =3¢ — c;':i for g even, s even,
t-1
Z ¢ ¢+ (1) 9D+ el for q even, s odd,

Jq(c") = ¢ l=9:—1

_ th—l—tc;_l'cz + (=1)a2D25e2mli 2=l for q odd, s even,
=0
| Ceiy — iy + (—1)@2¢jesdic + i) for q odd, s odd.

Theorem 1. The above (Y, , ) is a I'*-projective resolution of I

Proof. By the direct éalculations, we have 7-6; = 0 and 6 - 641 =0 (¢ =>1).

To see that the complex (Y,n,d) is acyclic, we state a contracting homotopy. In
general, it suffices to define the homotopy as an abelian group homomorphism. However,
we can see that there exists a homotopy as a right I'-module, which permits us to cut
down the number of cases. We define right I'-homomorphisms T"; : I' — Y and Ty, :
Y, = Y1 (g >0) as follows:

T.\(v)=¢y (foryel).

If g(> 0) is even, then

'0 (k=0, s=1),
Ty(¢kes) = ¢ ,ch Tlen (Isk<t s=1),

0 (s(= 2) even),

—CFegth (s(= 3) odd),

( 1)‘?/2 Cor +1J | (k =0, 5= 1)’

k—1

Ty(¢* i) = S (=1 (g A c‘””) (1<k<t s=1),

Ck]c;ii (S(Z 2) even),

0 (s(> 3) odd).



If (> 1) is odd, then

(0 0<k<t-2,s=1),
1 k=t—1, s=1)
T k.sy cq+1 ( ’ ’
(¢ = o 0 (s(> 2) even),
\—Ckc;ii (3(2 3) Odd)’
( (_1)(4—1)/2 (c,}+1jC + Ct_lcg-HjC) (k=0, s=1),
' —1)(a+1)/2ck-12 j¢ (1<k<t, s=1)
T ka8 — ( g9+1 - ’ !
q(( ch) < Ck.]C;ii (S(Z 2) eVen),
0 (s(= 3) odd).

Then by the direct calculations, we have
Og11Ty + Ty-104 = idy,

for ¢ > 0. Hence (Y,m,4) is a I"*-projective resolution of I. v O

2 Hochschild cohomology HH*(I")
2.1 Module structure

In this section, we give the module structure of HH*(I"). This is obtained by using
the I'*-projective resolution (Y, 7, §) of I stated in Theorem 1. In the following we denote
a direct sum of g copies of a module M by M4.

First, we state the following lemma:

Lemma 1. Let { be a primitive 2" -th root of 1 for any positive integer r > 2 and K
the mazimal real subfield Q(¢ + ¢~1) of Q(¢). Then (¢ + ¢~1)? divides 2 in R, where R
denotes Z[¢ + ¢, the ring of integers of K.

Proof. See [4, Lemma 1]. Note that ¢%* +¢? divides 2in Rfor 0 < k <r — 2. O

If r > 2, we set n, = 2e/(¢2" + ¢~2*) for 0 < k < r — 2 in the following. Let 1 = no.
In the following, we show that e—n? is an unit in R. If r = 2, then we have e—n? = —e.
If r > 3, then we have

because the equation (e —7nZ_,)(e+m)* = e —n} holds for 1 < k < r — 2. Therefore e —7?
is an unit in R. _
As elements of I'""!, we set

P (e ,0,6,0,...,0) (fl<s<q+1),
7 0 (otherwise).



Then we have I'"*! = @I1] I'ik.

* Applying the functor Homp.(—, I") to the resolution (Y, 7,4d), we have the following
complex, where we identify Homp.(Yg, I') with I"*! using an isomorphism Homp.(Y;, I")
— It f s EQH f(cE)s:

(Hompe(Y F) 6#): osr e B s B opa Hps

- ZCH i + (1) 2CGyi¢ + y)etl  for g even, s even,
1=0 /

) Gy = Q) eepy + ((m1)a=2= D 25 — y)iit] for g even, s odd,

—(¢y - ’YC)bq_H + ((=1)la=2=V 255 + y)eit] for ¢ odd, s even,

t—1

Z ¢yl + (F1) 92 Gyi¢ — v)egtl for g odd, s odd.
\ =0 .

6q+1 (7" )

In the above, note that

= 0.,050,..,0)  (f1<s<q+D),
! 0 (otherwise),

for v € I', and so on.
Theorem 2. (1) If r = 1, the Z-module structure of HH™(I'") is given as follows:
(i) Ifn=0, then HH(I') = Z
(i) If n=1, then HHY(I") = (Z/2Z)3 with generators {jii, je} + (52, ¢
(iii) Ifn =2, then HH*(I") = (Z/2Z)® with generators (i}, 13+ (12, 73, (G2 —3543, 4.
(iv) Ifn =3, then HH3(I") = (Z/2Z)" with generators ji}, (jid —ji2, o2, Ci2—d3, ¢jdd,
33 +¢jes, €.
(v) If n =4k (k #0), then HH™(I') = (Z/2Z)***! with generators

4l+1 4141 4l 2 41+2 4142 4143 4143 4l+3 4l+4
, GOt — 2 GGt AT g GRS A, + (o

n 11.

L

444, Al+4
e, Gt

: L5 k]
J“n n ’

—Jtn s
wherel =0,1,2,... ,k—1.
(vi) If n =4k +1 (k #0), then HH™(I') = (Z/2Z)***! with generators
Cien ™y e 4 Gt G T 4 G, G,

> 4m+3 > dm+4 4m+4 4m+4 4m+5
C] (2 — M by ’ C"n — iy

? ’

wherel =0,1,2,... ,k andm=0,1,2,... ,k—1.
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(vii) Ifn =4k +2 (k #0), then HH™(I') = (Z/2Z)>*! with generators

4+1 4z+1 4142 4l+2 4142 4z+3 4l+3

Gty s + Q% Gty Gty T = ity ,
4m+3 __ 4m+4 4m+4 4m+4 4m-+5

Cln b Gl 0y Gl A+ G

wherel =0,1,2,... ,k andm=0,1,2,... ,k— 1.
(viii) Ifn =4k +3 (k #0), then HH™(I') = (Z/2Z)***! with generators

4l+1 441 41+2 4142 <L4l+2 4l+3 4l+3
n

y Gty =017, by tn s Clln
] ;1;[+3 + C]Lﬁl+4, CL:‘+4, l‘:,m+4 + Cl’zm+5
wherel =0,1,2,... ,k and m=0,1,2,... ;k— 1.
(2) If r > 2, the R-module structure of HH™(I") is as follows:
(i) If n=0, then HH(I') =R

(ii) Ifn=1, then HH'(I') = (R/({+{")R)* with generators (j —n¢j)et, (CG—mier+
(G —n¢ied, (e—nC)d.

(iii) If n = 2, then HHY(I') = R/2’R & (R/({ + ("Y)R)*, where the R/2"R summand
is generated by (e — n¢)y and the (R/(¢ + ¢("')R)* summands are generated by
2rInCuy + a3, g3, g — g3, 4.

(iv) Ifn =3, then HH3(Ij) = (R'/(C+.C‘1)R)7‘ with generators juy, Ciui—gi3, o2, 2rIn¢dl
+(C =i, (G =053, (¢ —nd)d+ (G —nCi)ed, (e —nC)es.

(v) If n =4k (k #0), then HH™(I') = R/2’R & (R/(¢ + (') R)*", where the R/2"R
summand is generated by .. and the (R/({ + (")R)?® summands are generated by

277Gt 4+ (C = men 2, (G = a2, (G — i)™ + (5 = néa)en?,
(6 — mC)AH3, Pl A48 | ¢ dihd G Aha o ALbA G s i
wherel =0,1,2,... ,k—1. 7
(vi) Ifn=4k +1 (k #0), then HH™(I') = (R/(¢ + (") R)**! with generators
G =t (€ —ni)a™ + (G = mCa)en™?, (e = nQ)ea™?,
2r—lnCL:m+2 + CLim+3, j L:m+3’ C j Lim+3 _y Lim+4, Lim+4’
277G+ (= mye™,
wherel =0,1,2,... ,kandm=0,1,2,... ,k—1.
(vii) If n = 4k + 2 (k # 0), then HH™(I') = R/2"R & (R/(¢ + ("Y)R)?", where the

R/2"R summand is generated by (e — n¢)l and the (R/(¢ + ¢(~')R)*" summands
are generated by

or— ncb4l+1 + <L4l+2 L4l+2 <J1'4l+2 ]L4l+3 ,41!+3, 2T_IT]<L:m+3 + (C - n)Lﬁm+41

(G = nCa)e™, (CF — ni)ea™ + (5 — n¢i)a™*®, (e —m¢)eam™*?,
wherel =0,1,2,... ,k andm=0,1,2,... ,k — 1.
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(viil) If n =4k + 3 (k #0), then HH™(I') = (R/({ + ("Y)R)>**! with generators

4l+1, C]L4l+1 ] 4l+2, 4142 2r—1ncbil+2 +(<_,,7)L:Ill+37 (J UCJ)L4I+3
(CG —ng)ea ™2+ (5 — n¢h)ed s , (e —nQ)ultrt, 2r-lpgudm+t 4 gy imtS,
wherel =0,1,2,... ,k and m=0,1,2,... ,k — 1.

Proof. The proof is straightforward. However it is complicated. a

2.2 Ring structure

In this subsection, we will determine the ring structure of the Hochschild cohomology
ring HH*(I').

Recall the Yoneda product in HH*(F) Let « € HH™(I') and g € HH™(I"), where
a and § are represented by cocycles f, : Y, — I' and fg : Y., — I', respectively. There
exists the commutative diagram of I"-modules:

6n+m+1 6n+m 6m+2 5m+1
* Yn+m > e > Ym+1 Y
Fnl M1 l I-‘Ol ”
C— Y, y o y Y, — Yo y 0,
Sns1 én &2 & n

where g (0 < I < n) are liftings of f3. We define the product a- 3 € HH"t™(I") by the
cohomology class of f,u,. This product is independent of the choice of representatives
fa and fg, and liftings p; (0 <1 < n).

First, we consider the case r = 1. Note the Hochschild cohomology ring HH*(I") is
graded-commutative. From Theorem 2 (1), HH*(I") is a commutative ring in this case.
We take generators of HH(I") as follows:

A=(d, B=(hg, C =35+ (5.

Then we have 24 = 2B = 2C = 0. We calculate the Yoneda products. Then HH™(I") (n >
2) is multiplicatively generated by A, B and C, and the equation A%+ B2+ C? = 0 holds.
Moreover the relations are enough. Thus we can determine the ring structure of HH*(I")
in the case r = 1 (see [3, Section 3.1] for details).

Next, we consider the case r > 2. The computation is similar to the case where r = 1,
however it is more complicated. By Theorem 2 (2), we take generators of HH(I") as
follows:

=(e-n)d, B=(j—nju, C=({—ni)a+ (G —néi)ei.
Then we have (( +¢™')A = ((+¢7!)B = ({+ ¢ ')C = 0. Note that products of A, B,C
and X € HH™(I') (n > 0) are commutative, because HH*(I") is graded-commutative

and the equations 24 = 2B = 2C = 0 hold. By calculating the Yoneda products we have
the following proposition.
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Proposition 2. If r > 2, then the following equations hold in HH?(I'):

A’ =1, AB =jij, AC = (ji5 — ji§, B® =277'nCuy + (3,
BC =2"'n(e = 1¢)i3, C* = 277'nCuy + (i + 5.

In particular, generators of HH?(I') except (e — n¢)i3 are generated by the products of
A, B and C, and the equation A2 + B% + C? =0 holds.

In the following, we put D = (e — n{):} which is a generator of HH?(I'), and then we
have 2"D = 0 and BC = 2""5D. Similarly, we calculate the Yoneda products. Then
HH™(I') (n > 3) is multiplicatively generated by A, B,C and D, and the relations are
enough. Thus we can determine the ring structure of HH*(I") in the case r > 2 (see [3,
Section 3.2] for details).

We state the ring structure of the Hochschild cohomology ring HH*(I') by summa-
rizing these computations.

Theorem 3. (1) If r = 1, then the Hochschild cohomology ring HH*(I") is isomorphic
to

Z|A, B,C)/(24,2B,2C, A + B? + C?),
where deg A = deg B =degC = 1.
(2) If r > 2, then the Hochschild cohomology ring HH*(I") is isomorphic to

R[A,B,C,D]/(K+¢HA, (C+¢ B, ((+¢1)C, 27D,
A%+ B? + C? BC - 2"'9D),

where R =Z[( + ¢ !], deg A =deg B=degC =1 and deg D = 2.

Remark. In the case r = 1, this cohomology ring is already known by Sanada [8, Section
3.4]. In (8], he treats the Hochschild cohomology of crossed products over a commutative
ring and its product structure using a spectral sequence of a double complex. As a special
case, he determines the Hochschild cohomology ring of the quaternion algebra over Z.
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